/- Copyright (c) 2022 Pierre-Alexandre Bazin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Pierre-Alexandre Bazin -/ import algebra.direct_sum.module import linear_algebra.isomorphisms import group_theory.torsion import ring_theory.coprime.ideal import ring_theory.finiteness /-! # Torsion submodules ## Main definitions * `torsion_of R M x` : the torsion ideal of `x`, containing all `a` such that `a • x = 0`. * `submodule.torsion_by R M a` : the `a`-torsion submodule, containing all elements `x` of `M` such that `a • x = 0`. * `submodule.torsion_by_set R M s` : the submodule containing all elements `x` of `M` such that `a • x = 0` for all `a` in `s`. * `submodule.torsion' R M S` : the `S`-torsion submodule, containing all elements `x` of `M` such that `a • x = 0` for some `a` in `S`. * `submodule.torsion R M` : the torsion submoule, containing all elements `x` of `M` such that `a • x = 0` for some non-zero-divisor `a` in `R`. * `module.is_torsion_by R M a` : the property that defines a `a`-torsion module. Similarly, `is_torsion_by_set`, `is_torsion'` and `is_torsion`. * `module.is_torsion_by_set.module` : Creates a `R ⧸ I`-module from a `R`-module that `is_torsion_by_set R _ I`. ## Main statements * `quot_torsion_of_equiv_span_singleton` : isomorphism between the span of an element of `M` and the quotient by its torsion ideal. * `torsion' R M S` and `torsion R M` are submodules. * `torsion_by_set_eq_torsion_by_span` : torsion by a set is torsion by the ideal generated by it. * `submodule.torsion_by_is_torsion_by` : the `a`-torsion submodule is a `a`-torsion module. Similar lemmas for `torsion'` and `torsion`. * `submodule.torsion_by_is_internal` : a `∏ i, p i`-torsion module is the internal direct sum of its `p i`-torsion submodules when the `p i` are pairwise coprime. A more general version with coprime ideals is `submodule.torsion_by_set_is_internal`. * `submodule.no_zero_smul_divisors_iff_torsion_bot` : a module over a domain has `no_zero_smul_divisors` (that is, there is no non-zero `a`, `x` such that `a • x = 0`) iff its torsion submodule is trivial. * `submodule.quotient_torsion.torsion_eq_bot` : quotienting by the torsion submodule makes the torsion submodule of the new module trivial. If `R` is a domain, we can derive an instance `submodule.quotient_torsion.no_zero_smul_divisors : no_zero_smul_divisors R (M ⧸ torsion R M)`. ## Notation * The notions are defined for a `comm_semiring R` and a `module R M`. Some additional hypotheses on `R` and `M` are required by some lemmas. * The letters `a`, `b`, ... are used for scalars (in `R`), while `x`, `y`, ... are used for vectors (in `M`). ## Tags Torsion, submodule, module, quotient -/ namespace ideal section torsion_of variables (R M : Type*) [semiring R] [add_comm_monoid M] [module R M] /--The torsion ideal of `x`, containing all `a` such that `a • x = 0`.-/ @[simps] def torsion_of (x : M) : ideal R := (linear_map.to_span_singleton R M x).ker @[simp] lemma torsion_of_zero : torsion_of R M (0 : M) = ⊤ := by simp [torsion_of] variables {R M} @[simp] lemma mem_torsion_of_iff (x : M) (a : R) : a ∈ torsion_of R M x ↔ a • x = 0 := iff.rfl variables (R) @[simp] lemma torsion_of_eq_top_iff (m : M) : torsion_of R M m = ⊤ ↔ m = 0 := begin refine ⟨λ h, _, λ h, by simp [h]⟩, rw [← one_smul R m, ← mem_torsion_of_iff m (1 : R), h], exact submodule.mem_top, end @[simp] lemma torsion_of_eq_bot_iff_of_no_zero_smul_divisors [nontrivial R] [no_zero_smul_divisors R M] (m : M) : torsion_of R M m = ⊥ ↔ m ≠ 0 := begin refine ⟨λ h contra, _, λ h, (submodule.eq_bot_iff _).mpr $ λ r hr, _⟩, { rw [contra, torsion_of_zero] at h, exact bot_ne_top.symm h, }, { rw [mem_torsion_of_iff, smul_eq_zero] at hr, tauto, }, end /-- See also `complete_lattice.independent.linear_independent` which provides the same conclusion but requires the stronger hypothesis `no_zero_smul_divisors R M`. -/ lemma complete_lattice.independent.linear_independent' {ι R M : Type*} {v : ι → M} [ring R] [add_comm_group M] [module R M] (hv : complete_lattice.independent $ λ i, (R ∙ v i)) (h_ne_zero : ∀ i, ideal.torsion_of R M (v i) = ⊥) : linear_independent R v := begin refine linear_independent_iff_not_smul_mem_span.mpr (λ i r hi, _), replace hv := complete_lattice.independent_def.mp hv i, simp only [supr_subtype', ← submodule.span_range_eq_supr, disjoint_iff] at hv, have : r • v i ∈ ⊥, { rw [← hv, submodule.mem_inf], refine ⟨submodule.mem_span_singleton.mpr ⟨r, rfl⟩, _⟩, convert hi, ext, simp, }, rw [← submodule.mem_bot R, ← h_ne_zero i], simpa using this, end end torsion_of section variables (R M : Type*) [ring R] [add_comm_group M] [module R M] /--The span of `x` in `M` is isomorphic to `R` quotiented by the torsion ideal of `x`.-/ noncomputable def quot_torsion_of_equiv_span_singleton (x : M) : (R ⧸ torsion_of R M x) ≃ₗ[R] (R ∙ x) := (linear_map.to_span_singleton R M x).quot_ker_equiv_range.trans $ linear_equiv.of_eq _ _ (linear_map.span_singleton_eq_range R M x).symm variables {R M} @[simp] lemma quot_torsion_of_equiv_span_singleton_apply_mk (x : M) (a : R) : quot_torsion_of_equiv_span_singleton R M x (submodule.quotient.mk a) = a • ⟨x, submodule.mem_span_singleton_self x⟩ := rfl end end ideal open_locale non_zero_divisors section defs variables (R M : Type*) [comm_semiring R] [add_comm_monoid M] [module R M] namespace submodule /-- The `a`-torsion submodule for `a` in `R`, containing all elements `x` of `M` such that `a • x = 0`. -/ @[simps] def torsion_by (a : R) : submodule R M := (distrib_mul_action.to_linear_map _ _ a).ker /-- The submodule containing all elements `x` of `M` such that `a • x = 0` for all `a` in `s`. -/ @[simps] def torsion_by_set (s : set R) : submodule R M := Inf (torsion_by R M '' s) /-- The `S`-torsion submodule, containing all elements `x` of `M` such that `a • x = 0` for some `a` in `S`. -/ @[simps] def torsion' (S : Type*) [comm_monoid S] [distrib_mul_action S M] [smul_comm_class S R M] : submodule R M := { carrier := { x | ∃ a : S, a • x = 0 }, zero_mem' := ⟨1, smul_zero _⟩, add_mem' := λ x y ⟨a, hx⟩ ⟨b, hy⟩, ⟨b * a, by rw [smul_add, mul_smul, mul_comm, mul_smul, hx, hy, smul_zero, smul_zero, add_zero]⟩, smul_mem' := λ a x ⟨b, h⟩, ⟨b, by rw [smul_comm, h, smul_zero]⟩ } /-- The torsion submodule, containing all elements `x` of `M` such that `a • x = 0` for some non-zero-divisor `a` in `R`. -/ @[reducible] def torsion := torsion' R M R⁰ end submodule namespace module /-- A `a`-torsion module is a module where every element is `a`-torsion. -/ @[reducible] def is_torsion_by (a : R) := ∀ ⦃x : M⦄, a • x = 0 /-- A module where every element is `a`-torsion for all `a` in `s`. -/ @[reducible] def is_torsion_by_set (s : set R) := ∀ ⦃x : M⦄ ⦃a : s⦄, (a : R) • x = 0 /-- A `S`-torsion module is a module where every element is `a`-torsion for some `a` in `S`. -/ @[reducible] def is_torsion' (S : Type*) [has_smul S M] := ∀ ⦃x : M⦄, ∃ a : S, a • x = 0 /-- A torsion module is a module where every element is `a`-torsion for some non-zero-divisor `a`. -/ @[reducible] def is_torsion := ∀ ⦃x : M⦄, ∃ a : R⁰, a • x = 0 end module end defs variables {R M : Type*} section variables [comm_semiring R] [add_comm_monoid M] [module R M] (s : set R) (a : R) namespace submodule @[simp] lemma smul_torsion_by (x : torsion_by R M a) : a • x = 0 := subtype.ext x.prop @[simp] lemma smul_coe_torsion_by (x : torsion_by R M a) : a • (x : M) = 0 := x.prop @[simp] lemma mem_torsion_by_iff (x : M) : x ∈ torsion_by R M a ↔ a • x = 0 := iff.rfl @[simp] lemma mem_torsion_by_set_iff (x : M) : x ∈ torsion_by_set R M s ↔ ∀ a : s, (a : R) • x = 0 := begin refine ⟨λ h ⟨a, ha⟩, mem_Inf.mp h _ (set.mem_image_of_mem _ ha), λ h, mem_Inf.mpr _⟩, rintro _ ⟨a, ha, rfl⟩, exact h ⟨a, ha⟩ end @[simp] lemma torsion_by_singleton_eq : torsion_by_set R M {a} = torsion_by R M a := begin ext x, simp only [mem_torsion_by_set_iff, set_coe.forall, subtype.coe_mk, set.mem_singleton_iff, forall_eq, mem_torsion_by_iff] end lemma torsion_by_set_le_torsion_by_set_of_subset {s t : set R} (st : s ⊆ t) : torsion_by_set R M t ≤ torsion_by_set R M s := Inf_le_Inf $ λ _ ⟨a, ha, h⟩, ⟨a, st ha, h⟩ /-- Torsion by a set is torsion by the ideal generated by it. -/ lemma torsion_by_set_eq_torsion_by_span : torsion_by_set R M s = torsion_by_set R M (ideal.span s) := begin refine le_antisymm (λ x hx, _) (torsion_by_set_le_torsion_by_set_of_subset subset_span), rw mem_torsion_by_set_iff at hx ⊢, suffices : ideal.span s ≤ ideal.torsion_of R M x, { rintro ⟨a, ha⟩, exact this ha }, rw ideal.span_le, exact λ a ha, hx ⟨a, ha⟩ end lemma torsion_by_span_singleton_eq : torsion_by_set R M (R ∙ a) = torsion_by R M a := ((torsion_by_set_eq_torsion_by_span _).symm.trans $ torsion_by_singleton_eq _) lemma torsion_by_le_torsion_by_of_dvd (a b : R) (dvd : a ∣ b) : torsion_by R M a ≤ torsion_by R M b := begin rw [← torsion_by_span_singleton_eq, ← torsion_by_singleton_eq], apply torsion_by_set_le_torsion_by_set_of_subset, rintro c (rfl : c = b), exact ideal.mem_span_singleton.mpr dvd end @[simp] lemma torsion_by_one : torsion_by R M 1 = ⊥ := eq_bot_iff.mpr (λ _ h, by { rw [mem_torsion_by_iff, one_smul] at h, exact h }) @[simp] lemma torsion_by_univ : torsion_by_set R M set.univ = ⊥ := by { rw [eq_bot_iff, ← torsion_by_one, ← torsion_by_singleton_eq], exact torsion_by_set_le_torsion_by_set_of_subset (λ _ _, trivial) } end submodule open submodule namespace module @[simp] lemma is_torsion_by_singleton_iff : is_torsion_by_set R M {a} ↔ is_torsion_by R M a := begin refine ⟨λ h x, @h _ ⟨_, set.mem_singleton _⟩, λ h x, _⟩, rintro ⟨b, rfl : b = a⟩, exact @h _ end lemma is_torsion_by_set_iff_torsion_by_set_eq_top : is_torsion_by_set R M s ↔ submodule.torsion_by_set R M s = ⊤ := ⟨λ h, eq_top_iff.mpr (λ _ _, (mem_torsion_by_set_iff _ _).mpr $ @h _), λ h x, by { rw [← mem_torsion_by_set_iff, h], trivial }⟩ /-- A `a`-torsion module is a module whose `a`-torsion submodule is the full space. -/ lemma is_torsion_by_iff_torsion_by_eq_top : is_torsion_by R M a ↔ torsion_by R M a = ⊤ := by rw [← torsion_by_singleton_eq, ← is_torsion_by_singleton_iff, is_torsion_by_set_iff_torsion_by_set_eq_top] lemma is_torsion_by_set_iff_is_torsion_by_span : is_torsion_by_set R M s ↔ is_torsion_by_set R M (ideal.span s) := by rw [is_torsion_by_set_iff_torsion_by_set_eq_top, is_torsion_by_set_iff_torsion_by_set_eq_top, torsion_by_set_eq_torsion_by_span] lemma is_torsion_by_span_singleton_iff : is_torsion_by_set R M (R ∙ a) ↔ is_torsion_by R M a := ((is_torsion_by_set_iff_is_torsion_by_span _).symm.trans $ is_torsion_by_singleton_iff _) end module namespace submodule open module lemma torsion_by_set_is_torsion_by_set : is_torsion_by_set R (torsion_by_set R M s) s := λ ⟨x, hx⟩ a, subtype.ext $ (mem_torsion_by_set_iff _ _).mp hx a /-- The `a`-torsion submodule is a `a`-torsion module. -/ lemma torsion_by_is_torsion_by : is_torsion_by R (torsion_by R M a) a := λ _, smul_torsion_by _ _ @[simp] lemma torsion_by_torsion_by_eq_top : torsion_by R (torsion_by R M a) a = ⊤ := (is_torsion_by_iff_torsion_by_eq_top a).mp $ torsion_by_is_torsion_by a @[simp] lemma torsion_by_set_torsion_by_set_eq_top : torsion_by_set R (torsion_by_set R M s) s = ⊤ := (is_torsion_by_set_iff_torsion_by_set_eq_top s).mp $ torsion_by_set_is_torsion_by_set s variables (R M) lemma torsion_gc : @galois_connection (submodule R M) (ideal R)ᵒᵈ _ _ annihilator (λ I, torsion_by_set R M $ I.of_dual) := λ A I, ⟨λ h x hx, (mem_torsion_by_set_iff _ _).mpr $ λ ⟨a, ha⟩, mem_annihilator.mp (h ha) x hx, λ h a ha, mem_annihilator.mpr $ λ x hx, (mem_torsion_by_set_iff _ _).mp (h hx) ⟨a, ha⟩⟩ variables {R M} section coprime open_locale big_operators variables {ι : Type*} {p : ι → ideal R} {S : finset ι} variables (hp : (S : set ι).pairwise $ λ i j, p i ⊔ p j = ⊤) include hp lemma supr_torsion_by_ideal_eq_torsion_by_infi : (⨆ i ∈ S, torsion_by_set R M $ p i) = torsion_by_set R M ↑(⨅ i ∈ S, p i) := begin cases S.eq_empty_or_nonempty with h h, { rw h, convert supr_emptyset, convert torsion_by_univ, convert top_coe, exact infi_emptyset }, apply le_antisymm, { apply supr_le _, intro i, apply supr_le _, intro is, apply torsion_by_set_le_torsion_by_set_of_subset, exact (infi_le (λ i, ⨅ (H : i ∈ S), p i) i).trans (infi_le _ is), }, { intros x hx, rw mem_supr_finset_iff_exists_sum, obtain ⟨μ, hμ⟩ := (mem_supr_finset_iff_exists_sum _ _).mp ((ideal.eq_top_iff_one _).mp $ (ideal.supr_infi_eq_top_iff_pairwise h _).mpr hp), refine ⟨λ i, ⟨(μ i : R) • x, _⟩, _⟩, { rw mem_torsion_by_set_iff at hx ⊢, rintro ⟨a, ha⟩, rw smul_smul, suffices : a * μ i ∈ ⨅ i ∈ S, p i, from hx ⟨_, this⟩, rw mem_infi, intro j, rw mem_infi, intro hj, by_cases ij : j = i, { rw ij, exact ideal.mul_mem_right _ _ ha }, { have := coe_mem (μ i), simp only [mem_infi] at this, exact ideal.mul_mem_left _ _ (this j hj ij) } }, { simp_rw coe_mk, rw [← finset.sum_smul, hμ, one_smul] } } end lemma sup_indep_torsion_by_ideal : S.sup_indep (λ i, torsion_by_set R M $ p i) := λ T hT i hi hiT, begin rw [disjoint_iff, finset.sup_eq_supr, supr_torsion_by_ideal_eq_torsion_by_infi $ λ i hi j hj ij, hp (hT hi) (hT hj) ij], have := @galois_connection.u_inf _ _ (order_dual.to_dual _) (order_dual.to_dual _) _ _ _ _ (torsion_gc R M), dsimp at this ⊢, rw [← this, ideal.sup_infi_eq_top, top_coe, torsion_by_univ], intros j hj, apply hp hi (hT hj), rintro rfl, exact hiT hj end omit hp variables {q : ι → R} (hq : (S : set ι).pairwise $ is_coprime on q) include hq lemma supr_torsion_by_eq_torsion_by_prod : (⨆ i ∈ S, torsion_by R M $ q i) = torsion_by R M (∏ i in S, q i) := begin rw [← torsion_by_span_singleton_eq, ideal.submodule_span_eq, ← ideal.finset_inf_span_singleton _ _ hq, finset.inf_eq_infi, ← supr_torsion_by_ideal_eq_torsion_by_infi], { congr, ext : 1, congr, ext : 1, exact (torsion_by_span_singleton_eq _).symm }, { exact λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime _ _).mpr (hq hi hj ij), } end lemma sup_indep_torsion_by : S.sup_indep (λ i, torsion_by R M $ q i) := begin convert sup_indep_torsion_by_ideal (λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime (q i) _).mpr $ hq hi hj ij), ext : 1, exact (torsion_by_span_singleton_eq _).symm, end end coprime end submodule end section needs_group variables [comm_ring R] [add_comm_group M] [module R M] namespace submodule open_locale big_operators variables {ι : Type*} [decidable_eq ι] {S : finset ι} /--If the `p i` are pairwise coprime, a `⨅ i, p i`-torsion module is the internal direct sum of its `p i`-torsion submodules.-/ lemma torsion_by_set_is_internal {p : ι → ideal R} (hp : (S : set ι).pairwise $ λ i j, p i ⊔ p j = ⊤) (hM : module.is_torsion_by_set R M (⨅ i ∈ S, p i : ideal R)) : direct_sum.is_internal (λ i : S, torsion_by_set R M $ p i) := direct_sum.is_internal_submodule_of_independent_of_supr_eq_top (complete_lattice.independent_iff_sup_indep.mpr $ sup_indep_torsion_by_ideal hp) ((supr_subtype'' ↑S $ λ i, torsion_by_set R M $ p i).trans $ (supr_torsion_by_ideal_eq_torsion_by_infi hp).trans $ (module.is_torsion_by_set_iff_torsion_by_set_eq_top _).mp hM) /--If the `q i` are pairwise coprime, a `∏ i, q i`-torsion module is the internal direct sum of its `q i`-torsion submodules.-/ lemma torsion_by_is_internal {q : ι → R} (hq : (S : set ι).pairwise $ is_coprime on q) (hM : module.is_torsion_by R M $ ∏ i in S, q i) : direct_sum.is_internal (λ i : S, torsion_by R M $ q i) := begin rw [← module.is_torsion_by_span_singleton_iff, ideal.submodule_span_eq, ← ideal.finset_inf_span_singleton _ _ hq, finset.inf_eq_infi] at hM, convert torsion_by_set_is_internal (λ i hi j hj ij, (ideal.sup_eq_top_iff_is_coprime (q i) _).mpr $ hq hi hj ij) hM, ext : 1, exact (torsion_by_span_singleton_eq _).symm, end end submodule namespace module variables {I : ideal R} (hM : is_torsion_by_set R M I) include hM /-- can't be an instance because hM can't be inferred -/ def is_torsion_by_set.has_smul : has_smul (R ⧸ I) M := { smul := λ b x, quotient.lift_on' b (• x) $ λ b₁ b₂ h, begin show b₁ • x = b₂ • x, have : (-b₁ + b₂) • x = 0 := @hM x ⟨_, quotient_add_group.left_rel_apply.mp h⟩, rw [add_smul, neg_smul, neg_add_eq_zero] at this, exact this end } @[simp] lemma is_torsion_by_set.mk_smul (b : R) (x : M) : by haveI := hM.has_smul; exact ideal.quotient.mk I b • x = b • x := rfl /-- A `(R ⧸ I)`-module is a `R`-module which `is_torsion_by_set R M I`. -/ def is_torsion_by_set.module : module (R ⧸ I) M := @function.surjective.module_left _ _ _ _ _ _ _ hM.has_smul _ ideal.quotient.mk_surjective (is_torsion_by_set.mk_smul hM) instance is_torsion_by_set.is_scalar_tower {S : Type*} [has_smul S R] [has_smul S M] [is_scalar_tower S R M] [is_scalar_tower S R R] : @@is_scalar_tower S (R ⧸ I) M _ (is_torsion_by_set.module hM).to_has_smul _ := { smul_assoc := λ b d x, quotient.induction_on' d $ λ c, (smul_assoc b c x : _) } omit hM instance : module (R ⧸ I) (M ⧸ I • (⊤ : submodule R M)) := is_torsion_by_set.module (λ x r, begin induction x using quotient.induction_on, refine (submodule.quotient.mk_eq_zero _).mpr (submodule.smul_mem_smul r.prop _), trivial, end) end module namespace submodule instance (I : ideal R) : module (R ⧸ I) (torsion_by_set R M I) := module.is_torsion_by_set.module $ torsion_by_set_is_torsion_by_set I @[simp] lemma torsion_by_set.mk_smul (I : ideal R) (b : R) (x : torsion_by_set R M I) : ideal.quotient.mk I b • x = b • x := rfl instance (I : ideal R) {S : Type*} [has_smul S R] [has_smul S M] [is_scalar_tower S R M] [is_scalar_tower S R R] : is_scalar_tower S (R ⧸ I) (torsion_by_set R M I) := infer_instance /-- The `a`-torsion submodule as a `(R ⧸ R∙a)`-module. -/ instance (a : R) : module (R ⧸ R ∙ a) (torsion_by R M a) := module.is_torsion_by_set.module $ (module.is_torsion_by_span_singleton_iff a).mpr $ torsion_by_is_torsion_by a @[simp] lemma torsion_by.mk_smul (a b : R) (x : torsion_by R M a) : ideal.quotient.mk (R ∙ a) b • x = b • x := rfl instance (a : R) {S : Type*} [has_smul S R] [has_smul S M] [is_scalar_tower S R M] [is_scalar_tower S R R] : is_scalar_tower S (R ⧸ R ∙ a) (torsion_by R M a) := infer_instance end submodule end needs_group namespace submodule section torsion' open module variables [comm_semiring R] [add_comm_monoid M] [module R M] variables (S : Type*) [comm_monoid S] [distrib_mul_action S M] [smul_comm_class S R M] @[simp] lemma mem_torsion'_iff (x : M) : x ∈ torsion' R M S ↔ ∃ a : S, a • x = 0 := iff.rfl @[simp] lemma mem_torsion_iff (x : M) : x ∈ torsion R M ↔ ∃ a : R⁰, a • x = 0 := iff.rfl @[simps] instance : has_smul S (torsion' R M S) := ⟨λ s x, ⟨s • x, by { obtain ⟨x, a, h⟩ := x, use a, dsimp, rw [smul_comm, h, smul_zero] }⟩⟩ instance : distrib_mul_action S (torsion' R M S) := subtype.coe_injective.distrib_mul_action ((torsion' R M S).subtype).to_add_monoid_hom (λ (c : S) x, rfl) instance : smul_comm_class S R (torsion' R M S) := ⟨λ s a x, subtype.ext $ smul_comm _ _ _⟩ /-- A `S`-torsion module is a module whose `S`-torsion submodule is the full space. -/ lemma is_torsion'_iff_torsion'_eq_top : is_torsion' M S ↔ torsion' R M S = ⊤ := ⟨λ h, eq_top_iff.mpr (λ _ _, @h _), λ h x, by { rw [← @mem_torsion'_iff R, h], trivial }⟩ /-- The `S`-torsion submodule is a `S`-torsion module. -/ lemma torsion'_is_torsion' : is_torsion' (torsion' R M S) S := λ ⟨x, ⟨a, h⟩⟩, ⟨a, subtype.ext h⟩ @[simp] lemma torsion'_torsion'_eq_top : torsion' R (torsion' R M S) S = ⊤ := (is_torsion'_iff_torsion'_eq_top S).mp $ torsion'_is_torsion' S /-- The torsion submodule of the torsion submodule (viewed as a module) is the full torsion module. -/ @[simp] lemma torsion_torsion_eq_top : torsion R (torsion R M) = ⊤ := torsion'_torsion'_eq_top R⁰ /-- The torsion submodule is always a torsion module. -/ lemma torsion_is_torsion : module.is_torsion R (torsion R M) := torsion'_is_torsion' R⁰ end torsion' section torsion variables [comm_semiring R] [add_comm_monoid M] [module R M] open_locale big_operators lemma is_torsion_by_ideal_of_finite_of_is_torsion [module.finite R M] (hM : module.is_torsion R M) : ∃ I : ideal R, (I : set R) ∩ R⁰ ≠ ∅ ∧ module.is_torsion_by_set R M I := begin cases (module.finite_def.mp infer_instance : (⊤ : submodule R M).fg) with S h, refine ⟨∏ x in S, ideal.torsion_of R M x, _, _⟩, { rw set.ne_empty_iff_nonempty, refine ⟨_, _, (∏ x in S, (@hM x).some : R⁰).2⟩, rw [subtype.val_eq_coe, submonoid.coe_finset_prod], apply ideal.prod_mem_prod, exact λ x _, (@hM x).some_spec }, { rw [module.is_torsion_by_set_iff_torsion_by_set_eq_top, eq_top_iff, ← h, span_le], intros x hx, apply torsion_by_set_le_torsion_by_set_of_subset, { apply ideal.le_of_dvd, exact finset.dvd_prod_of_mem _ hx }, { rw mem_torsion_by_set_iff, rintro ⟨a, ha⟩, exact ha } } end variables [no_zero_divisors R] [nontrivial R] lemma coe_torsion_eq_annihilator_ne_bot : (torsion R M : set M) = { x : M | (R ∙ x).annihilator ≠ ⊥ } := begin ext x, simp_rw [submodule.ne_bot_iff, mem_annihilator, mem_span_singleton], exact ⟨λ ⟨a, hax⟩, ⟨a, λ _ ⟨b, hb⟩, by rw [← hb, smul_comm, ← submonoid.smul_def, hax, smul_zero], non_zero_divisors.coe_ne_zero _⟩, λ ⟨a, hax, ha⟩, ⟨⟨_, mem_non_zero_divisors_of_ne_zero ha⟩, hax x ⟨1, one_smul _ _⟩⟩⟩ end /-- A module over a domain has `no_zero_smul_divisors` iff its torsion submodule is trivial. -/ lemma no_zero_smul_divisors_iff_torsion_eq_bot : no_zero_smul_divisors R M ↔ torsion R M = ⊥ := begin split; intro h, { haveI : no_zero_smul_divisors R M := h, rw eq_bot_iff, rintro x ⟨a, hax⟩, change (a : R) • x = 0 at hax, cases eq_zero_or_eq_zero_of_smul_eq_zero hax with h0 h0, { exfalso, exact non_zero_divisors.coe_ne_zero a h0 }, { exact h0 } }, { exact { eq_zero_or_eq_zero_of_smul_eq_zero := λ a x hax, begin by_cases ha : a = 0, { left, exact ha }, { right, rw [← mem_bot _, ← h], exact ⟨⟨a, mem_non_zero_divisors_of_ne_zero ha⟩, hax⟩ } end } } end end torsion namespace quotient_torsion variables [comm_ring R] [add_comm_group M] [module R M] /-- Quotienting by the torsion submodule gives a torsion-free module. -/ @[simp] lemma torsion_eq_bot : torsion R (M ⧸ torsion R M) = ⊥ := eq_bot_iff.mpr $ λ z, quotient.induction_on' z $ λ x ⟨a, hax⟩, begin rw [quotient.mk'_eq_mk, ← quotient.mk_smul, quotient.mk_eq_zero] at hax, rw [mem_bot, quotient.mk'_eq_mk, quotient.mk_eq_zero], cases hax with b h, exact ⟨b * a, (mul_smul _ _ _).trans h⟩ end instance no_zero_smul_divisors [is_domain R] : no_zero_smul_divisors R (M ⧸ torsion R M) := no_zero_smul_divisors_iff_torsion_eq_bot.mpr torsion_eq_bot end quotient_torsion section p_torsion open module section variables [monoid R] [add_comm_monoid M] [distrib_mul_action R M] lemma is_torsion'_powers_iff (p : R) : is_torsion' M (submonoid.powers p) ↔ ∀ x : M, ∃ n : ℕ, p ^ n • x = 0 := ⟨λ h x, let ⟨⟨a, ⟨n, rfl⟩⟩, hx⟩ := @h x in ⟨n, hx⟩, λ h x, let ⟨n, hn⟩ := h x in ⟨⟨_, ⟨n, rfl⟩⟩, hn⟩⟩ /--In a `p ^ ∞`-torsion module (that is, a module where all elements are cancelled by scalar multiplication by some power of `p`), the smallest `n` such that `p ^ n • x = 0`.-/ def p_order {p : R} (hM : is_torsion' M $ submonoid.powers p) (x : M) [Π n : ℕ, decidable (p ^ n • x = 0)] := nat.find $ (is_torsion'_powers_iff p).mp hM x @[simp] lemma pow_p_order_smul {p : R} (hM : is_torsion' M $ submonoid.powers p) (x : M) [Π n : ℕ, decidable (p ^ n • x = 0)] : p ^ p_order hM x • x = 0 := nat.find_spec $ (is_torsion'_powers_iff p).mp hM x end variables [comm_semiring R] [add_comm_monoid M] [module R M] [Π x : M, decidable (x = 0)] lemma exists_is_torsion_by {p : R} (hM : is_torsion' M $ submonoid.powers p) (d : ℕ) (hd : d ≠ 0) (s : fin d → M) (hs : span R (set.range s) = ⊤) : ∃ j : fin d, module.is_torsion_by R M (p ^ p_order hM (s j)) := begin let oj := list.argmax (λ i, p_order hM $ s i) (list.fin_range d), have hoj : oj.is_some := (option.ne_none_iff_is_some.mp $ λ eq_none, hd $ list.fin_range_eq_nil.mp $ list.argmax_eq_none.mp eq_none), use option.get hoj, rw [is_torsion_by_iff_torsion_by_eq_top, eq_top_iff, ← hs, submodule.span_le, set.range_subset_iff], intro i, change _ • _ = _, have : p_order hM (s i) ≤ p_order hM (s $ option.get hoj) := list.le_of_mem_argmax (list.mem_fin_range i) (option.get_mem hoj), rw [← nat.sub_add_cancel this, pow_add, mul_smul, pow_p_order_smul, smul_zero] end end p_torsion end submodule namespace ideal.quotient open submodule lemma torsion_by_eq_span_singleton {R : Type*} [comm_ring R] (a b : R) (ha : a ∈ R⁰) : torsion_by R (R ⧸ R ∙ a * b) a = R ∙ (mk _ b) := begin ext x, rw [mem_torsion_by_iff, mem_span_singleton], obtain ⟨x, rfl⟩ := mk_surjective x, split; intro h, { rw [← mk_eq_mk, ← quotient.mk_smul, quotient.mk_eq_zero, mem_span_singleton] at h, obtain ⟨c, h⟩ := h, rw [smul_eq_mul, smul_eq_mul, mul_comm, mul_assoc, mul_cancel_left_mem_non_zero_divisor ha, mul_comm] at h, use c, rw [← h, ← mk_eq_mk, ← quotient.mk_smul, smul_eq_mul, mk_eq_mk] }, { obtain ⟨c, h⟩ := h, rw [← h, smul_comm, ← mk_eq_mk, ← quotient.mk_smul, (quotient.mk_eq_zero _).mpr $ mem_span_singleton_self _, smul_zero] } end end ideal.quotient namespace add_monoid theorem is_torsion_iff_is_torsion_nat [add_comm_monoid M] : add_monoid.is_torsion M ↔ module.is_torsion ℕ M := begin refine ⟨λ h x, _, λ h x, _⟩, { obtain ⟨n, h0, hn⟩ := (is_of_fin_add_order_iff_nsmul_eq_zero x).mp (h x), exact ⟨⟨n, mem_non_zero_divisors_of_ne_zero $ ne_of_gt h0⟩, hn⟩ }, { rw is_of_fin_add_order_iff_nsmul_eq_zero, obtain ⟨n, hn⟩ := @h x, refine ⟨n, nat.pos_of_ne_zero (non_zero_divisors.coe_ne_zero _), hn⟩ } end theorem is_torsion_iff_is_torsion_int [add_comm_group M] : add_monoid.is_torsion M ↔ module.is_torsion ℤ M := begin refine ⟨λ h x, _, λ h x, _⟩, { obtain ⟨n, h0, hn⟩ := (is_of_fin_add_order_iff_nsmul_eq_zero x).mp (h x), exact ⟨⟨n, mem_non_zero_divisors_of_ne_zero $ ne_of_gt $ int.coe_nat_pos.mpr h0⟩, (coe_nat_zsmul _ _).trans hn⟩ }, { rw is_of_fin_add_order_iff_nsmul_eq_zero, obtain ⟨n, hn⟩ := @h x, exact exists_nsmul_eq_zero_of_zsmul_eq_zero (non_zero_divisors.coe_ne_zero n) hn } end end add_monoid