Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
37.8 kB
/-
Copyright (c) 2020 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro, Anne Baanen,
Frédéric Dupuis, Heather Macbeth
-/
import algebra.hom.group
import algebra.hom.group_action
import algebra.module.basic
import algebra.module.pi
import algebra.ring.comp_typeclasses
import algebra.star.basic
/-!
# (Semi)linear maps
In this file we define
* `linear_map σ M M₂`, `M →ₛₗ[σ] M₂` : a semilinear map between two `module`s. Here,
`σ` is a `ring_hom` from `R` to `R₂` and an `f : M →ₛₗ[σ] M₂` satisfies
`f (c • x) = (σ c) • (f x)`. We recover plain linear maps by choosing `σ` to be `ring_hom.id R`.
This is denoted by `M →ₗ[R] M₂`. We also add the notation `M →ₗ⋆[R] M₂` for star-linear maps.
* `is_linear_map R f` : predicate saying that `f : M → M₂` is a linear map. (Note that this
was not generalized to semilinear maps.)
We then provide `linear_map` with the following instances:
* `linear_map.add_comm_monoid` and `linear_map.add_comm_group`: the elementwise addition structures
corresponding to addition in the codomain
* `linear_map.distrib_mul_action` and `linear_map.module`: the elementwise scalar action structures
corresponding to applying the action in the codomain.
* `module.End.semiring` and `module.End.ring`: the (semi)ring of endomorphisms formed by taking the
additive structure above with composition as multiplication.
## Implementation notes
To ensure that composition works smoothly for semilinear maps, we use the typeclasses
`ring_hom_comp_triple`, `ring_hom_inv_pair` and `ring_hom_surjective` from
`algebra/ring/comp_typeclasses`.
## Notation
* Throughout the file, we denote regular linear maps by `fₗ`, `gₗ`, etc, and semilinear maps
by `f`, `g`, etc.
## TODO
* Parts of this file have not yet been generalized to semilinear maps (i.e. `compatible_smul`)
## Tags
linear map
-/
open function
open_locale big_operators
universes u u' v w x y z
variables {R : Type*} {R₁ : Type*} {R₂ : Type*} {R₃ : Type*}
variables {k : Type*} {S : Type*} {S₃ : Type*} {T : Type*}
variables {M : Type*} {M₁ : Type*} {M₂ : Type*} {M₃ : Type*}
variables {N₁ : Type*} {N₂ : Type*} {N₃ : Type*} {ι : Type*}
/-- A map `f` between modules over a semiring is linear if it satisfies the two properties
`f (x + y) = f x + f y` and `f (c • x) = c • f x`. The predicate `is_linear_map R f` asserts this
property. A bundled version is available with `linear_map`, and should be favored over
`is_linear_map` most of the time. -/
structure is_linear_map (R : Type u) {M : Type v} {M₂ : Type w}
[semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂]
(f : M → M₂) : Prop :=
(map_add : ∀ x y, f (x + y) = f x + f y)
(map_smul : ∀ (c : R) x, f (c • x) = c • f x)
section
set_option old_structure_cmd true
/-- A map `f` between an `R`-module and an `S`-module over a ring homomorphism `σ : R →+* S`
is semilinear if it satisfies the two properties `f (x + y) = f x + f y` and
`f (c • x) = (σ c) • f x`. Elements of `linear_map σ M M₂` (available under the notation
`M →ₛₗ[σ] M₂`) are bundled versions of such maps. For plain linear maps (i.e. for which
`σ = ring_hom.id R`), the notation `M →ₗ[R] M₂` is available. An unbundled version of plain linear
maps is available with the predicate `is_linear_map`, but it should be avoided most of the time. -/
structure linear_map {R : Type*} {S : Type*} [semiring R] [semiring S] (σ : R →+* S)
(M : Type*) (M₂ : Type*)
[add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module S M₂]
extends add_hom M M₂ :=
(map_smul' : ∀ (r : R) (x : M), to_fun (r • x) = (σ r) • to_fun x)
/-- The `add_hom` underlying a `linear_map`. -/
add_decl_doc linear_map.to_add_hom
notation M ` →ₛₗ[`:25 σ:25 `] `:0 M₂:0 := linear_map σ M M₂
notation M ` →ₗ[`:25 R:25 `] `:0 M₂:0 := linear_map (ring_hom.id R) M M₂
notation M ` →ₗ⋆[`:25 R:25 `] `:0 M₂:0 := linear_map (star_ring_end R) M M₂
/-- `semilinear_map_class F σ M M₂` asserts `F` is a type of bundled `σ`-semilinear maps `M → M₂`.
See also `linear_map_class F R M M₂` for the case where `σ` is the identity map on `R`.
A map `f` between an `R`-module and an `S`-module over a ring homomorphism `σ : R →+* S`
is semilinear if it satisfies the two properties `f (x + y) = f x + f y` and
`f (c • x) = (σ c) • f x`. -/
class semilinear_map_class (F : Type*) {R S : out_param Type*} [semiring R] [semiring S]
(σ : out_param $ R →+* S) (M M₂ : out_param Type*)
[add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module S M₂]
extends add_hom_class F M M₂ :=
(map_smulₛₗ : ∀ (f : F) (r : R) (x : M), f (r • x) = (σ r) • f x)
end
-- `σ` becomes a metavariable but that's fine because it's an `out_param`
attribute [nolint dangerous_instance] semilinear_map_class.to_add_hom_class
export semilinear_map_class (map_smulₛₗ)
attribute [simp] map_smulₛₗ
/-- `linear_map_class F R M M₂` asserts `F` is a type of bundled `R`-linear maps `M → M₂`.
This is an abbreviation for `semilinear_map_class F (ring_hom.id R) M M₂`.
-/
abbreviation linear_map_class (F : Type*) (R M M₂ : out_param Type*)
[semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] :=
semilinear_map_class F (ring_hom.id R) M M₂
namespace semilinear_map_class
variables (F : Type*)
variables [semiring R] [semiring S]
variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₃]
variables [add_comm_monoid N₁] [add_comm_monoid N₂] [add_comm_monoid N₃]
variables [module R M] [module R M₂] [module S M₃]
variables {σ : R →+* S}
@[priority 100, nolint dangerous_instance] -- `σ` is an `out_param` so it's not dangerous
instance [semilinear_map_class F σ M M₃] : add_monoid_hom_class F M M₃ :=
{ coe := λ f, (f : M → M₃),
map_zero := λ f, show f 0 = 0, by { rw [← zero_smul R (0 : M), map_smulₛₗ], simp },
.. semilinear_map_class.to_add_hom_class F σ M M₃ }
@[priority 100, nolint dangerous_instance] -- `R` is an `out_param` so it's not dangerous
instance [linear_map_class F R M M₂] : distrib_mul_action_hom_class F R M M₂ :=
{ coe := λ f, (f : M → M₂),
map_smul := λ f c x, by rw [map_smulₛₗ, ring_hom.id_apply],
.. semilinear_map_class.add_monoid_hom_class F }
variables {F} (f : F) [i : semilinear_map_class F σ M M₃]
include i
lemma map_smul_inv {σ' : S →+* R} [ring_hom_inv_pair σ σ'] (c : S) (x : M) :
c • f x = f (σ' c • x) :=
by simp
end semilinear_map_class
namespace linear_map
section add_comm_monoid
variables [semiring R] [semiring S]
section
variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₃]
variables [add_comm_monoid N₁] [add_comm_monoid N₂] [add_comm_monoid N₃]
variables [module R M] [module R M₂] [module S M₃]
variables {σ : R →+* S}
instance : semilinear_map_class (M →ₛₗ[σ] M₃) σ M M₃ :=
{ coe := linear_map.to_fun,
coe_injective' := λ f g h, by cases f; cases g; congr',
map_add := linear_map.map_add',
map_smulₛₗ := linear_map.map_smul' }
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
directly.
-/
instance : has_coe_to_fun (M →ₛₗ[σ] M₃) (λ _, M → M₃) := ⟨λ f, f⟩
/-- The `distrib_mul_action_hom` underlying a `linear_map`. -/
def to_distrib_mul_action_hom (f : M →ₗ[R] M₂) : distrib_mul_action_hom R M M₂ :=
{ map_zero' := show f 0 = 0, from map_zero f, ..f }
@[simp] lemma to_fun_eq_coe {f : M →ₛₗ[σ] M₃} : f.to_fun = (f : M → M₃) := rfl
@[ext] theorem ext {f g : M →ₛₗ[σ] M₃} (h : ∀ x, f x = g x) : f = g := fun_like.ext f g h
/-- Copy of a `linear_map` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : M →ₛₗ[σ] M₃) (f' : M → M₃) (h : f' = ⇑f) : M →ₛₗ[σ] M₃ :=
{ to_fun := f',
map_add' := h.symm ▸ f.map_add',
map_smul' := h.symm ▸ f.map_smul' }
/-- See Note [custom simps projection]. -/
protected def simps.apply {R S : Type*} [semiring R] [semiring S] (σ : R →+* S)
(M M₃ : Type*) [add_comm_monoid M] [add_comm_monoid M₃] [module R M] [module S M₃]
(f : M →ₛₗ[σ] M₃) : M → M₃ := f
initialize_simps_projections linear_map (to_fun → apply)
@[simp] lemma coe_mk {σ : R →+* S} (f : M → M₃) (h₁ h₂) :
((linear_map.mk f h₁ h₂ : M →ₛₗ[σ] M₃) : M → M₃) = f := rfl
/-- Identity map as a `linear_map` -/
def id : M →ₗ[R] M :=
{ to_fun := id, ..distrib_mul_action_hom.id R }
lemma id_apply (x : M) :
@id R M _ _ _ x = x := rfl
@[simp, norm_cast] lemma id_coe : ((linear_map.id : M →ₗ[R] M) : M → M) = _root_.id := rfl
end
section
variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₃]
variables [add_comm_monoid N₁] [add_comm_monoid N₂] [add_comm_monoid N₃]
variables [module R M] [module R M₂] [module S M₃]
variables (σ : R →+* S)
variables (fₗ gₗ : M →ₗ[R] M₂) (f g : M →ₛₗ[σ] M₃)
theorem is_linear : is_linear_map R fₗ := ⟨fₗ.map_add', fₗ.map_smul'
variables {fₗ gₗ f g σ}
theorem coe_injective : @injective (M →ₛₗ[σ] M₃) (M → M₃) coe_fn :=
fun_like.coe_injective
protected lemma congr_arg {x x' : M} : x = x' → f x = f x' :=
fun_like.congr_arg f
/-- If two linear maps are equal, they are equal at each point. -/
protected lemma congr_fun (h : f = g) (x : M) : f x = g x :=
fun_like.congr_fun h x
theorem ext_iff : f = g ↔ ∀ x, f x = g x :=
fun_like.ext_iff
@[simp] lemma mk_coe (f : M →ₛₗ[σ] M₃) (h₁ h₂) :
(linear_map.mk f h₁ h₂ : M →ₛₗ[σ] M₃) = f := ext $ λ _, rfl
variables (fₗ gₗ f g)
protected lemma map_add (x y : M) : f (x + y) = f x + f y := map_add f x y
protected lemma map_zero : f 0 = 0 := map_zero f
-- TODO: `simp` isn't picking up `map_smulₛₗ` for `linear_map`s without specifying `map_smulₛₗ f`
@[simp] protected lemma map_smulₛₗ (c : R) (x : M) : f (c • x) = (σ c) • f x := map_smulₛₗ f c x
protected lemma map_smul (c : R) (x : M) : fₗ (c • x) = c • fₗ x := map_smul fₗ c x
protected lemma map_smul_inv {σ' : S →+* R} [ring_hom_inv_pair σ σ'] (c : S) (x : M) :
c • f x = f (σ' c • x) :=
by simp
-- TODO: generalize to `zero_hom_class`
@[simp] lemma map_eq_zero_iff (h : function.injective f) {x : M} : f x = 0 ↔ x = 0 :=
⟨λ w, by { apply h, simp [w], }, λ w, by { subst w, simp, }⟩
section pointwise
open_locale pointwise
variables (M M₃ σ) {F : Type*} (h : F)
@[simp] lemma _root_.image_smul_setₛₗ [semilinear_map_class F σ M M₃] (c : R) (s : set M) :
h '' (c • s) = (σ c) • h '' s :=
begin
apply set.subset.antisymm,
{ rintros x ⟨y, ⟨z, zs, rfl⟩, rfl⟩,
exact ⟨h z, set.mem_image_of_mem _ zs, (map_smulₛₗ _ _ _).symm ⟩ },
{ rintros x ⟨y, ⟨z, hz, rfl⟩, rfl⟩,
exact (set.mem_image _ _ _).2 ⟨c • z, set.smul_mem_smul_set hz, map_smulₛₗ _ _ _⟩ }
end
lemma _root_.preimage_smul_setₛₗ [semilinear_map_class F σ M M₃] {c : R} (hc : is_unit c)
(s : set M₃) : h ⁻¹' (σ c • s) = c • h ⁻¹' s :=
begin
apply set.subset.antisymm,
{ rintros x ⟨y, ys, hy⟩,
refine ⟨(hc.unit.inv : R) • x, _, _⟩,
{ simp only [←hy, smul_smul, set.mem_preimage, units.inv_eq_coe_inv, map_smulₛₗ h, ← map_mul,
is_unit.coe_inv_mul, one_smul, map_one, ys] },
{ simp only [smul_smul, is_unit.mul_coe_inv, one_smul, units.inv_eq_coe_inv] } },
{ rintros x ⟨y, hy, rfl⟩,
refine ⟨h y, hy, by simp only [ring_hom.id_apply, map_smulₛₗ h]⟩ }
end
variables (R M₂)
lemma _root_.image_smul_set [linear_map_class F R M M₂] (c : R) (s : set M) :
h '' (c • s) = c • h '' s :=
image_smul_setₛₗ _ _ _ h c s
lemma _root_.preimage_smul_set [linear_map_class F R M M₂] {c : R} (hc : is_unit c) (s : set M₂) :
h ⁻¹' (c • s) = c • h ⁻¹' s :=
preimage_smul_setₛₗ _ _ _ h hc s
end pointwise
variables (M M₂)
/--
A typeclass for `has_smul` structures which can be moved through a `linear_map`.
This typeclass is generated automatically from a `is_scalar_tower` instance, but exists so that
we can also add an instance for `add_comm_group.int_module`, allowing `z •` to be moved even if
`R` does not support negation.
-/
class compatible_smul (R S : Type*) [semiring S] [has_smul R M]
[module S M] [has_smul R M₂] [module S M₂] :=
(map_smul : ∀ (fₗ : M →ₗ[S] M₂) (c : R) (x : M), fₗ (c • x) = c • fₗ x)
variables {M M₂}
@[priority 100]
instance is_scalar_tower.compatible_smul
{R S : Type*} [semiring S] [has_smul R S]
[has_smul R M] [module S M] [is_scalar_tower R S M]
[has_smul R M₂] [module S M₂] [is_scalar_tower R S M₂] : compatible_smul M M₂ R S :=
⟨λ fₗ c x, by rw [← smul_one_smul S c x, ← smul_one_smul S c (fₗ x), map_smul]⟩
@[simp, priority 900]
lemma map_smul_of_tower {R S : Type*} [semiring S] [has_smul R M]
[module S M] [has_smul R M₂] [module S M₂]
[compatible_smul M M₂ R S] (fₗ : M →ₗ[S] M₂) (c : R) (x : M) :
fₗ (c • x) = c • fₗ x :=
compatible_smul.map_smul fₗ c x
/-- convert a linear map to an additive map -/
def to_add_monoid_hom : M →+ M₃ :=
{ to_fun := f,
map_zero' := f.map_zero,
map_add' := f.map_add }
@[simp] lemma to_add_monoid_hom_coe : ⇑f.to_add_monoid_hom = f := rfl
section restrict_scalars
variables (R) [module S M] [module S M₂] [compatible_smul M M₂ R S]
/-- If `M` and `M₂` are both `R`-modules and `S`-modules and `R`-module structures
are defined by an action of `R` on `S` (formally, we have two scalar towers), then any `S`-linear
map from `M` to `M₂` is `R`-linear.
See also `linear_map.map_smul_of_tower`. -/
def restrict_scalars (fₗ : M →ₗ[S] M₂) : M →ₗ[R] M₂ :=
{ to_fun := fₗ,
map_add' := fₗ.map_add,
map_smul' := fₗ.map_smul_of_tower }
@[simp] lemma coe_restrict_scalars (fₗ : M →ₗ[S] M₂) : ⇑(restrict_scalars R fₗ) = fₗ :=
rfl
lemma restrict_scalars_apply (fₗ : M →ₗ[S] M₂) (x) : restrict_scalars R fₗ x = fₗ x :=
rfl
lemma restrict_scalars_injective :
function.injective (restrict_scalars R : (M →ₗ[S] M₂) → (M →ₗ[R] M₂)) :=
λ fₗ gₗ h, ext (linear_map.congr_fun h : _)
@[simp]
lemma restrict_scalars_inj (fₗ gₗ : M →ₗ[S] M₂) :
fₗ.restrict_scalars R = gₗ.restrict_scalars R ↔ fₗ = gₗ :=
(restrict_scalars_injective R).eq_iff
end restrict_scalars
variable {R}
@[simp] lemma map_sum {ι} {t : finset ι} {g : ι → M} :
f (∑ i in t, g i) = (∑ i in t, f (g i)) :=
f.to_add_monoid_hom.map_sum _ _
theorem to_add_monoid_hom_injective :
function.injective (to_add_monoid_hom : (M →ₛₗ[σ] M₃) → (M →+ M₃)) :=
λ f g h, ext $ add_monoid_hom.congr_fun h
/-- If two `σ`-linear maps from `R` are equal on `1`, then they are equal. -/
@[ext] theorem ext_ring {f g : R →ₛₗ[σ] M₃} (h : f 1 = g 1) : f = g :=
ext $ λ x, by rw [← mul_one x, ← smul_eq_mul, f.map_smulₛₗ, g.map_smulₛₗ, h]
theorem ext_ring_iff {σ : R →+* R} {f g : R →ₛₗ[σ] M} : f = g ↔ f 1 = g 1 :=
⟨λ h, h ▸ rfl, ext_ring⟩
@[ext] theorem ext_ring_op {σ : Rᵐᵒᵖ →+* S} {f g : R →ₛₗ[σ] M₃} (h : f 1 = g 1) : f = g :=
ext $ λ x, by rw [← one_mul x, ← op_smul_eq_mul, f.map_smulₛₗ, g.map_smulₛₗ, h]
end
/-- Interpret a `ring_hom` `f` as an `f`-semilinear map. -/
@[simps]
def _root_.ring_hom.to_semilinear_map (f : R →+* S) : R →ₛₗ[f] S :=
{ to_fun := f,
map_smul' := f.map_mul,
.. f}
section
variables [semiring R₁] [semiring R₂] [semiring R₃]
variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₃]
variables {module_M₁ : module R₁ M₁} {module_M₂ : module R₂ M₂} {module_M₃ : module R₃ M₃}
variables {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃}
variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃]
variables (f : M₂ →ₛₗ[σ₂₃] M₃) (g : M₁ →ₛₗ[σ₁₂] M₂)
include module_M₁ module_M₂ module_M₃
/-- Composition of two linear maps is a linear map -/
def comp : M₁ →ₛₗ[σ₁₃] M₃ :=
{ to_fun := f ∘ g,
map_add' := by simp only [map_add, forall_const, eq_self_iff_true, comp_app],
map_smul' := λ r x, by rw [comp_app, map_smulₛₗ, map_smulₛₗ, ring_hom_comp_triple.comp_apply] }
omit module_M₁ module_M₂ module_M₃
infixr ` ∘ₗ `:80 := @linear_map.comp _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
(ring_hom.id _) (ring_hom.id _) (ring_hom.id _) ring_hom_comp_triple.ids
include σ₁₃
lemma comp_apply (x : M₁) : f.comp g x = f (g x) := rfl
omit σ₁₃
include σ₁₃
@[simp, norm_cast] lemma coe_comp : (f.comp g : M₁ → M₃) = f ∘ g := rfl
omit σ₁₃
@[simp] theorem comp_id : f.comp id = f :=
linear_map.ext $ λ x, rfl
@[simp] theorem id_comp : id.comp f = f :=
linear_map.ext $ λ x, rfl
variables {f g} {f' : M₂ →ₛₗ[σ₂₃] M₃} {g' : M₁ →ₛₗ[σ₁₂] M₂}
include σ₁₃
theorem cancel_right (hg : function.surjective g) :
f.comp g = f'.comp g ↔ f = f' :=
⟨λ h, ext $ hg.forall.2 (ext_iff.1 h), λ h, h ▸ rfl⟩
theorem cancel_left (hf : function.injective f) :
f.comp g = f.comp g' ↔ g = g' :=
⟨λ h, ext $ λ x, hf $ by rw [← comp_apply, h, comp_apply], λ h, h ▸ rfl⟩
omit σ₁₃
end
variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₃]
/-- If a function `g` is a left and right inverse of a linear map `f`, then `g` is linear itself. -/
def inverse [module R M] [module S M₂] {σ : R →+* S} {σ' : S →+* R} [ring_hom_inv_pair σ σ']
(f : M →ₛₗ[σ] M₂) (g : M₂ → M) (h₁ : left_inverse g f) (h₂ : right_inverse g f) :
M₂ →ₛₗ[σ'] M :=
by dsimp [left_inverse, function.right_inverse] at h₁ h₂; exact
{ to_fun := g,
map_add' := λ x y, by { rw [← h₁ (g (x + y)), ← h₁ (g x + g y)]; simp [h₂] },
map_smul' := λ a b, by { rw [← h₁ (g (a • b)), ← h₁ ((σ' a) • g b)], simp [h₂] } }
end add_comm_monoid
section add_comm_group
variables [semiring R] [semiring S] [add_comm_group M] [add_comm_group M₂]
variables {module_M : module R M} {module_M₂ : module S M₂} {σ : R →+* S}
variables (f : M →ₛₗ[σ] M₂)
protected lemma map_neg (x : M) : f (- x) = - f x := map_neg f x
protected lemma map_sub (x y : M) : f (x - y) = f x - f y := map_sub f x y
instance compatible_smul.int_module
{S : Type*} [semiring S] [module S M] [module S M₂] : compatible_smul M M₂ ℤ S :=
⟨λ fₗ c x, begin
induction c using int.induction_on,
case hz : { simp },
case hp : n ih { simp [add_smul, ih] },
case hn : n ih { simp [sub_smul, ih] }
end⟩
instance compatible_smul.units {R S : Type*}
[monoid R] [mul_action R M] [mul_action R M₂] [semiring S] [module S M] [module S M₂]
[compatible_smul M M₂ R S] :
compatible_smul M M₂ Rˣ S :=
⟨λ fₗ c x, (compatible_smul.map_smul fₗ (c : R) x : _)⟩
end add_comm_group
end linear_map
namespace module
/-- `g : R →+* S` is `R`-linear when the module structure on `S` is `module.comp_hom S g` . -/
@[simps]
def comp_hom.to_linear_map {R S : Type*} [semiring R] [semiring S] (g : R →+* S) :
(by haveI := comp_hom S g; exact (R →ₗ[R] S)) :=
by exact
{ to_fun := (g : R → S),
map_add' := g.map_add,
map_smul' := g.map_mul }
end module
namespace distrib_mul_action_hom
variables [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂]
/-- A `distrib_mul_action_hom` between two modules is a linear map. -/
def to_linear_map (fₗ : M →+[R] M₂) : M →ₗ[R] M₂ := { ..fₗ }
instance : has_coe (M →+[R] M₂) (M →ₗ[R] M₂) := ⟨to_linear_map⟩
@[simp] lemma to_linear_map_eq_coe (f : M →+[R] M₂) :
f.to_linear_map = ↑f :=
rfl
@[simp, norm_cast] lemma coe_to_linear_map (f : M →+[R] M₂) :
((f : M →ₗ[R] M₂) : M → M₂) = f :=
rfl
lemma to_linear_map_injective {f g : M →+[R] M₂} (h : (f : M →ₗ[R] M₂) = (g : M →ₗ[R] M₂)) :
f = g :=
by { ext m, exact linear_map.congr_fun h m, }
end distrib_mul_action_hom
namespace is_linear_map
section add_comm_monoid
variables [semiring R] [add_comm_monoid M] [add_comm_monoid M₂]
variables [module R M] [module R M₂]
include R
/-- Convert an `is_linear_map` predicate to a `linear_map` -/
def mk' (f : M → M₂) (H : is_linear_map R f) : M →ₗ[R] M₂ :=
{ to_fun := f, map_add' := H.1, map_smul' := H.2 }
@[simp] theorem mk'_apply {f : M → M₂} (H : is_linear_map R f) (x : M) :
mk' f H x = f x := rfl
lemma is_linear_map_smul {R M : Type*} [comm_semiring R] [add_comm_monoid M] [module R M]
(c : R) :
is_linear_map R (λ (z : M), c • z) :=
begin
refine is_linear_map.mk (smul_add c) _,
intros _ _,
simp only [smul_smul, mul_comm]
end
lemma is_linear_map_smul' {R M : Type*} [semiring R] [add_comm_monoid M] [module R M] (a : M) :
is_linear_map R (λ (c : R), c • a) :=
is_linear_map.mk (λ x y, add_smul x y a) (λ x y, mul_smul x y a)
variables {f : M → M₂} (lin : is_linear_map R f)
include M M₂ lin
lemma map_zero : f (0 : M) = (0 : M₂) := (lin.mk' f).map_zero
end add_comm_monoid
section add_comm_group
variables [semiring R] [add_comm_group M] [add_comm_group M₂]
variables [module R M] [module R M₂]
include R
lemma is_linear_map_neg :
is_linear_map R (λ (z : M), -z) :=
is_linear_map.mk neg_add (λ x y, (smul_neg x y).symm)
variables {f : M → M₂} (lin : is_linear_map R f)
include M M₂ lin
lemma map_neg (x : M) : f (- x) = - f x := (lin.mk' f).map_neg x
lemma map_sub (x y) : f (x - y) = f x - f y := (lin.mk' f).map_sub x y
end add_comm_group
end is_linear_map
/-- Linear endomorphisms of a module, with associated ring structure
`module.End.semiring` and algebra structure `module.End.algebra`. -/
abbreviation module.End (R : Type u) (M : Type v)
[semiring R] [add_comm_monoid M] [module R M] := M →ₗ[R] M
/-- Reinterpret an additive homomorphism as a `ℕ`-linear map. -/
def add_monoid_hom.to_nat_linear_map [add_comm_monoid M] [add_comm_monoid M₂] (f : M →+ M₂) :
M →ₗ[ℕ] M₂ :=
{ to_fun := f, map_add' := f.map_add, map_smul' := map_nsmul f }
lemma add_monoid_hom.to_nat_linear_map_injective [add_comm_monoid M] [add_comm_monoid M₂] :
function.injective (@add_monoid_hom.to_nat_linear_map M M₂ _ _) :=
by { intros f g h, ext, exact linear_map.congr_fun h x }
/-- Reinterpret an additive homomorphism as a `ℤ`-linear map. -/
def add_monoid_hom.to_int_linear_map [add_comm_group M] [add_comm_group M₂] (f : M →+ M₂) :
M →ₗ[ℤ] M₂ :=
{ to_fun := f, map_add' := f.map_add, map_smul' := map_zsmul f }
lemma add_monoid_hom.to_int_linear_map_injective [add_comm_group M] [add_comm_group M₂] :
function.injective (@add_monoid_hom.to_int_linear_map M M₂ _ _) :=
by { intros f g h, ext, exact linear_map.congr_fun h x }
@[simp] lemma add_monoid_hom.coe_to_int_linear_map [add_comm_group M] [add_comm_group M₂]
(f : M →+ M₂) :
⇑f.to_int_linear_map = f := rfl
/-- Reinterpret an additive homomorphism as a `ℚ`-linear map. -/
def add_monoid_hom.to_rat_linear_map [add_comm_group M] [module ℚ M]
[add_comm_group M₂] [module ℚ M₂] (f : M →+ M₂) :
M →ₗ[ℚ] M₂ :=
{ map_smul' := map_rat_smul f, ..f }
lemma add_monoid_hom.to_rat_linear_map_injective
[add_comm_group M] [module ℚ M] [add_comm_group M₂] [module ℚ M₂] :
function.injective (@add_monoid_hom.to_rat_linear_map M M₂ _ _ _ _) :=
by { intros f g h, ext, exact linear_map.congr_fun h x }
@[simp] lemma add_monoid_hom.coe_to_rat_linear_map [add_comm_group M] [module ℚ M]
[add_comm_group M₂] [module ℚ M₂] (f : M →+ M₂) :
⇑f.to_rat_linear_map = f := rfl
namespace linear_map
section has_smul
variables [semiring R] [semiring R₂] [semiring R₃]
variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃]
variables [module R M] [module R₂ M₂] [module R₃ M₃]
variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃]
variables [monoid S] [distrib_mul_action S M₂] [smul_comm_class R₂ S M₂]
variables [monoid S₃] [distrib_mul_action S₃ M₃] [smul_comm_class R₃ S₃ M₃]
variables [monoid T] [distrib_mul_action T M₂] [smul_comm_class R₂ T M₂]
instance : has_smul S (M →ₛₗ[σ₁₂] M₂) :=
⟨λ a f, { to_fun := a • f,
map_add' := λ x y, by simp only [pi.smul_apply, f.map_add, smul_add],
map_smul' := λ c x, by simp [pi.smul_apply, smul_comm (σ₁₂ c)] }⟩
@[simp] lemma smul_apply (a : S) (f : M →ₛₗ[σ₁₂] M₂) (x : M) : (a • f) x = a • f x := rfl
lemma coe_smul (a : S) (f : M →ₛₗ[σ₁₂] M₂) : ⇑(a • f) = a • f := rfl
instance [smul_comm_class S T M₂] : smul_comm_class S T (M →ₛₗ[σ₁₂] M₂) :=
⟨λ a b f, ext $ λ x, smul_comm _ _ _⟩
-- example application of this instance: if S -> T -> R are homomorphisms of commutative rings and
-- M and M₂ are R-modules then the S-module and T-module structures on Hom_R(M,M₂) are compatible.
instance [has_smul S T] [is_scalar_tower S T M₂] : is_scalar_tower S T (M →ₛₗ[σ₁₂] M₂) :=
{ smul_assoc := λ _ _ _, ext $ λ _, smul_assoc _ _ _ }
instance [distrib_mul_action Sᵐᵒᵖ M₂] [smul_comm_class R₂ Sᵐᵒᵖ M₂] [is_central_scalar S M₂] :
is_central_scalar S (M →ₛₗ[σ₁₂] M₂) :=
{ op_smul_eq_smul := λ a b, ext $ λ x, op_smul_eq_smul _ _ }
end has_smul
/-! ### Arithmetic on the codomain -/
section arithmetic
variables [semiring R₁] [semiring R₂] [semiring R₃]
variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃]
variables [add_comm_group N₁] [add_comm_group N₂] [add_comm_group N₃]
variables [module R₁ M] [module R₂ M₂] [module R₃ M₃]
variables [module R₁ N₁] [module R₂ N₂] [module R₃ N₃]
variables {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃]
/-- The constant 0 map is linear. -/
instance : has_zero (M →ₛₗ[σ₁₂] M₂) :=
⟨{ to_fun := 0, map_add' := by simp, map_smul' := by simp }⟩
@[simp] lemma zero_apply (x : M) : (0 : M →ₛₗ[σ₁₂] M₂) x = 0 := rfl
@[simp] theorem comp_zero (g : M₂ →ₛₗ[σ₂₃] M₃) : (g.comp (0 : M →ₛₗ[σ₁₂] M₂) : M →ₛₗ[σ₁₃] M₃) = 0 :=
ext $ assume c, by rw [comp_apply, zero_apply, zero_apply, g.map_zero]
@[simp] theorem zero_comp (f : M →ₛₗ[σ₁₂] M₂) : ((0 : M₂ →ₛₗ[σ₂₃] M₃).comp f : M →ₛₗ[σ₁₃] M₃) = 0 :=
rfl
instance : inhabited (M →ₛₗ[σ₁₂] M₂) := ⟨0
@[simp] lemma default_def : (default : (M →ₛₗ[σ₁₂] M₂)) = 0 := rfl
/-- The sum of two linear maps is linear. -/
instance : has_add (M →ₛₗ[σ₁₂] M₂) :=
⟨λ f g, { to_fun := f + g,
map_add' := by simp [add_comm, add_left_comm],
map_smul' := by simp [smul_add] }⟩
@[simp] lemma add_apply (f g : M →ₛₗ[σ₁₂] M₂) (x : M) : (f + g) x = f x + g x := rfl
lemma add_comp (f : M →ₛₗ[σ₁₂] M₂) (g h : M₂ →ₛₗ[σ₂₃] M₃) :
((h + g).comp f : M →ₛₗ[σ₁₃] M₃) = h.comp f + g.comp f := rfl
lemma comp_add (f g : M →ₛₗ[σ₁₂] M₂) (h : M₂ →ₛₗ[σ₂₃] M₃) :
(h.comp (f + g) : M →ₛₗ[σ₁₃] M₃) = h.comp f + h.comp g :=
ext $ λ _, h.map_add _ _
/-- The type of linear maps is an additive monoid. -/
instance : add_comm_monoid (M →ₛₗ[σ₁₂] M₂) :=
fun_like.coe_injective.add_comm_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl)
/-- The negation of a linear map is linear. -/
instance : has_neg (M →ₛₗ[σ₁₂] N₂) :=
⟨λ f, { to_fun := -f, map_add' := by simp [add_comm], map_smul' := by simp }⟩
@[simp] lemma neg_apply (f : M →ₛₗ[σ₁₂] N₂) (x : M) : (- f) x = - f x := rfl
include σ₁₃
@[simp] lemma neg_comp (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] N₃) : (- g).comp f = - g.comp f := rfl
@[simp] lemma comp_neg (f : M →ₛₗ[σ₁₂] N₂) (g : N₂ →ₛₗ[σ₂₃] N₃) : g.comp (- f) = - g.comp f :=
ext $ λ _, g.map_neg _
omit σ₁₃
/-- The negation of a linear map is linear. -/
instance : has_sub (M →ₛₗ[σ₁₂] N₂) :=
⟨λ f g, { to_fun := f - g,
map_add' := λ x y, by simp only [pi.sub_apply, map_add, add_sub_add_comm],
map_smul' := λ r x, by simp [pi.sub_apply, map_smul, smul_sub] }⟩
@[simp] lemma sub_apply (f g : M →ₛₗ[σ₁₂] N₂) (x : M) : (f - g) x = f x - g x := rfl
include σ₁₃
lemma sub_comp (f : M →ₛₗ[σ₁₂] M₂) (g h : M₂ →ₛₗ[σ₂₃] N₃) :
(g - h).comp f = g.comp f - h.comp f := rfl
lemma comp_sub (f g : M →ₛₗ[σ₁₂] N₂) (h : N₂ →ₛₗ[σ₂₃] N₃) :
h.comp (g - f) = h.comp g - h.comp f :=
ext $ λ _, h.map_sub _ _
omit σ₁₃
/-- The type of linear maps is an additive group. -/
instance : add_comm_group (M →ₛₗ[σ₁₂] N₂) :=
fun_like.coe_injective.add_comm_group _
rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl)
end arithmetic
section actions
variables [semiring R] [semiring R₂] [semiring R₃]
variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃]
variables [module R M] [module R₂ M₂] [module R₃ M₃]
variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃]
section has_smul
variables [monoid S] [distrib_mul_action S M₂] [smul_comm_class R₂ S M₂]
variables [monoid S₃] [distrib_mul_action S₃ M₃] [smul_comm_class R₃ S₃ M₃]
variables [monoid T] [distrib_mul_action T M₂] [smul_comm_class R₂ T M₂]
instance : distrib_mul_action S (M →ₛₗ[σ₁₂] M₂) :=
{ one_smul := λ f, ext $ λ _, one_smul _ _,
mul_smul := λ c c' f, ext $ λ _, mul_smul _ _ _,
smul_add := λ c f g, ext $ λ x, smul_add _ _ _,
smul_zero := λ c, ext $ λ x, smul_zero _ }
include σ₁₃
theorem smul_comp (a : S₃) (g : M₂ →ₛₗ[σ₂₃] M₃) (f : M →ₛₗ[σ₁₂] M₂) :
(a • g).comp f = a • (g.comp f) := rfl
omit σ₁₃
-- TODO: generalize this to semilinear maps
theorem comp_smul [module R M₂] [module R M₃] [smul_comm_class R S M₂] [distrib_mul_action S M₃]
[smul_comm_class R S M₃] [compatible_smul M₃ M₂ S R]
(g : M₃ →ₗ[R] M₂) (a : S) (f : M →ₗ[R] M₃) : g.comp (a • f) = a • (g.comp f) :=
ext $ λ x, g.map_smul_of_tower _ _
end has_smul
section module
variables [semiring S] [module S M₂] [smul_comm_class R₂ S M₂]
instance : module S (M →ₛₗ[σ₁₂] M₂) :=
{ add_smul := λ a b f, ext $ λ x, add_smul _ _ _,
zero_smul := λ f, ext $ λ x, zero_smul _ _ }
instance [no_zero_smul_divisors S M₂] : no_zero_smul_divisors S (M →ₛₗ[σ₁₂] M₂) :=
coe_injective.no_zero_smul_divisors _ rfl coe_smul
end module
end actions
/-!
### Monoid structure of endomorphisms
Lemmas about `pow` such as `linear_map.pow_apply` appear in later files.
-/
section endomorphisms
variables [semiring R] [add_comm_monoid M] [add_comm_group N₁] [module R M] [module R N₁]
instance : has_one (module.End R M) := ⟨linear_map.id⟩
instance : has_mul (module.End R M) := ⟨linear_map.comp⟩
lemma one_eq_id : (1 : module.End R M) = id := rfl
lemma mul_eq_comp (f g : module.End R M) : f * g = f.comp g := rfl
@[simp] lemma one_apply (x : M) : (1 : module.End R M) x = x := rfl
@[simp] lemma mul_apply (f g : module.End R M) (x : M) : (f * g) x = f (g x) := rfl
lemma coe_one : ⇑(1 : module.End R M) = _root_.id := rfl
lemma coe_mul (f g : module.End R M) : ⇑(f * g) = f ∘ g := rfl
instance _root_.module.End.monoid : monoid (module.End R M) :=
{ mul := (*),
one := (1 : M →ₗ[R] M),
mul_assoc := λ f g h, linear_map.ext $ λ x, rfl,
mul_one := comp_id,
one_mul := id_comp }
instance _root_.module.End.semiring : semiring (module.End R M) :=
{ mul := (*),
one := (1 : M →ₗ[R] M),
zero := 0,
add := (+),
mul_zero := comp_zero,
zero_mul := zero_comp,
left_distrib := λ f g h, comp_add _ _ _,
right_distrib := λ f g h, add_comp _ _ _,
nat_cast := λ n, n • 1,
nat_cast_zero := add_monoid.nsmul_zero' _,
nat_cast_succ := λ n, (add_monoid.nsmul_succ' n 1).trans (add_comm _ _),
.. add_monoid_with_one.unary,
.. _root_.module.End.monoid,
.. linear_map.add_comm_monoid }
/-- See also `module.End.nat_cast_def`. -/
@[simp] lemma _root_.module.End.nat_cast_apply (n : ℕ) (m : M) :
(↑n : module.End R M) m = n • m := rfl
instance _root_.module.End.ring : ring (module.End R N₁) :=
{ int_cast := λ z, z • 1,
int_cast_of_nat := of_nat_zsmul _,
int_cast_neg_succ_of_nat := zsmul_neg_succ_of_nat _,
..module.End.semiring, ..linear_map.add_comm_group }
/-- See also `module.End.int_cast_def`. -/
@[simp] lemma _root_.module.End.int_cast_apply (z : ℤ) (m : N₁) :
(↑z : module.End R N₁) m = z • m := rfl
section
variables [monoid S] [distrib_mul_action S M] [smul_comm_class R S M]
instance _root_.module.End.is_scalar_tower :
is_scalar_tower S (module.End R M) (module.End R M) := ⟨smul_comp⟩
instance _root_.module.End.smul_comm_class [has_smul S R] [is_scalar_tower S R M] :
smul_comm_class S (module.End R M) (module.End R M) :=
⟨λ s _ _, (comp_smul _ s _).symm⟩
instance _root_.module.End.smul_comm_class' [has_smul S R] [is_scalar_tower S R M] :
smul_comm_class (module.End R M) S (module.End R M) :=
smul_comm_class.symm _ _ _
end
/-! ### Action by a module endomorphism. -/
/-- The tautological action by `module.End R M` (aka `M →ₗ[R] M`) on `M`.
This generalizes `function.End.apply_mul_action`. -/
instance apply_module : module (module.End R M) M :=
{ smul := ($),
smul_zero := linear_map.map_zero,
smul_add := linear_map.map_add,
add_smul := linear_map.add_apply,
zero_smul := (linear_map.zero_apply : ∀ m, (0 : M →ₗ[R] M) m = 0),
one_smul := λ _, rfl,
mul_smul := λ _ _ _, rfl }
@[simp] protected lemma smul_def (f : module.End R M) (a : M) : f • a = f a := rfl
/-- `linear_map.apply_module` is faithful. -/
instance apply_has_faithful_smul : has_faithful_smul (module.End R M) M :=
⟨λ _ _, linear_map.ext⟩
instance apply_smul_comm_class : smul_comm_class R (module.End R M) M :=
{ smul_comm := λ r e m, (e.map_smul r m).symm }
instance apply_smul_comm_class' : smul_comm_class (module.End R M) R M :=
{ smul_comm := linear_map.map_smul }
instance apply_is_scalar_tower {R M : Type*} [comm_semiring R] [add_comm_monoid M] [module R M] :
is_scalar_tower R (module.End R M) M :=
⟨λ t f m, rfl⟩
end endomorphisms
end linear_map
/-! ### Actions as module endomorphisms -/
namespace distrib_mul_action
variables (R M) [semiring R] [add_comm_monoid M] [module R M]
variables [monoid S] [distrib_mul_action S M] [smul_comm_class S R M]
/-- Each element of the monoid defines a linear map.
This is a stronger version of `distrib_mul_action.to_add_monoid_hom`. -/
@[simps]
def to_linear_map (s : S) : M →ₗ[R] M :=
{ to_fun := has_smul.smul s,
map_add' := smul_add s,
map_smul' := λ a b, smul_comm _ _ _ }
/-- Each element of the monoid defines a module endomorphism.
This is a stronger version of `distrib_mul_action.to_add_monoid_End`. -/
@[simps]
def to_module_End : S →* module.End R M :=
{ to_fun := to_linear_map R M,
map_one' := linear_map.ext $ one_smul _,
map_mul' := λ a b, linear_map.ext $ mul_smul _ _ }
end distrib_mul_action
namespace module
variables (R M) [semiring R] [add_comm_monoid M] [module R M]
variables [semiring S] [module S M] [smul_comm_class S R M]
/-- Each element of the semiring defines a module endomorphism.
This is a stronger version of `distrib_mul_action.to_module_End`. -/
@[simps]
def to_module_End : S →+* module.End R M :=
{ to_fun := distrib_mul_action.to_linear_map R M,
map_zero' := linear_map.ext $ zero_smul _,
map_add' := λ f g, linear_map.ext $ add_smul _ _,
..distrib_mul_action.to_module_End R M }
/-- The canonical (semi)ring isomorphism from `Rᵐᵒᵖ` to `module.End R R` induced by the right
multiplication. -/
@[simps]
def module_End_self : Rᵐᵒᵖ ≃+* module.End R R :=
{ to_fun := distrib_mul_action.to_linear_map R R,
inv_fun := λ f, mul_opposite.op (f 1),
left_inv := mul_one,
right_inv := λ f, linear_map.ext_ring $ one_mul _,
..module.to_module_End R R }
/-- The canonical (semi)ring isomorphism from `R` to `module.End Rᵐᵒᵖ R` induced by the left
multiplication. -/
@[simps]
def module_End_self_op : R ≃+* module.End Rᵐᵒᵖ R :=
{ to_fun := distrib_mul_action.to_linear_map _ _,
inv_fun := λ f, f 1,
left_inv := mul_one,
right_inv := λ f, linear_map.ext_ring_op $ mul_one _,
..module.to_module_End _ _ }
lemma End.nat_cast_def (n : ℕ) [add_comm_monoid N₁] [module R N₁] :
(↑n : module.End R N₁) = module.to_module_End R N₁ n := rfl
lemma End.int_cast_def (z : ℤ) [add_comm_group N₁] [module R N₁] :
(↑z : module.End R N₁) = module.to_module_End R N₁ z := rfl
end module