Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 27,501 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
/-
Copyright (c) 2022 Pierre-Alexandre Bazin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Pierre-Alexandre Bazin
-/
import algebra.direct_sum.module
import linear_algebra.isomorphisms
import group_theory.torsion
import ring_theory.coprime.ideal
import ring_theory.finiteness

/-!
# Torsion submodules

## Main definitions

* `torsion_of R M x` : the torsion ideal of `x`, containing all `a` such that `a • x = 0`.
* `submodule.torsion_by R M a` : the `a`-torsion submodule, containing all elements `x` of `M` such
  that `a • x = 0`.
* `submodule.torsion_by_set R M s` : the submodule containing all elements `x` of `M` such that
  `a • x = 0` for all `a` in `s`.
* `submodule.torsion' R M S` : the `S`-torsion submodule, containing all elements `x` of `M` such
  that `a • x = 0` for some `a` in `S`.
* `submodule.torsion R M` : the torsion submoule, containing all elements `x` of `M` such that
  `a • x = 0` for some non-zero-divisor `a` in `R`.
* `module.is_torsion_by R M a` : the property that defines a `a`-torsion module. Similarly,
  `is_torsion_by_set`, `is_torsion'` and `is_torsion`.
* `module.is_torsion_by_set.module` : Creates a `R ⧸ I`-module from a `R`-module that
  `is_torsion_by_set R _ I`.

## Main statements

* `quot_torsion_of_equiv_span_singleton` : isomorphism between the span of an element of `M` and
  the quotient by its torsion ideal.
* `torsion' R M S` and `torsion R M` are submodules.
* `torsion_by_set_eq_torsion_by_span` : torsion by a set is torsion by the ideal generated by it.
* `submodule.torsion_by_is_torsion_by` : the `a`-torsion submodule is a `a`-torsion module.
  Similar lemmas for `torsion'` and `torsion`.
* `submodule.torsion_by_is_internal` : a `∏ i, p i`-torsion module is the internal direct sum of its
  `p i`-torsion submodules when the `p i` are pairwise coprime. A more general version with coprime
  ideals is `submodule.torsion_by_set_is_internal`.
* `submodule.no_zero_smul_divisors_iff_torsion_bot` : a module over a domain has
  `no_zero_smul_divisors` (that is, there is no non-zero `a`, `x` such that `a • x = 0`)
  iff its torsion submodule is trivial.
* `submodule.quotient_torsion.torsion_eq_bot` : quotienting by the torsion submodule makes the
  torsion submodule of the new module trivial. If `R` is a domain, we can derive an instance
  `submodule.quotient_torsion.no_zero_smul_divisors : no_zero_smul_divisors R (M ⧸ torsion R M)`.

## Notation

* The notions are defined for a `comm_semiring R` and a `module R M`. Some additional hypotheses on
  `R` and `M` are required by some lemmas.
* The letters `a`, `b`, ... are used for scalars (in `R`), while `x`, `y`, ... are used for vectors
  (in `M`).

## Tags

Torsion, submodule, module, quotient
-/

namespace ideal

section torsion_of

variables (R M : Type*) [semiring R] [add_comm_monoid M] [module R M]

/--The torsion ideal of `x`, containing all `a` such that `a • x = 0`.-/
@[simps] def torsion_of (x : M) : ideal R := (linear_map.to_span_singleton R M x).ker

@[simp] lemma torsion_of_zero : torsion_of R M (0 : M) = ⊤ := by simp [torsion_of]

variables {R M}

@[simp] lemma mem_torsion_of_iff (x : M) (a : R) : a ∈ torsion_of R M x ↔ a • x = 0 := iff.rfl

variables (R)

@[simp] lemma torsion_of_eq_top_iff (m : M) : torsion_of R M m = ⊤ ↔ m = 0 :=
begin
  refine ⟨λ h, _, λ h, by simp [h]⟩,
  rw [← one_smul R m, ← mem_torsion_of_iff m (1 : R), h],
  exact submodule.mem_top,
end

@[simp] lemma torsion_of_eq_bot_iff_of_no_zero_smul_divisors
  [nontrivial R] [no_zero_smul_divisors R M] (m : M) :
  torsion_of R M m = ⊥ ↔ m ≠ 0 :=
begin
  refine ⟨λ h contra, _, λ h, (submodule.eq_bot_iff _).mpr $ λ r hr, _⟩,
  { rw [contra, torsion_of_zero] at h,
    exact bot_ne_top.symm h, },
  { rw [mem_torsion_of_iff, smul_eq_zero] at hr,
    tauto, },
end

/-- See also `complete_lattice.independent.linear_independent` which provides the same conclusion
but requires the stronger hypothesis `no_zero_smul_divisors R M`. -/
lemma complete_lattice.independent.linear_independent' {ι R M : Type*} {v : ι → M}
  [ring R] [add_comm_group M] [module R M]
  (hv : complete_lattice.independent $ λ i, (R ∙ v i))
  (h_ne_zero : ∀ i, ideal.torsion_of R M (v i) = ⊥) :
  linear_independent R v :=
begin
  refine linear_independent_iff_not_smul_mem_span.mpr (λ i r hi, _),
  replace hv := complete_lattice.independent_def.mp hv i,
  simp only [supr_subtype', ← submodule.span_range_eq_supr, disjoint_iff] at hv,
  have : r • v i ∈ ⊥,
  { rw [← hv, submodule.mem_inf],
    refine ⟨submodule.mem_span_singleton.mpr ⟨r, rfl⟩, _⟩,
    convert hi,
    ext,
    simp, },
  rw [← submodule.mem_bot R, ← h_ne_zero i],
  simpa using this,
end

end torsion_of

section
variables (R M : Type*) [ring R] [add_comm_group M] [module R M]
/--The span of `x` in `M` is isomorphic to `R` quotiented by the torsion ideal of `x`.-/
noncomputable def quot_torsion_of_equiv_span_singleton (x : M) :
  (R ⧸ torsion_of R M x) ≃ₗ[R] (R ∙ x) :=
(linear_map.to_span_singleton R M x).quot_ker_equiv_range.trans $
linear_equiv.of_eq _ _ (linear_map.span_singleton_eq_range R M x).symm

variables {R M}
@[simp] lemma quot_torsion_of_equiv_span_singleton_apply_mk (x : M) (a : R) :
  quot_torsion_of_equiv_span_singleton R M x (submodule.quotient.mk a) =
    a • ⟨x, submodule.mem_span_singleton_self x⟩ := rfl
end
end ideal

open_locale non_zero_divisors

section defs

variables (R M : Type*) [comm_semiring R] [add_comm_monoid M] [module R M]

namespace submodule

/-- The `a`-torsion submodule for `a` in `R`, containing all elements `x` of `M` such that
  `a • x = 0`. -/
@[simps] def torsion_by (a : R) : submodule R M := (distrib_mul_action.to_linear_map _ _ a).ker

/-- The submodule containing all elements `x` of `M` such that `a • x = 0` for all `a` in `s`. -/
@[simps] def torsion_by_set (s : set R) : submodule R M := Inf (torsion_by R M '' s)

/-- The `S`-torsion submodule, containing all elements `x` of `M` such that `a • x = 0` for some
`a` in `S`. -/
@[simps] def torsion' (S : Type*)
  [comm_monoid S] [distrib_mul_action S M] [smul_comm_class S R M] :
  submodule R M :=
{ carrier := { x | ∃ a : S, a • x = 0 },
  zero_mem' := ⟨1, smul_zero _⟩,
  add_mem' := λ x y ⟨a, hx⟩ ⟨b, hy⟩,
    ⟨b * a,
      by rw [smul_add, mul_smul, mul_comm, mul_smul, hx, hy, smul_zero, smul_zero, add_zero]⟩,
  smul_mem' := λ a x ⟨b, h⟩, ⟨b, by rw [smul_comm, h, smul_zero]⟩ }

/-- The torsion submodule, containing all elements `x` of `M` such that  `a • x = 0` for some
  non-zero-divisor `a` in `R`. -/
@[reducible] def torsion := torsion' R M R⁰

end submodule

namespace module

/-- A `a`-torsion module is a module where every element is `a`-torsion. -/
@[reducible] def is_torsion_by (a : R) := ∀ ⦃x : M⦄, a • x = 0

/-- A module where every element is `a`-torsion for all `a` in `s`. -/
@[reducible] def is_torsion_by_set (s : set R) := ∀ ⦃x : M⦄ ⦃a : s⦄, (a : R) • x = 0

/-- A `S`-torsion module is a module where every element is `a`-torsion for some `a` in `S`. -/
@[reducible] def is_torsion' (S : Type*) [has_smul S M] := ∀ ⦃x : M⦄, ∃ a : S, a • x = 0

/-- A torsion module is a module where every element is `a`-torsion for some non-zero-divisor `a`.
-/
@[reducible] def is_torsion := ∀ ⦃x : M⦄, ∃ a : R⁰, a • x = 0

end module

end defs

variables {R M : Type*}

section
variables [comm_semiring R] [add_comm_monoid M] [module R M] (s : set R) (a : R)

namespace submodule

@[simp] lemma smul_torsion_by (x : torsion_by R M a) : a • x = 0 := subtype.ext x.prop
@[simp] lemma smul_coe_torsion_by (x : torsion_by R M a) : a • (x : M) = 0 := x.prop
@[simp] lemma mem_torsion_by_iff (x : M) : x ∈ torsion_by R M a ↔ a • x = 0 := iff.rfl

@[simp] lemma mem_torsion_by_set_iff (x : M) :
  x ∈ torsion_by_set R M s ↔ ∀ a : s, (a : R) • x = 0 :=
begin
  refine ⟨λ h ⟨a, ha⟩, mem_Inf.mp h _ (set.mem_image_of_mem _ ha), λ h, mem_Inf.mpr _⟩,
  rintro _ ⟨a, ha, rfl⟩, exact h ⟨a, ha⟩
end

@[simp] lemma torsion_by_singleton_eq : torsion_by_set R M {a} = torsion_by R M a :=
begin
  ext x,
  simp only [mem_torsion_by_set_iff, set_coe.forall, subtype.coe_mk, set.mem_singleton_iff,
    forall_eq, mem_torsion_by_iff]
end

lemma torsion_by_set_le_torsion_by_set_of_subset {s t : set R} (st : s ⊆ t) :
  torsion_by_set R M t ≤ torsion_by_set R M s :=
Inf_le_Inf $ λ _ ⟨a, ha, h⟩, ⟨a, st ha, h⟩

/-- Torsion by a set is torsion by the ideal generated by it. -/
lemma torsion_by_set_eq_torsion_by_span :
  torsion_by_set R M s = torsion_by_set R M (ideal.span s) :=
begin
  refine le_antisymm (λ x hx, _) (torsion_by_set_le_torsion_by_set_of_subset subset_span),
  rw mem_torsion_by_set_iff at hx ⊢,
  suffices : ideal.span s ≤ ideal.torsion_of R M x,
  { rintro ⟨a, ha⟩, exact this ha },
  rw ideal.span_le, exact λ a ha, hx ⟨a, ha⟩
end

lemma torsion_by_span_singleton_eq : torsion_by_set R M (R ∙ a) = torsion_by R M a :=
((torsion_by_set_eq_torsion_by_span _).symm.trans $ torsion_by_singleton_eq _)

lemma torsion_by_le_torsion_by_of_dvd (a b : R) (dvd : a ∣ b) :
  torsion_by R M a ≤ torsion_by R M b :=
begin
  rw [← torsion_by_span_singleton_eq, ← torsion_by_singleton_eq],
  apply torsion_by_set_le_torsion_by_set_of_subset,
  rintro c (rfl : c = b), exact ideal.mem_span_singleton.mpr dvd
end

@[simp] lemma torsion_by_one : torsion_by R M 1 = ⊥ :=
eq_bot_iff.mpr (λ _ h, by { rw [mem_torsion_by_iff, one_smul] at h, exact h })
@[simp] lemma torsion_by_univ : torsion_by_set R M set.univ = ⊥ :=
by { rw [eq_bot_iff, ← torsion_by_one, ← torsion_by_singleton_eq],
  exact torsion_by_set_le_torsion_by_set_of_subset (λ _ _, trivial) }

end submodule
open submodule
namespace module

@[simp] lemma is_torsion_by_singleton_iff : is_torsion_by_set R M {a} ↔ is_torsion_by R M a :=
begin
  refine ⟨λ h x, @h _ ⟨_, set.mem_singleton _⟩, λ h x, _⟩,
  rintro ⟨b, rfl : b = a⟩, exact @h _
end

lemma is_torsion_by_set_iff_torsion_by_set_eq_top :
  is_torsion_by_set R M s ↔ submodule.torsion_by_set R M s = ⊤ :=
⟨λ h, eq_top_iff.mpr (λ _ _, (mem_torsion_by_set_iff _ _).mpr $ @h _),
  λ h x, by { rw [← mem_torsion_by_set_iff, h], trivial }⟩

/-- A `a`-torsion module is a module whose `a`-torsion submodule is the full space. -/
lemma is_torsion_by_iff_torsion_by_eq_top : is_torsion_by R M a ↔ torsion_by R M a = ⊤ :=
by rw [← torsion_by_singleton_eq, ← is_torsion_by_singleton_iff,
  is_torsion_by_set_iff_torsion_by_set_eq_top]

lemma is_torsion_by_set_iff_is_torsion_by_span :
  is_torsion_by_set R M s ↔ is_torsion_by_set R M (ideal.span s) :=
by rw [is_torsion_by_set_iff_torsion_by_set_eq_top, is_torsion_by_set_iff_torsion_by_set_eq_top,
  torsion_by_set_eq_torsion_by_span]

lemma is_torsion_by_span_singleton_iff : is_torsion_by_set R M (R ∙ a) ↔ is_torsion_by R M a :=
((is_torsion_by_set_iff_is_torsion_by_span _).symm.trans $ is_torsion_by_singleton_iff _)

end module
namespace submodule
open module

lemma torsion_by_set_is_torsion_by_set : is_torsion_by_set R (torsion_by_set R M s) s :=
λ ⟨x, hx⟩ a, subtype.ext $ (mem_torsion_by_set_iff _ _).mp hx a

/-- The `a`-torsion submodule is a `a`-torsion module. -/
lemma torsion_by_is_torsion_by : is_torsion_by R (torsion_by R M a) a := λ _, smul_torsion_by _ _

@[simp] lemma torsion_by_torsion_by_eq_top : torsion_by R (torsion_by R M a) a = ⊤ :=
(is_torsion_by_iff_torsion_by_eq_top a).mp $ torsion_by_is_torsion_by a
@[simp] lemma torsion_by_set_torsion_by_set_eq_top :
  torsion_by_set R (torsion_by_set R M s) s = ⊤ :=
(is_torsion_by_set_iff_torsion_by_set_eq_top s).mp $ torsion_by_set_is_torsion_by_set s

variables (R M)
lemma torsion_gc : @galois_connection (submodule R M) (ideal R)ᵒᵈ _ _
  annihilator (λ I, torsion_by_set R M $ I.of_dual) :=
λ A I, ⟨λ h x hx, (mem_torsion_by_set_iff _ _).mpr $ λ ⟨a, ha⟩, mem_annihilator.mp (h ha) x hx,
  λ h a ha, mem_annihilator.mpr $ λ x hx, (mem_torsion_by_set_iff _ _).mp (h hx) ⟨a, ha⟩⟩

variables {R M}
section coprime
open_locale big_operators
variables {ι : Type*} {p : ι → ideal R} {S : finset ι}
variables (hp : (S : set ι).pairwise $ λ i j, p i ⊔ p j = ⊤)
include hp

lemma supr_torsion_by_ideal_eq_torsion_by_infi :
  (⨆ i ∈ S, torsion_by_set R M $ p i) = torsion_by_set R M ↑(⨅ i ∈ S, p i) :=
begin
  cases S.eq_empty_or_nonempty with h h,
  { rw h, convert supr_emptyset, convert torsion_by_univ, convert top_coe, exact infi_emptyset },
  apply le_antisymm,
  { apply supr_le _, intro i, apply supr_le _, intro is,
    apply torsion_by_set_le_torsion_by_set_of_subset,
    exact (infi_le (λ i, ⨅ (H : i ∈ S), p i) i).trans (infi_le _ is), },
  { intros x hx,
    rw mem_supr_finset_iff_exists_sum,
    obtain ⟨μ, hμ⟩ := (mem_supr_finset_iff_exists_sum _ _).mp
      ((ideal.eq_top_iff_one _).mp $ (ideal.supr_infi_eq_top_iff_pairwise h _).mpr hp),
    refine ⟨λ i, ⟨(μ i : R) • x, _⟩, _⟩,
    { rw mem_torsion_by_set_iff at hx ⊢,
      rintro ⟨a, ha⟩, rw smul_smul,
      suffices : a * μ i ∈ ⨅ i ∈ S, p i, from hx ⟨_, this⟩,
      rw mem_infi, intro j, rw mem_infi, intro hj,
      by_cases ij : j = i,
      { rw ij, exact ideal.mul_mem_right _ _ ha },
      { have := coe_mem (μ i), simp only [mem_infi] at this,
        exact ideal.mul_mem_left _ _ (this j hj ij) } },
    { simp_rw coe_mk, rw [← finset.sum_smul, hμ, one_smul] } }
end

lemma sup_indep_torsion_by_ideal : S.sup_indep (λ i, torsion_by_set R M $ p i) :=
λ T hT i hi hiT, begin
  rw [disjoint_iff, finset.sup_eq_supr,
    supr_torsion_by_ideal_eq_torsion_by_infi $ λ i hi j hj ij, hp (hT hi) (hT hj) ij],
  have := @galois_connection.u_inf _ _ (order_dual.to_dual _) (order_dual.to_dual _) _ _ _ _
    (torsion_gc R M), dsimp at this ⊢,
  rw [← this, ideal.sup_infi_eq_top, top_coe, torsion_by_univ],
  intros j hj, apply hp hi (hT hj), rintro rfl, exact hiT hj
end

omit hp
variables {q : ι → R} (hq : (S : set ι).pairwise $ is_coprime on q)
include hq

lemma supr_torsion_by_eq_torsion_by_prod :
  (⨆ i ∈ S, torsion_by R M $ q i) = torsion_by R M (∏ i in S, q i) :=
begin
  rw [← torsion_by_span_singleton_eq, ideal.submodule_span_eq,
    ← ideal.finset_inf_span_singleton _ _ hq, finset.inf_eq_infi,
    ← supr_torsion_by_ideal_eq_torsion_by_infi],
  { congr, ext : 1, congr, ext : 1, exact (torsion_by_span_singleton_eq _).symm },
  { exact λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime _ _).mpr (hq hi hj ij), }
end

lemma sup_indep_torsion_by : S.sup_indep (λ i, torsion_by R M $ q i) :=
begin
  convert sup_indep_torsion_by_ideal
    (λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime (q i) _).mpr $ hq hi hj ij),
  ext : 1, exact (torsion_by_span_singleton_eq _).symm,
end

end coprime
end submodule
end

section needs_group
variables [comm_ring R] [add_comm_group M] [module R M]

namespace submodule
open_locale big_operators
variables {ι : Type*} [decidable_eq ι] {S : finset ι}

/--If the `p i` are pairwise coprime, a `⨅ i, p i`-torsion module is the internal direct sum of
its `p i`-torsion submodules.-/
lemma torsion_by_set_is_internal {p : ι → ideal R}
  (hp : (S : set ι).pairwise $ λ i j, p i ⊔ p j = ⊤)
  (hM : module.is_torsion_by_set R M (⨅ i ∈ S, p i : ideal R)) :
  direct_sum.is_internal (λ i : S, torsion_by_set R M $ p i) :=
direct_sum.is_internal_submodule_of_independent_of_supr_eq_top
  (complete_lattice.independent_iff_sup_indep.mpr $ sup_indep_torsion_by_ideal hp)
  ((supr_subtype'' ↑S $ λ i, torsion_by_set R M $ p i).trans $
    (supr_torsion_by_ideal_eq_torsion_by_infi hp).trans $
    (module.is_torsion_by_set_iff_torsion_by_set_eq_top _).mp hM)

/--If the `q i` are pairwise coprime, a `∏ i, q i`-torsion module is the internal direct sum of
its `q i`-torsion submodules.-/
lemma torsion_by_is_internal {q : ι → R} (hq : (S : set ι).pairwise $ is_coprime on q)
  (hM : module.is_torsion_by R M $ ∏ i in S, q i) :
  direct_sum.is_internal (λ i : S, torsion_by R M $ q i) :=
begin
  rw [← module.is_torsion_by_span_singleton_iff, ideal.submodule_span_eq,
    ← ideal.finset_inf_span_singleton _ _ hq, finset.inf_eq_infi] at hM,
  convert torsion_by_set_is_internal
    (λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime (q i) _).mpr $ hq hi hj ij) hM,
  ext : 1, exact (torsion_by_span_singleton_eq _).symm,
end

end submodule

namespace module
variables {I : ideal R} (hM : is_torsion_by_set R M I)
include hM

/-- can't be an instance because hM can't be inferred -/
def is_torsion_by_set.has_smul : has_smul (R ⧸ I) M :=
{ smul := λ b x, quotient.lift_on' b (• x) $ λ b₁ b₂ h, begin
    show b₁ • x = b₂ • x,
    have : (-b₁ + b₂) • x = 0 := @hM x ⟨_, quotient_add_group.left_rel_apply.mp h⟩,
    rw [add_smul, neg_smul, neg_add_eq_zero] at this,
    exact this
  end }

@[simp] lemma is_torsion_by_set.mk_smul (b : R) (x : M) :
  by haveI := hM.has_smul; exact ideal.quotient.mk I b • x = b • x := rfl

/-- A `(R ⧸ I)`-module is a `R`-module which `is_torsion_by_set R M I`. -/
def is_torsion_by_set.module : module (R ⧸ I) M :=
@function.surjective.module_left _ _ _ _ _ _ _ hM.has_smul
  _ ideal.quotient.mk_surjective (is_torsion_by_set.mk_smul hM)

instance is_torsion_by_set.is_scalar_tower {S : Type*} [has_smul S R] [has_smul S M]
  [is_scalar_tower S R M] [is_scalar_tower S R R] :
  @@is_scalar_tower S (R ⧸ I) M _ (is_torsion_by_set.module hM).to_has_smul _ :=
{ smul_assoc := λ b d x, quotient.induction_on' d $ λ c, (smul_assoc b c x : _) }

omit hM

instance : module (R ⧸ I) (M ⧸ I • (⊤ : submodule R M)) :=
is_torsion_by_set.module (λ x r, begin
  induction x using quotient.induction_on,
  refine (submodule.quotient.mk_eq_zero _).mpr (submodule.smul_mem_smul r.prop _),
  trivial,
end)

end module

namespace submodule

instance (I : ideal R) : module (R ⧸ I) (torsion_by_set R M I) :=
module.is_torsion_by_set.module $ torsion_by_set_is_torsion_by_set I

@[simp] lemma torsion_by_set.mk_smul (I : ideal R) (b : R) (x : torsion_by_set R M I) :
  ideal.quotient.mk I b • x = b • x := rfl

instance (I : ideal R) {S : Type*} [has_smul S R] [has_smul S M]
  [is_scalar_tower S R M] [is_scalar_tower S R R] :
  is_scalar_tower S (R ⧸ I) (torsion_by_set R M I) :=
infer_instance

/-- The `a`-torsion submodule as a `(R ⧸ R∙a)`-module. -/
instance (a : R) : module (R ⧸ R ∙ a) (torsion_by R M a) :=
module.is_torsion_by_set.module $
  (module.is_torsion_by_span_singleton_iff a).mpr $ torsion_by_is_torsion_by a

@[simp] lemma torsion_by.mk_smul (a b : R) (x : torsion_by R M a) :
  ideal.quotient.mk (R ∙ a) b • x = b • x := rfl

instance (a : R) {S : Type*} [has_smul S R] [has_smul S M]
  [is_scalar_tower S R M] [is_scalar_tower S R R] :
  is_scalar_tower S (R ⧸ R ∙ a) (torsion_by R M a) :=
infer_instance

end submodule
end needs_group

namespace submodule
section torsion'
open module

variables [comm_semiring R] [add_comm_monoid M] [module R M]
variables (S : Type*) [comm_monoid S] [distrib_mul_action S M] [smul_comm_class S R M]

@[simp] lemma mem_torsion'_iff (x : M) : x ∈ torsion' R M S ↔ ∃ a : S, a • x = 0 := iff.rfl
@[simp] lemma mem_torsion_iff (x : M) : x ∈ torsion R M ↔ ∃ a : R⁰, a • x = 0 := iff.rfl

@[simps] instance : has_smul S (torsion' R M S) :=
⟨λ s x, ⟨s • x, by { obtain ⟨x, a, h⟩ := x, use a, dsimp, rw [smul_comm, h, smul_zero] }⟩⟩
instance : distrib_mul_action S (torsion' R M S) := subtype.coe_injective.distrib_mul_action
  ((torsion' R M S).subtype).to_add_monoid_hom (λ (c : S) x, rfl)
instance : smul_comm_class S R (torsion' R M S) := ⟨λ s a x, subtype.ext $ smul_comm _ _ _⟩

/-- A `S`-torsion module is a module whose `S`-torsion submodule is the full space. -/
lemma is_torsion'_iff_torsion'_eq_top : is_torsion' M S ↔ torsion' R M S = ⊤ :=
⟨λ h, eq_top_iff.mpr (λ _ _, @h _), λ h x, by { rw [← @mem_torsion'_iff R, h], trivial }⟩

/-- The `S`-torsion submodule is a `S`-torsion module. -/
lemma torsion'_is_torsion' : is_torsion' (torsion' R M S) S := λ ⟨x, ⟨a, h⟩⟩, ⟨a, subtype.ext h⟩

@[simp] lemma torsion'_torsion'_eq_top : torsion' R (torsion' R M S) S = ⊤ :=
(is_torsion'_iff_torsion'_eq_top S).mp $ torsion'_is_torsion' S

/-- The torsion submodule of the torsion submodule (viewed as a module) is the full
torsion module. -/
@[simp] lemma torsion_torsion_eq_top : torsion R (torsion R M) = ⊤ := torsion'_torsion'_eq_top R⁰

/-- The torsion submodule is always a torsion module. -/
lemma torsion_is_torsion : module.is_torsion R (torsion R M) := torsion'_is_torsion' R⁰
end torsion'

section torsion
variables [comm_semiring R] [add_comm_monoid M] [module R M]
open_locale big_operators

lemma is_torsion_by_ideal_of_finite_of_is_torsion [module.finite R M] (hM : module.is_torsion R M) :
  ∃ I : ideal R, (I : set R) ∩ R⁰ ≠ ∅ ∧ module.is_torsion_by_set R M I :=
begin
  cases (module.finite_def.mp infer_instance : (⊤ : submodule R M).fg) with S h,
  refine ⟨∏ x in S, ideal.torsion_of R M x, _, _⟩,
  { rw set.ne_empty_iff_nonempty,
    refine ⟨_, _, (∏ x in S, (@hM x).some : R⁰).2⟩,
    rw [subtype.val_eq_coe, submonoid.coe_finset_prod],
    apply ideal.prod_mem_prod,
    exact λ x _, (@hM x).some_spec },
  { rw [module.is_torsion_by_set_iff_torsion_by_set_eq_top, eq_top_iff, ← h, span_le],
    intros x hx, apply torsion_by_set_le_torsion_by_set_of_subset,
    { apply ideal.le_of_dvd, exact finset.dvd_prod_of_mem _ hx },
    { rw mem_torsion_by_set_iff, rintro ⟨a, ha⟩, exact ha } }
end

variables [no_zero_divisors R] [nontrivial R]

lemma coe_torsion_eq_annihilator_ne_bot :
  (torsion R M : set M) = { x : M | (R ∙ x).annihilator ≠ ⊥ } :=
begin
  ext x, simp_rw [submodule.ne_bot_iff, mem_annihilator, mem_span_singleton],
  exact ⟨λ ⟨a, hax⟩, ⟨a, λ _ ⟨b, hb⟩, by rw [← hb, smul_comm, ← submonoid.smul_def, hax, smul_zero],
    non_zero_divisors.coe_ne_zero _⟩,
    λ ⟨a, hax, ha⟩, ⟨⟨_, mem_non_zero_divisors_of_ne_zero ha⟩, hax x ⟨1, one_smul _ _⟩⟩⟩
end

/-- A module over a domain has `no_zero_smul_divisors` iff its torsion submodule is trivial. -/
lemma no_zero_smul_divisors_iff_torsion_eq_bot :
  no_zero_smul_divisors R M ↔ torsion R M = ⊥ :=
begin
  split; intro h,
  { haveI : no_zero_smul_divisors R M := h,
    rw eq_bot_iff, rintro x ⟨a, hax⟩,
    change (a : R) • x = 0 at hax,
    cases eq_zero_or_eq_zero_of_smul_eq_zero hax with h0 h0,
    { exfalso, exact non_zero_divisors.coe_ne_zero a h0 }, { exact h0 } },
  { exact { eq_zero_or_eq_zero_of_smul_eq_zero := λ a x hax, begin
      by_cases ha : a = 0,
      { left, exact ha },
      { right, rw [← mem_bot _, ← h],
        exact ⟨⟨a, mem_non_zero_divisors_of_ne_zero ha⟩, hax⟩ }
    end } }
end
end torsion

namespace quotient_torsion

variables [comm_ring R] [add_comm_group M] [module R M]

/-- Quotienting by the torsion submodule gives a torsion-free module. -/
@[simp] lemma torsion_eq_bot : torsion R (M ⧸ torsion R M) = ⊥ :=
eq_bot_iff.mpr $ λ z, quotient.induction_on' z $ λ x ⟨a, hax⟩,
begin
  rw [quotient.mk'_eq_mk, ← quotient.mk_smul, quotient.mk_eq_zero] at hax,
  rw [mem_bot, quotient.mk'_eq_mk, quotient.mk_eq_zero],
  cases hax with b h,
  exact ⟨b * a, (mul_smul _ _ _).trans h⟩
end

instance no_zero_smul_divisors [is_domain R] : no_zero_smul_divisors R (M ⧸ torsion R M) :=
no_zero_smul_divisors_iff_torsion_eq_bot.mpr torsion_eq_bot

end quotient_torsion

section p_torsion
open module
section
variables [monoid R] [add_comm_monoid M] [distrib_mul_action R M]

lemma is_torsion'_powers_iff (p : R) :
  is_torsion' M (submonoid.powers p) ↔ ∀ x : M, ∃ n : ℕ, p ^ n • x = 0 :=
⟨λ h x, let ⟨⟨a, ⟨n, rfl⟩⟩, hx⟩ := @h x in ⟨n, hx⟩,
λ h x, let ⟨n, hn⟩ := h x in ⟨⟨_, ⟨n, rfl⟩⟩, hn⟩⟩

/--In a `p ^ ∞`-torsion module (that is, a module where all elements are cancelled by scalar
multiplication by some power of `p`), the smallest `n` such that `p ^ n • x = 0`.-/
def p_order {p : R} (hM : is_torsion' M $ submonoid.powers p) (x : M)
  [Π n : ℕ, decidable (p ^ n • x = 0)] :=
nat.find $ (is_torsion'_powers_iff p).mp hM x
@[simp] lemma pow_p_order_smul {p : R} (hM : is_torsion' M $ submonoid.powers p) (x : M)
  [Π n : ℕ, decidable (p ^ n • x = 0)] : p ^ p_order hM x • x = 0 :=
nat.find_spec $ (is_torsion'_powers_iff p).mp hM x

end
variables [comm_semiring R] [add_comm_monoid M] [module R M] [Π x : M, decidable (x = 0)]

lemma exists_is_torsion_by {p : R} (hM : is_torsion' M $ submonoid.powers p)
  (d : ℕ) (hd : d ≠ 0) (s : fin d → M) (hs : span R (set.range s) = ⊤) :
  ∃ j : fin d, module.is_torsion_by R M (p ^ p_order hM (s j)) :=
begin
  let oj := list.argmax (λ i, p_order hM $ s i) (list.fin_range d),
  have hoj : oj.is_some := (option.ne_none_iff_is_some.mp $
    λ eq_none, hd $ list.fin_range_eq_nil.mp $ list.argmax_eq_none.mp eq_none),
  use option.get hoj,
  rw [is_torsion_by_iff_torsion_by_eq_top, eq_top_iff, ← hs, submodule.span_le,
    set.range_subset_iff], intro i, change _ • _ = _,
  have : p_order hM (s i) ≤ p_order hM (s $ option.get hoj) :=
    list.le_of_mem_argmax (list.mem_fin_range i) (option.get_mem hoj),
  rw [← nat.sub_add_cancel this, pow_add, mul_smul, pow_p_order_smul, smul_zero]
end

end p_torsion
end submodule

namespace ideal.quotient

open submodule

lemma torsion_by_eq_span_singleton {R : Type*} [comm_ring R] (a b : R) (ha : a ∈ R⁰) :
  torsion_by R (R ⧸ R ∙ a * b) a = R ∙ (mk _ b) :=
begin
  ext x, rw [mem_torsion_by_iff, mem_span_singleton],
  obtain ⟨x, rfl⟩ := mk_surjective x, split; intro h,
  { rw [← mk_eq_mk, ← quotient.mk_smul, quotient.mk_eq_zero, mem_span_singleton] at h,
    obtain ⟨c, h⟩ := h, rw [smul_eq_mul, smul_eq_mul, mul_comm, mul_assoc,
      mul_cancel_left_mem_non_zero_divisor ha, mul_comm] at h,
    use c, rw [← h, ← mk_eq_mk, ← quotient.mk_smul, smul_eq_mul, mk_eq_mk] },
  { obtain ⟨c, h⟩ := h,
    rw [← h, smul_comm, ← mk_eq_mk, ← quotient.mk_smul,
      (quotient.mk_eq_zero _).mpr $ mem_span_singleton_self _, smul_zero] }
end
end ideal.quotient

namespace add_monoid

theorem is_torsion_iff_is_torsion_nat [add_comm_monoid M] :
  add_monoid.is_torsion M ↔ module.is_torsion ℕ M :=
begin
  refine ⟨λ h x, _, λ h x, _⟩,
  { obtain ⟨n, h0, hn⟩ := (is_of_fin_add_order_iff_nsmul_eq_zero x).mp (h x),
    exact ⟨⟨n, mem_non_zero_divisors_of_ne_zero $ ne_of_gt h0⟩, hn⟩ },
  { rw is_of_fin_add_order_iff_nsmul_eq_zero,
    obtain ⟨n, hn⟩ := @h x,
    refine ⟨n, nat.pos_of_ne_zero (non_zero_divisors.coe_ne_zero _), hn⟩ }
end

theorem is_torsion_iff_is_torsion_int [add_comm_group M] :
  add_monoid.is_torsion M ↔ module.is_torsion ℤ M :=
begin
  refine ⟨λ h x, _, λ h x, _⟩,
  { obtain ⟨n, h0, hn⟩ := (is_of_fin_add_order_iff_nsmul_eq_zero x).mp (h x),
    exact ⟨⟨n, mem_non_zero_divisors_of_ne_zero $ ne_of_gt $ int.coe_nat_pos.mpr h0⟩,
      (coe_nat_zsmul _ _).trans hn⟩ },
  { rw is_of_fin_add_order_iff_nsmul_eq_zero,
    obtain ⟨n, hn⟩ := @h x,
    exact exists_nsmul_eq_zero_of_zsmul_eq_zero (non_zero_divisors.coe_ne_zero n) hn }
end

end add_monoid