Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 27,501 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
/-
Copyright (c) 2022 Pierre-Alexandre Bazin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Pierre-Alexandre Bazin
-/
import algebra.direct_sum.module
import linear_algebra.isomorphisms
import group_theory.torsion
import ring_theory.coprime.ideal
import ring_theory.finiteness
/-!
# Torsion submodules
## Main definitions
* `torsion_of R M x` : the torsion ideal of `x`, containing all `a` such that `a • x = 0`.
* `submodule.torsion_by R M a` : the `a`-torsion submodule, containing all elements `x` of `M` such
that `a • x = 0`.
* `submodule.torsion_by_set R M s` : the submodule containing all elements `x` of `M` such that
`a • x = 0` for all `a` in `s`.
* `submodule.torsion' R M S` : the `S`-torsion submodule, containing all elements `x` of `M` such
that `a • x = 0` for some `a` in `S`.
* `submodule.torsion R M` : the torsion submoule, containing all elements `x` of `M` such that
`a • x = 0` for some non-zero-divisor `a` in `R`.
* `module.is_torsion_by R M a` : the property that defines a `a`-torsion module. Similarly,
`is_torsion_by_set`, `is_torsion'` and `is_torsion`.
* `module.is_torsion_by_set.module` : Creates a `R ⧸ I`-module from a `R`-module that
`is_torsion_by_set R _ I`.
## Main statements
* `quot_torsion_of_equiv_span_singleton` : isomorphism between the span of an element of `M` and
the quotient by its torsion ideal.
* `torsion' R M S` and `torsion R M` are submodules.
* `torsion_by_set_eq_torsion_by_span` : torsion by a set is torsion by the ideal generated by it.
* `submodule.torsion_by_is_torsion_by` : the `a`-torsion submodule is a `a`-torsion module.
Similar lemmas for `torsion'` and `torsion`.
* `submodule.torsion_by_is_internal` : a `∏ i, p i`-torsion module is the internal direct sum of its
`p i`-torsion submodules when the `p i` are pairwise coprime. A more general version with coprime
ideals is `submodule.torsion_by_set_is_internal`.
* `submodule.no_zero_smul_divisors_iff_torsion_bot` : a module over a domain has
`no_zero_smul_divisors` (that is, there is no non-zero `a`, `x` such that `a • x = 0`)
iff its torsion submodule is trivial.
* `submodule.quotient_torsion.torsion_eq_bot` : quotienting by the torsion submodule makes the
torsion submodule of the new module trivial. If `R` is a domain, we can derive an instance
`submodule.quotient_torsion.no_zero_smul_divisors : no_zero_smul_divisors R (M ⧸ torsion R M)`.
## Notation
* The notions are defined for a `comm_semiring R` and a `module R M`. Some additional hypotheses on
`R` and `M` are required by some lemmas.
* The letters `a`, `b`, ... are used for scalars (in `R`), while `x`, `y`, ... are used for vectors
(in `M`).
## Tags
Torsion, submodule, module, quotient
-/
namespace ideal
section torsion_of
variables (R M : Type*) [semiring R] [add_comm_monoid M] [module R M]
/--The torsion ideal of `x`, containing all `a` such that `a • x = 0`.-/
@[simps] def torsion_of (x : M) : ideal R := (linear_map.to_span_singleton R M x).ker
@[simp] lemma torsion_of_zero : torsion_of R M (0 : M) = ⊤ := by simp [torsion_of]
variables {R M}
@[simp] lemma mem_torsion_of_iff (x : M) (a : R) : a ∈ torsion_of R M x ↔ a • x = 0 := iff.rfl
variables (R)
@[simp] lemma torsion_of_eq_top_iff (m : M) : torsion_of R M m = ⊤ ↔ m = 0 :=
begin
refine ⟨λ h, _, λ h, by simp [h]⟩,
rw [← one_smul R m, ← mem_torsion_of_iff m (1 : R), h],
exact submodule.mem_top,
end
@[simp] lemma torsion_of_eq_bot_iff_of_no_zero_smul_divisors
[nontrivial R] [no_zero_smul_divisors R M] (m : M) :
torsion_of R M m = ⊥ ↔ m ≠ 0 :=
begin
refine ⟨λ h contra, _, λ h, (submodule.eq_bot_iff _).mpr $ λ r hr, _⟩,
{ rw [contra, torsion_of_zero] at h,
exact bot_ne_top.symm h, },
{ rw [mem_torsion_of_iff, smul_eq_zero] at hr,
tauto, },
end
/-- See also `complete_lattice.independent.linear_independent` which provides the same conclusion
but requires the stronger hypothesis `no_zero_smul_divisors R M`. -/
lemma complete_lattice.independent.linear_independent' {ι R M : Type*} {v : ι → M}
[ring R] [add_comm_group M] [module R M]
(hv : complete_lattice.independent $ λ i, (R ∙ v i))
(h_ne_zero : ∀ i, ideal.torsion_of R M (v i) = ⊥) :
linear_independent R v :=
begin
refine linear_independent_iff_not_smul_mem_span.mpr (λ i r hi, _),
replace hv := complete_lattice.independent_def.mp hv i,
simp only [supr_subtype', ← submodule.span_range_eq_supr, disjoint_iff] at hv,
have : r • v i ∈ ⊥,
{ rw [← hv, submodule.mem_inf],
refine ⟨submodule.mem_span_singleton.mpr ⟨r, rfl⟩, _⟩,
convert hi,
ext,
simp, },
rw [← submodule.mem_bot R, ← h_ne_zero i],
simpa using this,
end
end torsion_of
section
variables (R M : Type*) [ring R] [add_comm_group M] [module R M]
/--The span of `x` in `M` is isomorphic to `R` quotiented by the torsion ideal of `x`.-/
noncomputable def quot_torsion_of_equiv_span_singleton (x : M) :
(R ⧸ torsion_of R M x) ≃ₗ[R] (R ∙ x) :=
(linear_map.to_span_singleton R M x).quot_ker_equiv_range.trans $
linear_equiv.of_eq _ _ (linear_map.span_singleton_eq_range R M x).symm
variables {R M}
@[simp] lemma quot_torsion_of_equiv_span_singleton_apply_mk (x : M) (a : R) :
quot_torsion_of_equiv_span_singleton R M x (submodule.quotient.mk a) =
a • ⟨x, submodule.mem_span_singleton_self x⟩ := rfl
end
end ideal
open_locale non_zero_divisors
section defs
variables (R M : Type*) [comm_semiring R] [add_comm_monoid M] [module R M]
namespace submodule
/-- The `a`-torsion submodule for `a` in `R`, containing all elements `x` of `M` such that
`a • x = 0`. -/
@[simps] def torsion_by (a : R) : submodule R M := (distrib_mul_action.to_linear_map _ _ a).ker
/-- The submodule containing all elements `x` of `M` such that `a • x = 0` for all `a` in `s`. -/
@[simps] def torsion_by_set (s : set R) : submodule R M := Inf (torsion_by R M '' s)
/-- The `S`-torsion submodule, containing all elements `x` of `M` such that `a • x = 0` for some
`a` in `S`. -/
@[simps] def torsion' (S : Type*)
[comm_monoid S] [distrib_mul_action S M] [smul_comm_class S R M] :
submodule R M :=
{ carrier := { x | ∃ a : S, a • x = 0 },
zero_mem' := ⟨1, smul_zero _⟩,
add_mem' := λ x y ⟨a, hx⟩ ⟨b, hy⟩,
⟨b * a,
by rw [smul_add, mul_smul, mul_comm, mul_smul, hx, hy, smul_zero, smul_zero, add_zero]⟩,
smul_mem' := λ a x ⟨b, h⟩, ⟨b, by rw [smul_comm, h, smul_zero]⟩ }
/-- The torsion submodule, containing all elements `x` of `M` such that `a • x = 0` for some
non-zero-divisor `a` in `R`. -/
@[reducible] def torsion := torsion' R M R⁰
end submodule
namespace module
/-- A `a`-torsion module is a module where every element is `a`-torsion. -/
@[reducible] def is_torsion_by (a : R) := ∀ ⦃x : M⦄, a • x = 0
/-- A module where every element is `a`-torsion for all `a` in `s`. -/
@[reducible] def is_torsion_by_set (s : set R) := ∀ ⦃x : M⦄ ⦃a : s⦄, (a : R) • x = 0
/-- A `S`-torsion module is a module where every element is `a`-torsion for some `a` in `S`. -/
@[reducible] def is_torsion' (S : Type*) [has_smul S M] := ∀ ⦃x : M⦄, ∃ a : S, a • x = 0
/-- A torsion module is a module where every element is `a`-torsion for some non-zero-divisor `a`.
-/
@[reducible] def is_torsion := ∀ ⦃x : M⦄, ∃ a : R⁰, a • x = 0
end module
end defs
variables {R M : Type*}
section
variables [comm_semiring R] [add_comm_monoid M] [module R M] (s : set R) (a : R)
namespace submodule
@[simp] lemma smul_torsion_by (x : torsion_by R M a) : a • x = 0 := subtype.ext x.prop
@[simp] lemma smul_coe_torsion_by (x : torsion_by R M a) : a • (x : M) = 0 := x.prop
@[simp] lemma mem_torsion_by_iff (x : M) : x ∈ torsion_by R M a ↔ a • x = 0 := iff.rfl
@[simp] lemma mem_torsion_by_set_iff (x : M) :
x ∈ torsion_by_set R M s ↔ ∀ a : s, (a : R) • x = 0 :=
begin
refine ⟨λ h ⟨a, ha⟩, mem_Inf.mp h _ (set.mem_image_of_mem _ ha), λ h, mem_Inf.mpr _⟩,
rintro _ ⟨a, ha, rfl⟩, exact h ⟨a, ha⟩
end
@[simp] lemma torsion_by_singleton_eq : torsion_by_set R M {a} = torsion_by R M a :=
begin
ext x,
simp only [mem_torsion_by_set_iff, set_coe.forall, subtype.coe_mk, set.mem_singleton_iff,
forall_eq, mem_torsion_by_iff]
end
lemma torsion_by_set_le_torsion_by_set_of_subset {s t : set R} (st : s ⊆ t) :
torsion_by_set R M t ≤ torsion_by_set R M s :=
Inf_le_Inf $ λ _ ⟨a, ha, h⟩, ⟨a, st ha, h⟩
/-- Torsion by a set is torsion by the ideal generated by it. -/
lemma torsion_by_set_eq_torsion_by_span :
torsion_by_set R M s = torsion_by_set R M (ideal.span s) :=
begin
refine le_antisymm (λ x hx, _) (torsion_by_set_le_torsion_by_set_of_subset subset_span),
rw mem_torsion_by_set_iff at hx ⊢,
suffices : ideal.span s ≤ ideal.torsion_of R M x,
{ rintro ⟨a, ha⟩, exact this ha },
rw ideal.span_le, exact λ a ha, hx ⟨a, ha⟩
end
lemma torsion_by_span_singleton_eq : torsion_by_set R M (R ∙ a) = torsion_by R M a :=
((torsion_by_set_eq_torsion_by_span _).symm.trans $ torsion_by_singleton_eq _)
lemma torsion_by_le_torsion_by_of_dvd (a b : R) (dvd : a ∣ b) :
torsion_by R M a ≤ torsion_by R M b :=
begin
rw [← torsion_by_span_singleton_eq, ← torsion_by_singleton_eq],
apply torsion_by_set_le_torsion_by_set_of_subset,
rintro c (rfl : c = b), exact ideal.mem_span_singleton.mpr dvd
end
@[simp] lemma torsion_by_one : torsion_by R M 1 = ⊥ :=
eq_bot_iff.mpr (λ _ h, by { rw [mem_torsion_by_iff, one_smul] at h, exact h })
@[simp] lemma torsion_by_univ : torsion_by_set R M set.univ = ⊥ :=
by { rw [eq_bot_iff, ← torsion_by_one, ← torsion_by_singleton_eq],
exact torsion_by_set_le_torsion_by_set_of_subset (λ _ _, trivial) }
end submodule
open submodule
namespace module
@[simp] lemma is_torsion_by_singleton_iff : is_torsion_by_set R M {a} ↔ is_torsion_by R M a :=
begin
refine ⟨λ h x, @h _ ⟨_, set.mem_singleton _⟩, λ h x, _⟩,
rintro ⟨b, rfl : b = a⟩, exact @h _
end
lemma is_torsion_by_set_iff_torsion_by_set_eq_top :
is_torsion_by_set R M s ↔ submodule.torsion_by_set R M s = ⊤ :=
⟨λ h, eq_top_iff.mpr (λ _ _, (mem_torsion_by_set_iff _ _).mpr $ @h _),
λ h x, by { rw [← mem_torsion_by_set_iff, h], trivial }⟩
/-- A `a`-torsion module is a module whose `a`-torsion submodule is the full space. -/
lemma is_torsion_by_iff_torsion_by_eq_top : is_torsion_by R M a ↔ torsion_by R M a = ⊤ :=
by rw [← torsion_by_singleton_eq, ← is_torsion_by_singleton_iff,
is_torsion_by_set_iff_torsion_by_set_eq_top]
lemma is_torsion_by_set_iff_is_torsion_by_span :
is_torsion_by_set R M s ↔ is_torsion_by_set R M (ideal.span s) :=
by rw [is_torsion_by_set_iff_torsion_by_set_eq_top, is_torsion_by_set_iff_torsion_by_set_eq_top,
torsion_by_set_eq_torsion_by_span]
lemma is_torsion_by_span_singleton_iff : is_torsion_by_set R M (R ∙ a) ↔ is_torsion_by R M a :=
((is_torsion_by_set_iff_is_torsion_by_span _).symm.trans $ is_torsion_by_singleton_iff _)
end module
namespace submodule
open module
lemma torsion_by_set_is_torsion_by_set : is_torsion_by_set R (torsion_by_set R M s) s :=
λ ⟨x, hx⟩ a, subtype.ext $ (mem_torsion_by_set_iff _ _).mp hx a
/-- The `a`-torsion submodule is a `a`-torsion module. -/
lemma torsion_by_is_torsion_by : is_torsion_by R (torsion_by R M a) a := λ _, smul_torsion_by _ _
@[simp] lemma torsion_by_torsion_by_eq_top : torsion_by R (torsion_by R M a) a = ⊤ :=
(is_torsion_by_iff_torsion_by_eq_top a).mp $ torsion_by_is_torsion_by a
@[simp] lemma torsion_by_set_torsion_by_set_eq_top :
torsion_by_set R (torsion_by_set R M s) s = ⊤ :=
(is_torsion_by_set_iff_torsion_by_set_eq_top s).mp $ torsion_by_set_is_torsion_by_set s
variables (R M)
lemma torsion_gc : @galois_connection (submodule R M) (ideal R)ᵒᵈ _ _
annihilator (λ I, torsion_by_set R M $ I.of_dual) :=
λ A I, ⟨λ h x hx, (mem_torsion_by_set_iff _ _).mpr $ λ ⟨a, ha⟩, mem_annihilator.mp (h ha) x hx,
λ h a ha, mem_annihilator.mpr $ λ x hx, (mem_torsion_by_set_iff _ _).mp (h hx) ⟨a, ha⟩⟩
variables {R M}
section coprime
open_locale big_operators
variables {ι : Type*} {p : ι → ideal R} {S : finset ι}
variables (hp : (S : set ι).pairwise $ λ i j, p i ⊔ p j = ⊤)
include hp
lemma supr_torsion_by_ideal_eq_torsion_by_infi :
(⨆ i ∈ S, torsion_by_set R M $ p i) = torsion_by_set R M ↑(⨅ i ∈ S, p i) :=
begin
cases S.eq_empty_or_nonempty with h h,
{ rw h, convert supr_emptyset, convert torsion_by_univ, convert top_coe, exact infi_emptyset },
apply le_antisymm,
{ apply supr_le _, intro i, apply supr_le _, intro is,
apply torsion_by_set_le_torsion_by_set_of_subset,
exact (infi_le (λ i, ⨅ (H : i ∈ S), p i) i).trans (infi_le _ is), },
{ intros x hx,
rw mem_supr_finset_iff_exists_sum,
obtain ⟨μ, hμ⟩ := (mem_supr_finset_iff_exists_sum _ _).mp
((ideal.eq_top_iff_one _).mp $ (ideal.supr_infi_eq_top_iff_pairwise h _).mpr hp),
refine ⟨λ i, ⟨(μ i : R) • x, _⟩, _⟩,
{ rw mem_torsion_by_set_iff at hx ⊢,
rintro ⟨a, ha⟩, rw smul_smul,
suffices : a * μ i ∈ ⨅ i ∈ S, p i, from hx ⟨_, this⟩,
rw mem_infi, intro j, rw mem_infi, intro hj,
by_cases ij : j = i,
{ rw ij, exact ideal.mul_mem_right _ _ ha },
{ have := coe_mem (μ i), simp only [mem_infi] at this,
exact ideal.mul_mem_left _ _ (this j hj ij) } },
{ simp_rw coe_mk, rw [← finset.sum_smul, hμ, one_smul] } }
end
lemma sup_indep_torsion_by_ideal : S.sup_indep (λ i, torsion_by_set R M $ p i) :=
λ T hT i hi hiT, begin
rw [disjoint_iff, finset.sup_eq_supr,
supr_torsion_by_ideal_eq_torsion_by_infi $ λ i hi j hj ij, hp (hT hi) (hT hj) ij],
have := @galois_connection.u_inf _ _ (order_dual.to_dual _) (order_dual.to_dual _) _ _ _ _
(torsion_gc R M), dsimp at this ⊢,
rw [← this, ideal.sup_infi_eq_top, top_coe, torsion_by_univ],
intros j hj, apply hp hi (hT hj), rintro rfl, exact hiT hj
end
omit hp
variables {q : ι → R} (hq : (S : set ι).pairwise $ is_coprime on q)
include hq
lemma supr_torsion_by_eq_torsion_by_prod :
(⨆ i ∈ S, torsion_by R M $ q i) = torsion_by R M (∏ i in S, q i) :=
begin
rw [← torsion_by_span_singleton_eq, ideal.submodule_span_eq,
← ideal.finset_inf_span_singleton _ _ hq, finset.inf_eq_infi,
← supr_torsion_by_ideal_eq_torsion_by_infi],
{ congr, ext : 1, congr, ext : 1, exact (torsion_by_span_singleton_eq _).symm },
{ exact λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime _ _).mpr (hq hi hj ij), }
end
lemma sup_indep_torsion_by : S.sup_indep (λ i, torsion_by R M $ q i) :=
begin
convert sup_indep_torsion_by_ideal
(λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime (q i) _).mpr $ hq hi hj ij),
ext : 1, exact (torsion_by_span_singleton_eq _).symm,
end
end coprime
end submodule
end
section needs_group
variables [comm_ring R] [add_comm_group M] [module R M]
namespace submodule
open_locale big_operators
variables {ι : Type*} [decidable_eq ι] {S : finset ι}
/--If the `p i` are pairwise coprime, a `⨅ i, p i`-torsion module is the internal direct sum of
its `p i`-torsion submodules.-/
lemma torsion_by_set_is_internal {p : ι → ideal R}
(hp : (S : set ι).pairwise $ λ i j, p i ⊔ p j = ⊤)
(hM : module.is_torsion_by_set R M (⨅ i ∈ S, p i : ideal R)) :
direct_sum.is_internal (λ i : S, torsion_by_set R M $ p i) :=
direct_sum.is_internal_submodule_of_independent_of_supr_eq_top
(complete_lattice.independent_iff_sup_indep.mpr $ sup_indep_torsion_by_ideal hp)
((supr_subtype'' ↑S $ λ i, torsion_by_set R M $ p i).trans $
(supr_torsion_by_ideal_eq_torsion_by_infi hp).trans $
(module.is_torsion_by_set_iff_torsion_by_set_eq_top _).mp hM)
/--If the `q i` are pairwise coprime, a `∏ i, q i`-torsion module is the internal direct sum of
its `q i`-torsion submodules.-/
lemma torsion_by_is_internal {q : ι → R} (hq : (S : set ι).pairwise $ is_coprime on q)
(hM : module.is_torsion_by R M $ ∏ i in S, q i) :
direct_sum.is_internal (λ i : S, torsion_by R M $ q i) :=
begin
rw [← module.is_torsion_by_span_singleton_iff, ideal.submodule_span_eq,
← ideal.finset_inf_span_singleton _ _ hq, finset.inf_eq_infi] at hM,
convert torsion_by_set_is_internal
(λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime (q i) _).mpr $ hq hi hj ij) hM,
ext : 1, exact (torsion_by_span_singleton_eq _).symm,
end
end submodule
namespace module
variables {I : ideal R} (hM : is_torsion_by_set R M I)
include hM
/-- can't be an instance because hM can't be inferred -/
def is_torsion_by_set.has_smul : has_smul (R ⧸ I) M :=
{ smul := λ b x, quotient.lift_on' b (• x) $ λ b₁ b₂ h, begin
show b₁ • x = b₂ • x,
have : (-b₁ + b₂) • x = 0 := @hM x ⟨_, quotient_add_group.left_rel_apply.mp h⟩,
rw [add_smul, neg_smul, neg_add_eq_zero] at this,
exact this
end }
@[simp] lemma is_torsion_by_set.mk_smul (b : R) (x : M) :
by haveI := hM.has_smul; exact ideal.quotient.mk I b • x = b • x := rfl
/-- A `(R ⧸ I)`-module is a `R`-module which `is_torsion_by_set R M I`. -/
def is_torsion_by_set.module : module (R ⧸ I) M :=
@function.surjective.module_left _ _ _ _ _ _ _ hM.has_smul
_ ideal.quotient.mk_surjective (is_torsion_by_set.mk_smul hM)
instance is_torsion_by_set.is_scalar_tower {S : Type*} [has_smul S R] [has_smul S M]
[is_scalar_tower S R M] [is_scalar_tower S R R] :
@@is_scalar_tower S (R ⧸ I) M _ (is_torsion_by_set.module hM).to_has_smul _ :=
{ smul_assoc := λ b d x, quotient.induction_on' d $ λ c, (smul_assoc b c x : _) }
omit hM
instance : module (R ⧸ I) (M ⧸ I • (⊤ : submodule R M)) :=
is_torsion_by_set.module (λ x r, begin
induction x using quotient.induction_on,
refine (submodule.quotient.mk_eq_zero _).mpr (submodule.smul_mem_smul r.prop _),
trivial,
end)
end module
namespace submodule
instance (I : ideal R) : module (R ⧸ I) (torsion_by_set R M I) :=
module.is_torsion_by_set.module $ torsion_by_set_is_torsion_by_set I
@[simp] lemma torsion_by_set.mk_smul (I : ideal R) (b : R) (x : torsion_by_set R M I) :
ideal.quotient.mk I b • x = b • x := rfl
instance (I : ideal R) {S : Type*} [has_smul S R] [has_smul S M]
[is_scalar_tower S R M] [is_scalar_tower S R R] :
is_scalar_tower S (R ⧸ I) (torsion_by_set R M I) :=
infer_instance
/-- The `a`-torsion submodule as a `(R ⧸ R∙a)`-module. -/
instance (a : R) : module (R ⧸ R ∙ a) (torsion_by R M a) :=
module.is_torsion_by_set.module $
(module.is_torsion_by_span_singleton_iff a).mpr $ torsion_by_is_torsion_by a
@[simp] lemma torsion_by.mk_smul (a b : R) (x : torsion_by R M a) :
ideal.quotient.mk (R ∙ a) b • x = b • x := rfl
instance (a : R) {S : Type*} [has_smul S R] [has_smul S M]
[is_scalar_tower S R M] [is_scalar_tower S R R] :
is_scalar_tower S (R ⧸ R ∙ a) (torsion_by R M a) :=
infer_instance
end submodule
end needs_group
namespace submodule
section torsion'
open module
variables [comm_semiring R] [add_comm_monoid M] [module R M]
variables (S : Type*) [comm_monoid S] [distrib_mul_action S M] [smul_comm_class S R M]
@[simp] lemma mem_torsion'_iff (x : M) : x ∈ torsion' R M S ↔ ∃ a : S, a • x = 0 := iff.rfl
@[simp] lemma mem_torsion_iff (x : M) : x ∈ torsion R M ↔ ∃ a : R⁰, a • x = 0 := iff.rfl
@[simps] instance : has_smul S (torsion' R M S) :=
⟨λ s x, ⟨s • x, by { obtain ⟨x, a, h⟩ := x, use a, dsimp, rw [smul_comm, h, smul_zero] }⟩⟩
instance : distrib_mul_action S (torsion' R M S) := subtype.coe_injective.distrib_mul_action
((torsion' R M S).subtype).to_add_monoid_hom (λ (c : S) x, rfl)
instance : smul_comm_class S R (torsion' R M S) := ⟨λ s a x, subtype.ext $ smul_comm _ _ _⟩
/-- A `S`-torsion module is a module whose `S`-torsion submodule is the full space. -/
lemma is_torsion'_iff_torsion'_eq_top : is_torsion' M S ↔ torsion' R M S = ⊤ :=
⟨λ h, eq_top_iff.mpr (λ _ _, @h _), λ h x, by { rw [← @mem_torsion'_iff R, h], trivial }⟩
/-- The `S`-torsion submodule is a `S`-torsion module. -/
lemma torsion'_is_torsion' : is_torsion' (torsion' R M S) S := λ ⟨x, ⟨a, h⟩⟩, ⟨a, subtype.ext h⟩
@[simp] lemma torsion'_torsion'_eq_top : torsion' R (torsion' R M S) S = ⊤ :=
(is_torsion'_iff_torsion'_eq_top S).mp $ torsion'_is_torsion' S
/-- The torsion submodule of the torsion submodule (viewed as a module) is the full
torsion module. -/
@[simp] lemma torsion_torsion_eq_top : torsion R (torsion R M) = ⊤ := torsion'_torsion'_eq_top R⁰
/-- The torsion submodule is always a torsion module. -/
lemma torsion_is_torsion : module.is_torsion R (torsion R M) := torsion'_is_torsion' R⁰
end torsion'
section torsion
variables [comm_semiring R] [add_comm_monoid M] [module R M]
open_locale big_operators
lemma is_torsion_by_ideal_of_finite_of_is_torsion [module.finite R M] (hM : module.is_torsion R M) :
∃ I : ideal R, (I : set R) ∩ R⁰ ≠ ∅ ∧ module.is_torsion_by_set R M I :=
begin
cases (module.finite_def.mp infer_instance : (⊤ : submodule R M).fg) with S h,
refine ⟨∏ x in S, ideal.torsion_of R M x, _, _⟩,
{ rw set.ne_empty_iff_nonempty,
refine ⟨_, _, (∏ x in S, (@hM x).some : R⁰).2⟩,
rw [subtype.val_eq_coe, submonoid.coe_finset_prod],
apply ideal.prod_mem_prod,
exact λ x _, (@hM x).some_spec },
{ rw [module.is_torsion_by_set_iff_torsion_by_set_eq_top, eq_top_iff, ← h, span_le],
intros x hx, apply torsion_by_set_le_torsion_by_set_of_subset,
{ apply ideal.le_of_dvd, exact finset.dvd_prod_of_mem _ hx },
{ rw mem_torsion_by_set_iff, rintro ⟨a, ha⟩, exact ha } }
end
variables [no_zero_divisors R] [nontrivial R]
lemma coe_torsion_eq_annihilator_ne_bot :
(torsion R M : set M) = { x : M | (R ∙ x).annihilator ≠ ⊥ } :=
begin
ext x, simp_rw [submodule.ne_bot_iff, mem_annihilator, mem_span_singleton],
exact ⟨λ ⟨a, hax⟩, ⟨a, λ _ ⟨b, hb⟩, by rw [← hb, smul_comm, ← submonoid.smul_def, hax, smul_zero],
non_zero_divisors.coe_ne_zero _⟩,
λ ⟨a, hax, ha⟩, ⟨⟨_, mem_non_zero_divisors_of_ne_zero ha⟩, hax x ⟨1, one_smul _ _⟩⟩⟩
end
/-- A module over a domain has `no_zero_smul_divisors` iff its torsion submodule is trivial. -/
lemma no_zero_smul_divisors_iff_torsion_eq_bot :
no_zero_smul_divisors R M ↔ torsion R M = ⊥ :=
begin
split; intro h,
{ haveI : no_zero_smul_divisors R M := h,
rw eq_bot_iff, rintro x ⟨a, hax⟩,
change (a : R) • x = 0 at hax,
cases eq_zero_or_eq_zero_of_smul_eq_zero hax with h0 h0,
{ exfalso, exact non_zero_divisors.coe_ne_zero a h0 }, { exact h0 } },
{ exact { eq_zero_or_eq_zero_of_smul_eq_zero := λ a x hax, begin
by_cases ha : a = 0,
{ left, exact ha },
{ right, rw [← mem_bot _, ← h],
exact ⟨⟨a, mem_non_zero_divisors_of_ne_zero ha⟩, hax⟩ }
end } }
end
end torsion
namespace quotient_torsion
variables [comm_ring R] [add_comm_group M] [module R M]
/-- Quotienting by the torsion submodule gives a torsion-free module. -/
@[simp] lemma torsion_eq_bot : torsion R (M ⧸ torsion R M) = ⊥ :=
eq_bot_iff.mpr $ λ z, quotient.induction_on' z $ λ x ⟨a, hax⟩,
begin
rw [quotient.mk'_eq_mk, ← quotient.mk_smul, quotient.mk_eq_zero] at hax,
rw [mem_bot, quotient.mk'_eq_mk, quotient.mk_eq_zero],
cases hax with b h,
exact ⟨b * a, (mul_smul _ _ _).trans h⟩
end
instance no_zero_smul_divisors [is_domain R] : no_zero_smul_divisors R (M ⧸ torsion R M) :=
no_zero_smul_divisors_iff_torsion_eq_bot.mpr torsion_eq_bot
end quotient_torsion
section p_torsion
open module
section
variables [monoid R] [add_comm_monoid M] [distrib_mul_action R M]
lemma is_torsion'_powers_iff (p : R) :
is_torsion' M (submonoid.powers p) ↔ ∀ x : M, ∃ n : ℕ, p ^ n • x = 0 :=
⟨λ h x, let ⟨⟨a, ⟨n, rfl⟩⟩, hx⟩ := @h x in ⟨n, hx⟩,
λ h x, let ⟨n, hn⟩ := h x in ⟨⟨_, ⟨n, rfl⟩⟩, hn⟩⟩
/--In a `p ^ ∞`-torsion module (that is, a module where all elements are cancelled by scalar
multiplication by some power of `p`), the smallest `n` such that `p ^ n • x = 0`.-/
def p_order {p : R} (hM : is_torsion' M $ submonoid.powers p) (x : M)
[Π n : ℕ, decidable (p ^ n • x = 0)] :=
nat.find $ (is_torsion'_powers_iff p).mp hM x
@[simp] lemma pow_p_order_smul {p : R} (hM : is_torsion' M $ submonoid.powers p) (x : M)
[Π n : ℕ, decidable (p ^ n • x = 0)] : p ^ p_order hM x • x = 0 :=
nat.find_spec $ (is_torsion'_powers_iff p).mp hM x
end
variables [comm_semiring R] [add_comm_monoid M] [module R M] [Π x : M, decidable (x = 0)]
lemma exists_is_torsion_by {p : R} (hM : is_torsion' M $ submonoid.powers p)
(d : ℕ) (hd : d ≠ 0) (s : fin d → M) (hs : span R (set.range s) = ⊤) :
∃ j : fin d, module.is_torsion_by R M (p ^ p_order hM (s j)) :=
begin
let oj := list.argmax (λ i, p_order hM $ s i) (list.fin_range d),
have hoj : oj.is_some := (option.ne_none_iff_is_some.mp $
λ eq_none, hd $ list.fin_range_eq_nil.mp $ list.argmax_eq_none.mp eq_none),
use option.get hoj,
rw [is_torsion_by_iff_torsion_by_eq_top, eq_top_iff, ← hs, submodule.span_le,
set.range_subset_iff], intro i, change _ • _ = _,
have : p_order hM (s i) ≤ p_order hM (s $ option.get hoj) :=
list.le_of_mem_argmax (list.mem_fin_range i) (option.get_mem hoj),
rw [← nat.sub_add_cancel this, pow_add, mul_smul, pow_p_order_smul, smul_zero]
end
end p_torsion
end submodule
namespace ideal.quotient
open submodule
lemma torsion_by_eq_span_singleton {R : Type*} [comm_ring R] (a b : R) (ha : a ∈ R⁰) :
torsion_by R (R ⧸ R ∙ a * b) a = R ∙ (mk _ b) :=
begin
ext x, rw [mem_torsion_by_iff, mem_span_singleton],
obtain ⟨x, rfl⟩ := mk_surjective x, split; intro h,
{ rw [← mk_eq_mk, ← quotient.mk_smul, quotient.mk_eq_zero, mem_span_singleton] at h,
obtain ⟨c, h⟩ := h, rw [smul_eq_mul, smul_eq_mul, mul_comm, mul_assoc,
mul_cancel_left_mem_non_zero_divisor ha, mul_comm] at h,
use c, rw [← h, ← mk_eq_mk, ← quotient.mk_smul, smul_eq_mul, mk_eq_mk] },
{ obtain ⟨c, h⟩ := h,
rw [← h, smul_comm, ← mk_eq_mk, ← quotient.mk_smul,
(quotient.mk_eq_zero _).mpr $ mem_span_singleton_self _, smul_zero] }
end
end ideal.quotient
namespace add_monoid
theorem is_torsion_iff_is_torsion_nat [add_comm_monoid M] :
add_monoid.is_torsion M ↔ module.is_torsion ℕ M :=
begin
refine ⟨λ h x, _, λ h x, _⟩,
{ obtain ⟨n, h0, hn⟩ := (is_of_fin_add_order_iff_nsmul_eq_zero x).mp (h x),
exact ⟨⟨n, mem_non_zero_divisors_of_ne_zero $ ne_of_gt h0⟩, hn⟩ },
{ rw is_of_fin_add_order_iff_nsmul_eq_zero,
obtain ⟨n, hn⟩ := @h x,
refine ⟨n, nat.pos_of_ne_zero (non_zero_divisors.coe_ne_zero _), hn⟩ }
end
theorem is_torsion_iff_is_torsion_int [add_comm_group M] :
add_monoid.is_torsion M ↔ module.is_torsion ℤ M :=
begin
refine ⟨λ h x, _, λ h x, _⟩,
{ obtain ⟨n, h0, hn⟩ := (is_of_fin_add_order_iff_nsmul_eq_zero x).mp (h x),
exact ⟨⟨n, mem_non_zero_divisors_of_ne_zero $ ne_of_gt $ int.coe_nat_pos.mpr h0⟩,
(coe_nat_zsmul _ _).trans hn⟩ },
{ rw is_of_fin_add_order_iff_nsmul_eq_zero,
obtain ⟨n, hn⟩ := @h x,
exact exists_nsmul_eq_zero_of_zsmul_eq_zero (non_zero_divisors.coe_ne_zero n) hn }
end
end add_monoid
|