/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro, Anne Baanen, Frédéric Dupuis, Heather Macbeth -/ import algebra.hom.group import algebra.hom.group_action import algebra.module.basic import algebra.module.pi import algebra.ring.comp_typeclasses import algebra.star.basic /-! # (Semi)linear maps In this file we define * `linear_map σ M M₂`, `M →ₛₗ[σ] M₂` : a semilinear map between two `module`s. Here, `σ` is a `ring_hom` from `R` to `R₂` and an `f : M →ₛₗ[σ] M₂` satisfies `f (c • x) = (σ c) • (f x)`. We recover plain linear maps by choosing `σ` to be `ring_hom.id R`. This is denoted by `M →ₗ[R] M₂`. We also add the notation `M →ₗ⋆[R] M₂` for star-linear maps. * `is_linear_map R f` : predicate saying that `f : M → M₂` is a linear map. (Note that this was not generalized to semilinear maps.) We then provide `linear_map` with the following instances: * `linear_map.add_comm_monoid` and `linear_map.add_comm_group`: the elementwise addition structures corresponding to addition in the codomain * `linear_map.distrib_mul_action` and `linear_map.module`: the elementwise scalar action structures corresponding to applying the action in the codomain. * `module.End.semiring` and `module.End.ring`: the (semi)ring of endomorphisms formed by taking the additive structure above with composition as multiplication. ## Implementation notes To ensure that composition works smoothly for semilinear maps, we use the typeclasses `ring_hom_comp_triple`, `ring_hom_inv_pair` and `ring_hom_surjective` from `algebra/ring/comp_typeclasses`. ## Notation * Throughout the file, we denote regular linear maps by `fₗ`, `gₗ`, etc, and semilinear maps by `f`, `g`, etc. ## TODO * Parts of this file have not yet been generalized to semilinear maps (i.e. `compatible_smul`) ## Tags linear map -/ open function open_locale big_operators universes u u' v w x y z variables {R : Type*} {R₁ : Type*} {R₂ : Type*} {R₃ : Type*} variables {k : Type*} {S : Type*} {S₃ : Type*} {T : Type*} variables {M : Type*} {M₁ : Type*} {M₂ : Type*} {M₃ : Type*} variables {N₁ : Type*} {N₂ : Type*} {N₃ : Type*} {ι : Type*} /-- A map `f` between modules over a semiring is linear if it satisfies the two properties `f (x + y) = f x + f y` and `f (c • x) = c • f x`. The predicate `is_linear_map R f` asserts this property. A bundled version is available with `linear_map`, and should be favored over `is_linear_map` most of the time. -/ structure is_linear_map (R : Type u) {M : Type v} {M₂ : Type w} [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] (f : M → M₂) : Prop := (map_add : ∀ x y, f (x + y) = f x + f y) (map_smul : ∀ (c : R) x, f (c • x) = c • f x) section set_option old_structure_cmd true /-- A map `f` between an `R`-module and an `S`-module over a ring homomorphism `σ : R →+* S` is semilinear if it satisfies the two properties `f (x + y) = f x + f y` and `f (c • x) = (σ c) • f x`. Elements of `linear_map σ M M₂` (available under the notation `M →ₛₗ[σ] M₂`) are bundled versions of such maps. For plain linear maps (i.e. for which `σ = ring_hom.id R`), the notation `M →ₗ[R] M₂` is available. An unbundled version of plain linear maps is available with the predicate `is_linear_map`, but it should be avoided most of the time. -/ structure linear_map {R : Type*} {S : Type*} [semiring R] [semiring S] (σ : R →+* S) (M : Type*) (M₂ : Type*) [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module S M₂] extends add_hom M M₂ := (map_smul' : ∀ (r : R) (x : M), to_fun (r • x) = (σ r) • to_fun x) /-- The `add_hom` underlying a `linear_map`. -/ add_decl_doc linear_map.to_add_hom notation M ` →ₛₗ[`:25 σ:25 `] `:0 M₂:0 := linear_map σ M M₂ notation M ` →ₗ[`:25 R:25 `] `:0 M₂:0 := linear_map (ring_hom.id R) M M₂ notation M ` →ₗ⋆[`:25 R:25 `] `:0 M₂:0 := linear_map (star_ring_end R) M M₂ /-- `semilinear_map_class F σ M M₂` asserts `F` is a type of bundled `σ`-semilinear maps `M → M₂`. See also `linear_map_class F R M M₂` for the case where `σ` is the identity map on `R`. A map `f` between an `R`-module and an `S`-module over a ring homomorphism `σ : R →+* S` is semilinear if it satisfies the two properties `f (x + y) = f x + f y` and `f (c • x) = (σ c) • f x`. -/ class semilinear_map_class (F : Type*) {R S : out_param Type*} [semiring R] [semiring S] (σ : out_param $ R →+* S) (M M₂ : out_param Type*) [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module S M₂] extends add_hom_class F M M₂ := (map_smulₛₗ : ∀ (f : F) (r : R) (x : M), f (r • x) = (σ r) • f x) end -- `σ` becomes a metavariable but that's fine because it's an `out_param` attribute [nolint dangerous_instance] semilinear_map_class.to_add_hom_class export semilinear_map_class (map_smulₛₗ) attribute [simp] map_smulₛₗ /-- `linear_map_class F R M M₂` asserts `F` is a type of bundled `R`-linear maps `M → M₂`. This is an abbreviation for `semilinear_map_class F (ring_hom.id R) M M₂`. -/ abbreviation linear_map_class (F : Type*) (R M M₂ : out_param Type*) [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] := semilinear_map_class F (ring_hom.id R) M M₂ namespace semilinear_map_class variables (F : Type*) variables [semiring R] [semiring S] variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [add_comm_monoid N₁] [add_comm_monoid N₂] [add_comm_monoid N₃] variables [module R M] [module R M₂] [module S M₃] variables {σ : R →+* S} @[priority 100, nolint dangerous_instance] -- `σ` is an `out_param` so it's not dangerous instance [semilinear_map_class F σ M M₃] : add_monoid_hom_class F M M₃ := { coe := λ f, (f : M → M₃), map_zero := λ f, show f 0 = 0, by { rw [← zero_smul R (0 : M), map_smulₛₗ], simp }, .. semilinear_map_class.to_add_hom_class F σ M M₃ } @[priority 100, nolint dangerous_instance] -- `R` is an `out_param` so it's not dangerous instance [linear_map_class F R M M₂] : distrib_mul_action_hom_class F R M M₂ := { coe := λ f, (f : M → M₂), map_smul := λ f c x, by rw [map_smulₛₗ, ring_hom.id_apply], .. semilinear_map_class.add_monoid_hom_class F } variables {F} (f : F) [i : semilinear_map_class F σ M M₃] include i lemma map_smul_inv {σ' : S →+* R} [ring_hom_inv_pair σ σ'] (c : S) (x : M) : c • f x = f (σ' c • x) := by simp end semilinear_map_class namespace linear_map section add_comm_monoid variables [semiring R] [semiring S] section variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [add_comm_monoid N₁] [add_comm_monoid N₂] [add_comm_monoid N₃] variables [module R M] [module R M₂] [module S M₃] variables {σ : R →+* S} instance : semilinear_map_class (M →ₛₗ[σ] M₃) σ M M₃ := { coe := linear_map.to_fun, coe_injective' := λ f g h, by cases f; cases g; congr', map_add := linear_map.map_add', map_smulₛₗ := linear_map.map_smul' } /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` directly. -/ instance : has_coe_to_fun (M →ₛₗ[σ] M₃) (λ _, M → M₃) := ⟨λ f, f⟩ /-- The `distrib_mul_action_hom` underlying a `linear_map`. -/ def to_distrib_mul_action_hom (f : M →ₗ[R] M₂) : distrib_mul_action_hom R M M₂ := { map_zero' := show f 0 = 0, from map_zero f, ..f } @[simp] lemma to_fun_eq_coe {f : M →ₛₗ[σ] M₃} : f.to_fun = (f : M → M₃) := rfl @[ext] theorem ext {f g : M →ₛₗ[σ] M₃} (h : ∀ x, f x = g x) : f = g := fun_like.ext f g h /-- Copy of a `linear_map` with a new `to_fun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : M →ₛₗ[σ] M₃) (f' : M → M₃) (h : f' = ⇑f) : M →ₛₗ[σ] M₃ := { to_fun := f', map_add' := h.symm ▸ f.map_add', map_smul' := h.symm ▸ f.map_smul' } /-- See Note [custom simps projection]. -/ protected def simps.apply {R S : Type*} [semiring R] [semiring S] (σ : R →+* S) (M M₃ : Type*) [add_comm_monoid M] [add_comm_monoid M₃] [module R M] [module S M₃] (f : M →ₛₗ[σ] M₃) : M → M₃ := f initialize_simps_projections linear_map (to_fun → apply) @[simp] lemma coe_mk {σ : R →+* S} (f : M → M₃) (h₁ h₂) : ((linear_map.mk f h₁ h₂ : M →ₛₗ[σ] M₃) : M → M₃) = f := rfl /-- Identity map as a `linear_map` -/ def id : M →ₗ[R] M := { to_fun := id, ..distrib_mul_action_hom.id R } lemma id_apply (x : M) : @id R M _ _ _ x = x := rfl @[simp, norm_cast] lemma id_coe : ((linear_map.id : M →ₗ[R] M) : M → M) = _root_.id := rfl end section variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [add_comm_monoid N₁] [add_comm_monoid N₂] [add_comm_monoid N₃] variables [module R M] [module R M₂] [module S M₃] variables (σ : R →+* S) variables (fₗ gₗ : M →ₗ[R] M₂) (f g : M →ₛₗ[σ] M₃) theorem is_linear : is_linear_map R fₗ := ⟨fₗ.map_add', fₗ.map_smul'⟩ variables {fₗ gₗ f g σ} theorem coe_injective : @injective (M →ₛₗ[σ] M₃) (M → M₃) coe_fn := fun_like.coe_injective protected lemma congr_arg {x x' : M} : x = x' → f x = f x' := fun_like.congr_arg f /-- If two linear maps are equal, they are equal at each point. -/ protected lemma congr_fun (h : f = g) (x : M) : f x = g x := fun_like.congr_fun h x theorem ext_iff : f = g ↔ ∀ x, f x = g x := fun_like.ext_iff @[simp] lemma mk_coe (f : M →ₛₗ[σ] M₃) (h₁ h₂) : (linear_map.mk f h₁ h₂ : M →ₛₗ[σ] M₃) = f := ext $ λ _, rfl variables (fₗ gₗ f g) protected lemma map_add (x y : M) : f (x + y) = f x + f y := map_add f x y protected lemma map_zero : f 0 = 0 := map_zero f -- TODO: `simp` isn't picking up `map_smulₛₗ` for `linear_map`s without specifying `map_smulₛₗ f` @[simp] protected lemma map_smulₛₗ (c : R) (x : M) : f (c • x) = (σ c) • f x := map_smulₛₗ f c x protected lemma map_smul (c : R) (x : M) : fₗ (c • x) = c • fₗ x := map_smul fₗ c x protected lemma map_smul_inv {σ' : S →+* R} [ring_hom_inv_pair σ σ'] (c : S) (x : M) : c • f x = f (σ' c • x) := by simp -- TODO: generalize to `zero_hom_class` @[simp] lemma map_eq_zero_iff (h : function.injective f) {x : M} : f x = 0 ↔ x = 0 := ⟨λ w, by { apply h, simp [w], }, λ w, by { subst w, simp, }⟩ section pointwise open_locale pointwise variables (M M₃ σ) {F : Type*} (h : F) @[simp] lemma _root_.image_smul_setₛₗ [semilinear_map_class F σ M M₃] (c : R) (s : set M) : h '' (c • s) = (σ c) • h '' s := begin apply set.subset.antisymm, { rintros x ⟨y, ⟨z, zs, rfl⟩, rfl⟩, exact ⟨h z, set.mem_image_of_mem _ zs, (map_smulₛₗ _ _ _).symm ⟩ }, { rintros x ⟨y, ⟨z, hz, rfl⟩, rfl⟩, exact (set.mem_image _ _ _).2 ⟨c • z, set.smul_mem_smul_set hz, map_smulₛₗ _ _ _⟩ } end lemma _root_.preimage_smul_setₛₗ [semilinear_map_class F σ M M₃] {c : R} (hc : is_unit c) (s : set M₃) : h ⁻¹' (σ c • s) = c • h ⁻¹' s := begin apply set.subset.antisymm, { rintros x ⟨y, ys, hy⟩, refine ⟨(hc.unit.inv : R) • x, _, _⟩, { simp only [←hy, smul_smul, set.mem_preimage, units.inv_eq_coe_inv, map_smulₛₗ h, ← map_mul, is_unit.coe_inv_mul, one_smul, map_one, ys] }, { simp only [smul_smul, is_unit.mul_coe_inv, one_smul, units.inv_eq_coe_inv] } }, { rintros x ⟨y, hy, rfl⟩, refine ⟨h y, hy, by simp only [ring_hom.id_apply, map_smulₛₗ h]⟩ } end variables (R M₂) lemma _root_.image_smul_set [linear_map_class F R M M₂] (c : R) (s : set M) : h '' (c • s) = c • h '' s := image_smul_setₛₗ _ _ _ h c s lemma _root_.preimage_smul_set [linear_map_class F R M M₂] {c : R} (hc : is_unit c) (s : set M₂) : h ⁻¹' (c • s) = c • h ⁻¹' s := preimage_smul_setₛₗ _ _ _ h hc s end pointwise variables (M M₂) /-- A typeclass for `has_smul` structures which can be moved through a `linear_map`. This typeclass is generated automatically from a `is_scalar_tower` instance, but exists so that we can also add an instance for `add_comm_group.int_module`, allowing `z •` to be moved even if `R` does not support negation. -/ class compatible_smul (R S : Type*) [semiring S] [has_smul R M] [module S M] [has_smul R M₂] [module S M₂] := (map_smul : ∀ (fₗ : M →ₗ[S] M₂) (c : R) (x : M), fₗ (c • x) = c • fₗ x) variables {M M₂} @[priority 100] instance is_scalar_tower.compatible_smul {R S : Type*} [semiring S] [has_smul R S] [has_smul R M] [module S M] [is_scalar_tower R S M] [has_smul R M₂] [module S M₂] [is_scalar_tower R S M₂] : compatible_smul M M₂ R S := ⟨λ fₗ c x, by rw [← smul_one_smul S c x, ← smul_one_smul S c (fₗ x), map_smul]⟩ @[simp, priority 900] lemma map_smul_of_tower {R S : Type*} [semiring S] [has_smul R M] [module S M] [has_smul R M₂] [module S M₂] [compatible_smul M M₂ R S] (fₗ : M →ₗ[S] M₂) (c : R) (x : M) : fₗ (c • x) = c • fₗ x := compatible_smul.map_smul fₗ c x /-- convert a linear map to an additive map -/ def to_add_monoid_hom : M →+ M₃ := { to_fun := f, map_zero' := f.map_zero, map_add' := f.map_add } @[simp] lemma to_add_monoid_hom_coe : ⇑f.to_add_monoid_hom = f := rfl section restrict_scalars variables (R) [module S M] [module S M₂] [compatible_smul M M₂ R S] /-- If `M` and `M₂` are both `R`-modules and `S`-modules and `R`-module structures are defined by an action of `R` on `S` (formally, we have two scalar towers), then any `S`-linear map from `M` to `M₂` is `R`-linear. See also `linear_map.map_smul_of_tower`. -/ def restrict_scalars (fₗ : M →ₗ[S] M₂) : M →ₗ[R] M₂ := { to_fun := fₗ, map_add' := fₗ.map_add, map_smul' := fₗ.map_smul_of_tower } @[simp] lemma coe_restrict_scalars (fₗ : M →ₗ[S] M₂) : ⇑(restrict_scalars R fₗ) = fₗ := rfl lemma restrict_scalars_apply (fₗ : M →ₗ[S] M₂) (x) : restrict_scalars R fₗ x = fₗ x := rfl lemma restrict_scalars_injective : function.injective (restrict_scalars R : (M →ₗ[S] M₂) → (M →ₗ[R] M₂)) := λ fₗ gₗ h, ext (linear_map.congr_fun h : _) @[simp] lemma restrict_scalars_inj (fₗ gₗ : M →ₗ[S] M₂) : fₗ.restrict_scalars R = gₗ.restrict_scalars R ↔ fₗ = gₗ := (restrict_scalars_injective R).eq_iff end restrict_scalars variable {R} @[simp] lemma map_sum {ι} {t : finset ι} {g : ι → M} : f (∑ i in t, g i) = (∑ i in t, f (g i)) := f.to_add_monoid_hom.map_sum _ _ theorem to_add_monoid_hom_injective : function.injective (to_add_monoid_hom : (M →ₛₗ[σ] M₃) → (M →+ M₃)) := λ f g h, ext $ add_monoid_hom.congr_fun h /-- If two `σ`-linear maps from `R` are equal on `1`, then they are equal. -/ @[ext] theorem ext_ring {f g : R →ₛₗ[σ] M₃} (h : f 1 = g 1) : f = g := ext $ λ x, by rw [← mul_one x, ← smul_eq_mul, f.map_smulₛₗ, g.map_smulₛₗ, h] theorem ext_ring_iff {σ : R →+* R} {f g : R →ₛₗ[σ] M} : f = g ↔ f 1 = g 1 := ⟨λ h, h ▸ rfl, ext_ring⟩ @[ext] theorem ext_ring_op {σ : Rᵐᵒᵖ →+* S} {f g : R →ₛₗ[σ] M₃} (h : f 1 = g 1) : f = g := ext $ λ x, by rw [← one_mul x, ← op_smul_eq_mul, f.map_smulₛₗ, g.map_smulₛₗ, h] end /-- Interpret a `ring_hom` `f` as an `f`-semilinear map. -/ @[simps] def _root_.ring_hom.to_semilinear_map (f : R →+* S) : R →ₛₗ[f] S := { to_fun := f, map_smul' := f.map_mul, .. f} section variables [semiring R₁] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₃] variables {module_M₁ : module R₁ M₁} {module_M₂ : module R₂ M₂} {module_M₃ : module R₃ M₃} variables {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] variables (f : M₂ →ₛₗ[σ₂₃] M₃) (g : M₁ →ₛₗ[σ₁₂] M₂) include module_M₁ module_M₂ module_M₃ /-- Composition of two linear maps is a linear map -/ def comp : M₁ →ₛₗ[σ₁₃] M₃ := { to_fun := f ∘ g, map_add' := by simp only [map_add, forall_const, eq_self_iff_true, comp_app], map_smul' := λ r x, by rw [comp_app, map_smulₛₗ, map_smulₛₗ, ring_hom_comp_triple.comp_apply] } omit module_M₁ module_M₂ module_M₃ infixr ` ∘ₗ `:80 := @linear_map.comp _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (ring_hom.id _) (ring_hom.id _) (ring_hom.id _) ring_hom_comp_triple.ids include σ₁₃ lemma comp_apply (x : M₁) : f.comp g x = f (g x) := rfl omit σ₁₃ include σ₁₃ @[simp, norm_cast] lemma coe_comp : (f.comp g : M₁ → M₃) = f ∘ g := rfl omit σ₁₃ @[simp] theorem comp_id : f.comp id = f := linear_map.ext $ λ x, rfl @[simp] theorem id_comp : id.comp f = f := linear_map.ext $ λ x, rfl variables {f g} {f' : M₂ →ₛₗ[σ₂₃] M₃} {g' : M₁ →ₛₗ[σ₁₂] M₂} include σ₁₃ theorem cancel_right (hg : function.surjective g) : f.comp g = f'.comp g ↔ f = f' := ⟨λ h, ext $ hg.forall.2 (ext_iff.1 h), λ h, h ▸ rfl⟩ theorem cancel_left (hf : function.injective f) : f.comp g = f.comp g' ↔ g = g' := ⟨λ h, ext $ λ x, hf $ by rw [← comp_apply, h, comp_apply], λ h, h ▸ rfl⟩ omit σ₁₃ end variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₃] /-- If a function `g` is a left and right inverse of a linear map `f`, then `g` is linear itself. -/ def inverse [module R M] [module S M₂] {σ : R →+* S} {σ' : S →+* R} [ring_hom_inv_pair σ σ'] (f : M →ₛₗ[σ] M₂) (g : M₂ → M) (h₁ : left_inverse g f) (h₂ : right_inverse g f) : M₂ →ₛₗ[σ'] M := by dsimp [left_inverse, function.right_inverse] at h₁ h₂; exact { to_fun := g, map_add' := λ x y, by { rw [← h₁ (g (x + y)), ← h₁ (g x + g y)]; simp [h₂] }, map_smul' := λ a b, by { rw [← h₁ (g (a • b)), ← h₁ ((σ' a) • g b)], simp [h₂] } } end add_comm_monoid section add_comm_group variables [semiring R] [semiring S] [add_comm_group M] [add_comm_group M₂] variables {module_M : module R M} {module_M₂ : module S M₂} {σ : R →+* S} variables (f : M →ₛₗ[σ] M₂) protected lemma map_neg (x : M) : f (- x) = - f x := map_neg f x protected lemma map_sub (x y : M) : f (x - y) = f x - f y := map_sub f x y instance compatible_smul.int_module {S : Type*} [semiring S] [module S M] [module S M₂] : compatible_smul M M₂ ℤ S := ⟨λ fₗ c x, begin induction c using int.induction_on, case hz : { simp }, case hp : n ih { simp [add_smul, ih] }, case hn : n ih { simp [sub_smul, ih] } end⟩ instance compatible_smul.units {R S : Type*} [monoid R] [mul_action R M] [mul_action R M₂] [semiring S] [module S M] [module S M₂] [compatible_smul M M₂ R S] : compatible_smul M M₂ Rˣ S := ⟨λ fₗ c x, (compatible_smul.map_smul fₗ (c : R) x : _)⟩ end add_comm_group end linear_map namespace module /-- `g : R →+* S` is `R`-linear when the module structure on `S` is `module.comp_hom S g` . -/ @[simps] def comp_hom.to_linear_map {R S : Type*} [semiring R] [semiring S] (g : R →+* S) : (by haveI := comp_hom S g; exact (R →ₗ[R] S)) := by exact { to_fun := (g : R → S), map_add' := g.map_add, map_smul' := g.map_mul } end module namespace distrib_mul_action_hom variables [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] /-- A `distrib_mul_action_hom` between two modules is a linear map. -/ def to_linear_map (fₗ : M →+[R] M₂) : M →ₗ[R] M₂ := { ..fₗ } instance : has_coe (M →+[R] M₂) (M →ₗ[R] M₂) := ⟨to_linear_map⟩ @[simp] lemma to_linear_map_eq_coe (f : M →+[R] M₂) : f.to_linear_map = ↑f := rfl @[simp, norm_cast] lemma coe_to_linear_map (f : M →+[R] M₂) : ((f : M →ₗ[R] M₂) : M → M₂) = f := rfl lemma to_linear_map_injective {f g : M →+[R] M₂} (h : (f : M →ₗ[R] M₂) = (g : M →ₗ[R] M₂)) : f = g := by { ext m, exact linear_map.congr_fun h m, } end distrib_mul_action_hom namespace is_linear_map section add_comm_monoid variables [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] variables [module R M] [module R M₂] include R /-- Convert an `is_linear_map` predicate to a `linear_map` -/ def mk' (f : M → M₂) (H : is_linear_map R f) : M →ₗ[R] M₂ := { to_fun := f, map_add' := H.1, map_smul' := H.2 } @[simp] theorem mk'_apply {f : M → M₂} (H : is_linear_map R f) (x : M) : mk' f H x = f x := rfl lemma is_linear_map_smul {R M : Type*} [comm_semiring R] [add_comm_monoid M] [module R M] (c : R) : is_linear_map R (λ (z : M), c • z) := begin refine is_linear_map.mk (smul_add c) _, intros _ _, simp only [smul_smul, mul_comm] end lemma is_linear_map_smul' {R M : Type*} [semiring R] [add_comm_monoid M] [module R M] (a : M) : is_linear_map R (λ (c : R), c • a) := is_linear_map.mk (λ x y, add_smul x y a) (λ x y, mul_smul x y a) variables {f : M → M₂} (lin : is_linear_map R f) include M M₂ lin lemma map_zero : f (0 : M) = (0 : M₂) := (lin.mk' f).map_zero end add_comm_monoid section add_comm_group variables [semiring R] [add_comm_group M] [add_comm_group M₂] variables [module R M] [module R M₂] include R lemma is_linear_map_neg : is_linear_map R (λ (z : M), -z) := is_linear_map.mk neg_add (λ x y, (smul_neg x y).symm) variables {f : M → M₂} (lin : is_linear_map R f) include M M₂ lin lemma map_neg (x : M) : f (- x) = - f x := (lin.mk' f).map_neg x lemma map_sub (x y) : f (x - y) = f x - f y := (lin.mk' f).map_sub x y end add_comm_group end is_linear_map /-- Linear endomorphisms of a module, with associated ring structure `module.End.semiring` and algebra structure `module.End.algebra`. -/ abbreviation module.End (R : Type u) (M : Type v) [semiring R] [add_comm_monoid M] [module R M] := M →ₗ[R] M /-- Reinterpret an additive homomorphism as a `ℕ`-linear map. -/ def add_monoid_hom.to_nat_linear_map [add_comm_monoid M] [add_comm_monoid M₂] (f : M →+ M₂) : M →ₗ[ℕ] M₂ := { to_fun := f, map_add' := f.map_add, map_smul' := map_nsmul f } lemma add_monoid_hom.to_nat_linear_map_injective [add_comm_monoid M] [add_comm_monoid M₂] : function.injective (@add_monoid_hom.to_nat_linear_map M M₂ _ _) := by { intros f g h, ext, exact linear_map.congr_fun h x } /-- Reinterpret an additive homomorphism as a `ℤ`-linear map. -/ def add_monoid_hom.to_int_linear_map [add_comm_group M] [add_comm_group M₂] (f : M →+ M₂) : M →ₗ[ℤ] M₂ := { to_fun := f, map_add' := f.map_add, map_smul' := map_zsmul f } lemma add_monoid_hom.to_int_linear_map_injective [add_comm_group M] [add_comm_group M₂] : function.injective (@add_monoid_hom.to_int_linear_map M M₂ _ _) := by { intros f g h, ext, exact linear_map.congr_fun h x } @[simp] lemma add_monoid_hom.coe_to_int_linear_map [add_comm_group M] [add_comm_group M₂] (f : M →+ M₂) : ⇑f.to_int_linear_map = f := rfl /-- Reinterpret an additive homomorphism as a `ℚ`-linear map. -/ def add_monoid_hom.to_rat_linear_map [add_comm_group M] [module ℚ M] [add_comm_group M₂] [module ℚ M₂] (f : M →+ M₂) : M →ₗ[ℚ] M₂ := { map_smul' := map_rat_smul f, ..f } lemma add_monoid_hom.to_rat_linear_map_injective [add_comm_group M] [module ℚ M] [add_comm_group M₂] [module ℚ M₂] : function.injective (@add_monoid_hom.to_rat_linear_map M M₂ _ _ _ _) := by { intros f g h, ext, exact linear_map.congr_fun h x } @[simp] lemma add_monoid_hom.coe_to_rat_linear_map [add_comm_group M] [module ℚ M] [add_comm_group M₂] [module ℚ M₂] (f : M →+ M₂) : ⇑f.to_rat_linear_map = f := rfl namespace linear_map section has_smul variables [semiring R] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [module R M] [module R₂ M₂] [module R₃ M₃] variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] variables [monoid S] [distrib_mul_action S M₂] [smul_comm_class R₂ S M₂] variables [monoid S₃] [distrib_mul_action S₃ M₃] [smul_comm_class R₃ S₃ M₃] variables [monoid T] [distrib_mul_action T M₂] [smul_comm_class R₂ T M₂] instance : has_smul S (M →ₛₗ[σ₁₂] M₂) := ⟨λ a f, { to_fun := a • f, map_add' := λ x y, by simp only [pi.smul_apply, f.map_add, smul_add], map_smul' := λ c x, by simp [pi.smul_apply, smul_comm (σ₁₂ c)] }⟩ @[simp] lemma smul_apply (a : S) (f : M →ₛₗ[σ₁₂] M₂) (x : M) : (a • f) x = a • f x := rfl lemma coe_smul (a : S) (f : M →ₛₗ[σ₁₂] M₂) : ⇑(a • f) = a • f := rfl instance [smul_comm_class S T M₂] : smul_comm_class S T (M →ₛₗ[σ₁₂] M₂) := ⟨λ a b f, ext $ λ x, smul_comm _ _ _⟩ -- example application of this instance: if S -> T -> R are homomorphisms of commutative rings and -- M and M₂ are R-modules then the S-module and T-module structures on Hom_R(M,M₂) are compatible. instance [has_smul S T] [is_scalar_tower S T M₂] : is_scalar_tower S T (M →ₛₗ[σ₁₂] M₂) := { smul_assoc := λ _ _ _, ext $ λ _, smul_assoc _ _ _ } instance [distrib_mul_action Sᵐᵒᵖ M₂] [smul_comm_class R₂ Sᵐᵒᵖ M₂] [is_central_scalar S M₂] : is_central_scalar S (M →ₛₗ[σ₁₂] M₂) := { op_smul_eq_smul := λ a b, ext $ λ x, op_smul_eq_smul _ _ } end has_smul /-! ### Arithmetic on the codomain -/ section arithmetic variables [semiring R₁] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [add_comm_group N₁] [add_comm_group N₂] [add_comm_group N₃] variables [module R₁ M] [module R₂ M₂] [module R₃ M₃] variables [module R₁ N₁] [module R₂ N₂] [module R₃ N₃] variables {σ₁₂ : R₁ →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R₁ →+* R₃} [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] /-- The constant 0 map is linear. -/ instance : has_zero (M →ₛₗ[σ₁₂] M₂) := ⟨{ to_fun := 0, map_add' := by simp, map_smul' := by simp }⟩ @[simp] lemma zero_apply (x : M) : (0 : M →ₛₗ[σ₁₂] M₂) x = 0 := rfl @[simp] theorem comp_zero (g : M₂ →ₛₗ[σ₂₃] M₃) : (g.comp (0 : M →ₛₗ[σ₁₂] M₂) : M →ₛₗ[σ₁₃] M₃) = 0 := ext $ assume c, by rw [comp_apply, zero_apply, zero_apply, g.map_zero] @[simp] theorem zero_comp (f : M →ₛₗ[σ₁₂] M₂) : ((0 : M₂ →ₛₗ[σ₂₃] M₃).comp f : M →ₛₗ[σ₁₃] M₃) = 0 := rfl instance : inhabited (M →ₛₗ[σ₁₂] M₂) := ⟨0⟩ @[simp] lemma default_def : (default : (M →ₛₗ[σ₁₂] M₂)) = 0 := rfl /-- The sum of two linear maps is linear. -/ instance : has_add (M →ₛₗ[σ₁₂] M₂) := ⟨λ f g, { to_fun := f + g, map_add' := by simp [add_comm, add_left_comm], map_smul' := by simp [smul_add] }⟩ @[simp] lemma add_apply (f g : M →ₛₗ[σ₁₂] M₂) (x : M) : (f + g) x = f x + g x := rfl lemma add_comp (f : M →ₛₗ[σ₁₂] M₂) (g h : M₂ →ₛₗ[σ₂₃] M₃) : ((h + g).comp f : M →ₛₗ[σ₁₃] M₃) = h.comp f + g.comp f := rfl lemma comp_add (f g : M →ₛₗ[σ₁₂] M₂) (h : M₂ →ₛₗ[σ₂₃] M₃) : (h.comp (f + g) : M →ₛₗ[σ₁₃] M₃) = h.comp f + h.comp g := ext $ λ _, h.map_add _ _ /-- The type of linear maps is an additive monoid. -/ instance : add_comm_monoid (M →ₛₗ[σ₁₂] M₂) := fun_like.coe_injective.add_comm_monoid _ rfl (λ _ _, rfl) (λ _ _, rfl) /-- The negation of a linear map is linear. -/ instance : has_neg (M →ₛₗ[σ₁₂] N₂) := ⟨λ f, { to_fun := -f, map_add' := by simp [add_comm], map_smul' := by simp }⟩ @[simp] lemma neg_apply (f : M →ₛₗ[σ₁₂] N₂) (x : M) : (- f) x = - f x := rfl include σ₁₃ @[simp] lemma neg_comp (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] N₃) : (- g).comp f = - g.comp f := rfl @[simp] lemma comp_neg (f : M →ₛₗ[σ₁₂] N₂) (g : N₂ →ₛₗ[σ₂₃] N₃) : g.comp (- f) = - g.comp f := ext $ λ _, g.map_neg _ omit σ₁₃ /-- The negation of a linear map is linear. -/ instance : has_sub (M →ₛₗ[σ₁₂] N₂) := ⟨λ f g, { to_fun := f - g, map_add' := λ x y, by simp only [pi.sub_apply, map_add, add_sub_add_comm], map_smul' := λ r x, by simp [pi.sub_apply, map_smul, smul_sub] }⟩ @[simp] lemma sub_apply (f g : M →ₛₗ[σ₁₂] N₂) (x : M) : (f - g) x = f x - g x := rfl include σ₁₃ lemma sub_comp (f : M →ₛₗ[σ₁₂] M₂) (g h : M₂ →ₛₗ[σ₂₃] N₃) : (g - h).comp f = g.comp f - h.comp f := rfl lemma comp_sub (f g : M →ₛₗ[σ₁₂] N₂) (h : N₂ →ₛₗ[σ₂₃] N₃) : h.comp (g - f) = h.comp g - h.comp f := ext $ λ _, h.map_sub _ _ omit σ₁₃ /-- The type of linear maps is an additive group. -/ instance : add_comm_group (M →ₛₗ[σ₁₂] N₂) := fun_like.coe_injective.add_comm_group _ rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) (λ _ _, rfl) (λ _ _, rfl) end arithmetic section actions variables [semiring R] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [module R M] [module R₂ M₂] [module R₃ M₃] variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] section has_smul variables [monoid S] [distrib_mul_action S M₂] [smul_comm_class R₂ S M₂] variables [monoid S₃] [distrib_mul_action S₃ M₃] [smul_comm_class R₃ S₃ M₃] variables [monoid T] [distrib_mul_action T M₂] [smul_comm_class R₂ T M₂] instance : distrib_mul_action S (M →ₛₗ[σ₁₂] M₂) := { one_smul := λ f, ext $ λ _, one_smul _ _, mul_smul := λ c c' f, ext $ λ _, mul_smul _ _ _, smul_add := λ c f g, ext $ λ x, smul_add _ _ _, smul_zero := λ c, ext $ λ x, smul_zero _ } include σ₁₃ theorem smul_comp (a : S₃) (g : M₂ →ₛₗ[σ₂₃] M₃) (f : M →ₛₗ[σ₁₂] M₂) : (a • g).comp f = a • (g.comp f) := rfl omit σ₁₃ -- TODO: generalize this to semilinear maps theorem comp_smul [module R M₂] [module R M₃] [smul_comm_class R S M₂] [distrib_mul_action S M₃] [smul_comm_class R S M₃] [compatible_smul M₃ M₂ S R] (g : M₃ →ₗ[R] M₂) (a : S) (f : M →ₗ[R] M₃) : g.comp (a • f) = a • (g.comp f) := ext $ λ x, g.map_smul_of_tower _ _ end has_smul section module variables [semiring S] [module S M₂] [smul_comm_class R₂ S M₂] instance : module S (M →ₛₗ[σ₁₂] M₂) := { add_smul := λ a b f, ext $ λ x, add_smul _ _ _, zero_smul := λ f, ext $ λ x, zero_smul _ _ } instance [no_zero_smul_divisors S M₂] : no_zero_smul_divisors S (M →ₛₗ[σ₁₂] M₂) := coe_injective.no_zero_smul_divisors _ rfl coe_smul end module end actions /-! ### Monoid structure of endomorphisms Lemmas about `pow` such as `linear_map.pow_apply` appear in later files. -/ section endomorphisms variables [semiring R] [add_comm_monoid M] [add_comm_group N₁] [module R M] [module R N₁] instance : has_one (module.End R M) := ⟨linear_map.id⟩ instance : has_mul (module.End R M) := ⟨linear_map.comp⟩ lemma one_eq_id : (1 : module.End R M) = id := rfl lemma mul_eq_comp (f g : module.End R M) : f * g = f.comp g := rfl @[simp] lemma one_apply (x : M) : (1 : module.End R M) x = x := rfl @[simp] lemma mul_apply (f g : module.End R M) (x : M) : (f * g) x = f (g x) := rfl lemma coe_one : ⇑(1 : module.End R M) = _root_.id := rfl lemma coe_mul (f g : module.End R M) : ⇑(f * g) = f ∘ g := rfl instance _root_.module.End.monoid : monoid (module.End R M) := { mul := (*), one := (1 : M →ₗ[R] M), mul_assoc := λ f g h, linear_map.ext $ λ x, rfl, mul_one := comp_id, one_mul := id_comp } instance _root_.module.End.semiring : semiring (module.End R M) := { mul := (*), one := (1 : M →ₗ[R] M), zero := 0, add := (+), mul_zero := comp_zero, zero_mul := zero_comp, left_distrib := λ f g h, comp_add _ _ _, right_distrib := λ f g h, add_comp _ _ _, nat_cast := λ n, n • 1, nat_cast_zero := add_monoid.nsmul_zero' _, nat_cast_succ := λ n, (add_monoid.nsmul_succ' n 1).trans (add_comm _ _), .. add_monoid_with_one.unary, .. _root_.module.End.monoid, .. linear_map.add_comm_monoid } /-- See also `module.End.nat_cast_def`. -/ @[simp] lemma _root_.module.End.nat_cast_apply (n : ℕ) (m : M) : (↑n : module.End R M) m = n • m := rfl instance _root_.module.End.ring : ring (module.End R N₁) := { int_cast := λ z, z • 1, int_cast_of_nat := of_nat_zsmul _, int_cast_neg_succ_of_nat := zsmul_neg_succ_of_nat _, ..module.End.semiring, ..linear_map.add_comm_group } /-- See also `module.End.int_cast_def`. -/ @[simp] lemma _root_.module.End.int_cast_apply (z : ℤ) (m : N₁) : (↑z : module.End R N₁) m = z • m := rfl section variables [monoid S] [distrib_mul_action S M] [smul_comm_class R S M] instance _root_.module.End.is_scalar_tower : is_scalar_tower S (module.End R M) (module.End R M) := ⟨smul_comp⟩ instance _root_.module.End.smul_comm_class [has_smul S R] [is_scalar_tower S R M] : smul_comm_class S (module.End R M) (module.End R M) := ⟨λ s _ _, (comp_smul _ s _).symm⟩ instance _root_.module.End.smul_comm_class' [has_smul S R] [is_scalar_tower S R M] : smul_comm_class (module.End R M) S (module.End R M) := smul_comm_class.symm _ _ _ end /-! ### Action by a module endomorphism. -/ /-- The tautological action by `module.End R M` (aka `M →ₗ[R] M`) on `M`. This generalizes `function.End.apply_mul_action`. -/ instance apply_module : module (module.End R M) M := { smul := ($), smul_zero := linear_map.map_zero, smul_add := linear_map.map_add, add_smul := linear_map.add_apply, zero_smul := (linear_map.zero_apply : ∀ m, (0 : M →ₗ[R] M) m = 0), one_smul := λ _, rfl, mul_smul := λ _ _ _, rfl } @[simp] protected lemma smul_def (f : module.End R M) (a : M) : f • a = f a := rfl /-- `linear_map.apply_module` is faithful. -/ instance apply_has_faithful_smul : has_faithful_smul (module.End R M) M := ⟨λ _ _, linear_map.ext⟩ instance apply_smul_comm_class : smul_comm_class R (module.End R M) M := { smul_comm := λ r e m, (e.map_smul r m).symm } instance apply_smul_comm_class' : smul_comm_class (module.End R M) R M := { smul_comm := linear_map.map_smul } instance apply_is_scalar_tower {R M : Type*} [comm_semiring R] [add_comm_monoid M] [module R M] : is_scalar_tower R (module.End R M) M := ⟨λ t f m, rfl⟩ end endomorphisms end linear_map /-! ### Actions as module endomorphisms -/ namespace distrib_mul_action variables (R M) [semiring R] [add_comm_monoid M] [module R M] variables [monoid S] [distrib_mul_action S M] [smul_comm_class S R M] /-- Each element of the monoid defines a linear map. This is a stronger version of `distrib_mul_action.to_add_monoid_hom`. -/ @[simps] def to_linear_map (s : S) : M →ₗ[R] M := { to_fun := has_smul.smul s, map_add' := smul_add s, map_smul' := λ a b, smul_comm _ _ _ } /-- Each element of the monoid defines a module endomorphism. This is a stronger version of `distrib_mul_action.to_add_monoid_End`. -/ @[simps] def to_module_End : S →* module.End R M := { to_fun := to_linear_map R M, map_one' := linear_map.ext $ one_smul _, map_mul' := λ a b, linear_map.ext $ mul_smul _ _ } end distrib_mul_action namespace module variables (R M) [semiring R] [add_comm_monoid M] [module R M] variables [semiring S] [module S M] [smul_comm_class S R M] /-- Each element of the semiring defines a module endomorphism. This is a stronger version of `distrib_mul_action.to_module_End`. -/ @[simps] def to_module_End : S →+* module.End R M := { to_fun := distrib_mul_action.to_linear_map R M, map_zero' := linear_map.ext $ zero_smul _, map_add' := λ f g, linear_map.ext $ add_smul _ _, ..distrib_mul_action.to_module_End R M } /-- The canonical (semi)ring isomorphism from `Rᵐᵒᵖ` to `module.End R R` induced by the right multiplication. -/ @[simps] def module_End_self : Rᵐᵒᵖ ≃+* module.End R R := { to_fun := distrib_mul_action.to_linear_map R R, inv_fun := λ f, mul_opposite.op (f 1), left_inv := mul_one, right_inv := λ f, linear_map.ext_ring $ one_mul _, ..module.to_module_End R R } /-- The canonical (semi)ring isomorphism from `R` to `module.End Rᵐᵒᵖ R` induced by the left multiplication. -/ @[simps] def module_End_self_op : R ≃+* module.End Rᵐᵒᵖ R := { to_fun := distrib_mul_action.to_linear_map _ _, inv_fun := λ f, f 1, left_inv := mul_one, right_inv := λ f, linear_map.ext_ring_op $ mul_one _, ..module.to_module_End _ _ } lemma End.nat_cast_def (n : ℕ) [add_comm_monoid N₁] [module R N₁] : (↑n : module.End R N₁) = module.to_module_End R N₁ n := rfl lemma End.int_cast_def (z : ℤ) [add_comm_group N₁] [module R N₁] : (↑z : module.End R N₁) = module.to_module_End R N₁ z := rfl end module