Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2015 Nathaniel Thomas. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro | |
-/ | |
import algebra.big_operators.basic | |
import algebra.smul_with_zero | |
import data.rat.cast | |
import group_theory.group_action.big_operators | |
import group_theory.group_action.group | |
/-! | |
# Modules over a ring | |
In this file we define | |
* `module R M` : an additive commutative monoid `M` is a `module` over a | |
`semiring R` if for `r : R` and `x : M` their "scalar multiplication `r • x : M` is defined, and | |
the operation `•` satisfies some natural associativity and distributivity axioms similar to those | |
on a ring. | |
## Implementation notes | |
In typical mathematical usage, our definition of `module` corresponds to "semimodule", and the | |
word "module" is reserved for `module R M` where `R` is a `ring` and `M` an `add_comm_group`. | |
If `R` is a `field` and `M` an `add_comm_group`, `M` would be called an `R`-vector space. | |
Since those assumptions can be made by changing the typeclasses applied to `R` and `M`, | |
without changing the axioms in `module`, mathlib calls everything a `module`. | |
In older versions of mathlib, we had separate `semimodule` and `vector_space` abbreviations. | |
This caused inference issues in some cases, while not providing any real advantages, so we decided | |
to use a canonical `module` typeclass throughout. | |
## Tags | |
semimodule, module, vector space | |
-/ | |
open function | |
open_locale big_operators | |
universes u v | |
variables {α R k S M M₂ M₃ ι : Type*} | |
/-- A module is a generalization of vector spaces to a scalar semiring. | |
It consists of a scalar semiring `R` and an additive monoid of "vectors" `M`, | |
connected by a "scalar multiplication" operation `r • x : M` | |
(where `r : R` and `x : M`) with some natural associativity and | |
distributivity axioms similar to those on a ring. -/ | |
@[ext, protect_proj] class module (R : Type u) (M : Type v) [semiring R] | |
[add_comm_monoid M] extends distrib_mul_action R M := | |
(add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x) | |
(zero_smul : ∀x : M, (0 : R) • x = 0) | |
section add_comm_monoid | |
variables [semiring R] [add_comm_monoid M] [module R M] (r s : R) (x y : M) | |
/-- A module over a semiring automatically inherits a `mul_action_with_zero` structure. -/ | |
@[priority 100] -- see Note [lower instance priority] | |
instance module.to_mul_action_with_zero : | |
mul_action_with_zero R M := | |
{ smul_zero := smul_zero, | |
zero_smul := module.zero_smul, | |
..(infer_instance : mul_action R M) } | |
instance add_comm_monoid.nat_module : module ℕ M := | |
{ one_smul := one_nsmul, | |
mul_smul := λ m n a, mul_nsmul a m n, | |
smul_add := λ n a b, nsmul_add a b n, | |
smul_zero := nsmul_zero, | |
zero_smul := zero_nsmul, | |
add_smul := λ r s x, add_nsmul x r s } | |
lemma add_monoid.End.nat_cast_def (n : ℕ) : | |
(↑n : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℕ M n := rfl | |
theorem add_smul : (r + s) • x = r • x + s • x := module.add_smul r s x | |
lemma convex.combo_self {a b : R} (h : a + b = 1) (x : M) : a • x + b • x = x := | |
by rw [←add_smul, h, one_smul] | |
variables (R) | |
theorem two_smul : (2 : R) • x = x + x := by rw [bit0, add_smul, one_smul] | |
theorem two_smul' : (2 : R) • x = bit0 x := two_smul R x | |
@[simp] lemma inv_of_two_smul_add_inv_of_two_smul [invertible (2 : R)] (x : M) : | |
(⅟2 : R) • x + (⅟2 : R) • x = x := | |
convex.combo_self inv_of_two_add_inv_of_two _ | |
/-- Pullback a `module` structure along an injective additive monoid homomorphism. | |
See note [reducible non-instances]. -/ | |
@[reducible] | |
protected def function.injective.module [add_comm_monoid M₂] [has_smul R M₂] (f : M₂ →+ M) | |
(hf : injective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) : | |
module R M₂ := | |
{ smul := (•), | |
add_smul := λ c₁ c₂ x, hf $ by simp only [smul, f.map_add, add_smul], | |
zero_smul := λ x, hf $ by simp only [smul, zero_smul, f.map_zero], | |
.. hf.distrib_mul_action f smul } | |
/-- Pushforward a `module` structure along a surjective additive monoid homomorphism. -/ | |
protected def function.surjective.module [add_comm_monoid M₂] [has_smul R M₂] (f : M →+ M₂) | |
(hf : surjective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) : | |
module R M₂ := | |
{ smul := (•), | |
add_smul := λ c₁ c₂ x, by { rcases hf x with ⟨x, rfl⟩, | |
simp only [add_smul, ← smul, ← f.map_add] }, | |
zero_smul := λ x, by { rcases hf x with ⟨x, rfl⟩, simp only [← f.map_zero, ← smul, zero_smul] }, | |
.. hf.distrib_mul_action f smul } | |
/-- Push forward the action of `R` on `M` along a compatible surjective map `f : R →+* S`. | |
See also `function.surjective.mul_action_left` and `function.surjective.distrib_mul_action_left`. | |
-/ | |
@[reducible] | |
def function.surjective.module_left {R S M : Type*} [semiring R] [add_comm_monoid M] | |
[module R M] [semiring S] [has_smul S M] | |
(f : R →+* S) (hf : function.surjective f) (hsmul : ∀ c (x : M), f c • x = c • x) : | |
module S M := | |
{ smul := (•), | |
zero_smul := λ x, by rw [← f.map_zero, hsmul, zero_smul], | |
add_smul := hf.forall₂.mpr (λ a b x, by simp only [← f.map_add, hsmul, add_smul]), | |
.. hf.distrib_mul_action_left f.to_monoid_hom hsmul } | |
variables {R} (M) | |
/-- Compose a `module` with a `ring_hom`, with action `f s • m`. | |
See note [reducible non-instances]. -/ | |
@[reducible] def module.comp_hom [semiring S] (f : S →+* R) : | |
module S M := | |
{ smul := has_smul.comp.smul f, | |
add_smul := λ r s x, by simp [add_smul], | |
.. mul_action_with_zero.comp_hom M f.to_monoid_with_zero_hom, | |
.. distrib_mul_action.comp_hom M (f : S →* R) } | |
variables (R) (M) | |
/-- `(•)` as an `add_monoid_hom`. | |
This is a stronger version of `distrib_mul_action.to_add_monoid_End` -/ | |
@[simps apply_apply] | |
def module.to_add_monoid_End : R →+* add_monoid.End M := | |
{ map_zero' := add_monoid_hom.ext $ λ r, by simp, | |
map_add' := λ x y, add_monoid_hom.ext $ λ r, by simp [add_smul], | |
..distrib_mul_action.to_add_monoid_End R M } | |
/-- A convenience alias for `module.to_add_monoid_End` as an `add_monoid_hom`, usually to allow the | |
use of `add_monoid_hom.flip`. -/ | |
def smul_add_hom : R →+ M →+ M := | |
(module.to_add_monoid_End R M).to_add_monoid_hom | |
variables {R M} | |
@[simp] lemma smul_add_hom_apply (r : R) (x : M) : | |
smul_add_hom R M r x = r • x := rfl | |
lemma module.eq_zero_of_zero_eq_one (zero_eq_one : (0 : R) = 1) : x = 0 := | |
by rw [←one_smul R x, ←zero_eq_one, zero_smul] | |
lemma list.sum_smul {l : list R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum := | |
((smul_add_hom R M).flip x).map_list_sum l | |
lemma multiset.sum_smul {l : multiset R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum := | |
((smul_add_hom R M).flip x).map_multiset_sum l | |
lemma finset.sum_smul {f : ι → R} {s : finset ι} {x : M} : | |
(∑ i in s, f i) • x = (∑ i in s, (f i) • x) := | |
((smul_add_hom R M).flip x).map_sum f s | |
end add_comm_monoid | |
variables (R) | |
/-- An `add_comm_monoid` that is a `module` over a `ring` carries a natural `add_comm_group` | |
structure. | |
See note [reducible non-instances]. -/ | |
@[reducible] | |
def module.add_comm_monoid_to_add_comm_group [ring R] [add_comm_monoid M] [module R M] : | |
add_comm_group M := | |
{ neg := λ a, (-1 : R) • a, | |
add_left_neg := λ a, show (-1 : R) • a + a = 0, by | |
{ nth_rewrite 1 ← one_smul _ a, | |
rw [← add_smul, add_left_neg, zero_smul] }, | |
..(infer_instance : add_comm_monoid M), } | |
variables {R} | |
section add_comm_group | |
variables (R M) [semiring R] [add_comm_group M] | |
instance add_comm_group.int_module : module ℤ M := | |
{ one_smul := one_zsmul, | |
mul_smul := λ m n a, mul_zsmul a m n, | |
smul_add := λ n a b, zsmul_add a b n, | |
smul_zero := zsmul_zero, | |
zero_smul := zero_zsmul, | |
add_smul := λ r s x, add_zsmul x r s } | |
lemma add_monoid.End.int_cast_def (z : ℤ) : | |
(↑z : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℤ M z := rfl | |
/-- A structure containing most informations as in a module, except the fields `zero_smul` | |
and `smul_zero`. As these fields can be deduced from the other ones when `M` is an `add_comm_group`, | |
this provides a way to construct a module structure by checking less properties, in | |
`module.of_core`. -/ | |
@[nolint has_nonempty_instance] | |
structure module.core extends has_smul R M := | |
(smul_add : ∀(r : R) (x y : M), r • (x + y) = r • x + r • y) | |
(add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x) | |
(mul_smul : ∀(r s : R) (x : M), (r * s) • x = r • s • x) | |
(one_smul : ∀x : M, (1 : R) • x = x) | |
variables {R M} | |
/-- Define `module` without proving `zero_smul` and `smul_zero` by using an auxiliary | |
structure `module.core`, when the underlying space is an `add_comm_group`. -/ | |
def module.of_core (H : module.core R M) : module R M := | |
by letI := H.to_has_smul; exact | |
{ zero_smul := λ x, (add_monoid_hom.mk' (λ r : R, r • x) (λ r s, H.add_smul r s x)).map_zero, | |
smul_zero := λ r, (add_monoid_hom.mk' ((•) r) (H.smul_add r)).map_zero, | |
..H } | |
end add_comm_group | |
/-- A variant of `module.ext` that's convenient for term-mode. -/ | |
-- We'll later use this to show `module ℕ M` and `module ℤ M` are subsingletons. | |
lemma module.ext' {R : Type*} [semiring R] {M : Type*} [add_comm_monoid M] (P Q : module R M) | |
(w : ∀ (r : R) (m : M), by { haveI := P, exact r • m } = by { haveI := Q, exact r • m }) : | |
P = Q := | |
begin | |
ext, | |
exact w _ _ | |
end | |
section module | |
variables [ring R] [add_comm_group M] [module R M] (r s : R) (x y : M) | |
@[simp] theorem neg_smul : -r • x = - (r • x) := | |
eq_neg_of_add_eq_zero_left $ by rw [← add_smul, add_left_neg, zero_smul] | |
@[simp] lemma neg_smul_neg : -r • -x = r • x := | |
by rw [neg_smul, smul_neg, neg_neg] | |
@[simp] theorem units.neg_smul (u : Rˣ) (x : M) : -u • x = - (u • x) := | |
by rw [units.smul_def, units.coe_neg, neg_smul, units.smul_def] | |
variables (R) | |
theorem neg_one_smul (x : M) : (-1 : R) • x = -x := by simp | |
variables {R} | |
theorem sub_smul (r s : R) (y : M) : (r - s) • y = r • y - s • y := | |
by simp [add_smul, sub_eq_add_neg] | |
end module | |
/-- A module over a `subsingleton` semiring is a `subsingleton`. We cannot register this | |
as an instance because Lean has no way to guess `R`. -/ | |
protected theorem module.subsingleton (R M : Type*) [semiring R] [subsingleton R] | |
[add_comm_monoid M] [module R M] : | |
subsingleton M := | |
⟨λ x y, by rw [← one_smul R x, ← one_smul R y, subsingleton.elim (1:R) 0, zero_smul, zero_smul]⟩ | |
/-- A semiring is `nontrivial` provided that there exists a nontrivial module over this semiring. -/ | |
protected theorem module.nontrivial (R M : Type*) [semiring R] [nontrivial M] [add_comm_monoid M] | |
[module R M] : | |
nontrivial R := | |
(subsingleton_or_nontrivial R).resolve_left $ λ hR, not_subsingleton M $ | |
by exactI module.subsingleton R M | |
@[priority 910] -- see Note [lower instance priority] | |
instance semiring.to_module [semiring R] : module R R := | |
{ smul_add := mul_add, | |
add_smul := add_mul, | |
zero_smul := zero_mul, | |
smul_zero := mul_zero } | |
/-- Like `semiring.to_module`, but multiplies on the right. -/ | |
@[priority 910] -- see Note [lower instance priority] | |
instance semiring.to_opposite_module [semiring R] : module Rᵐᵒᵖ R := | |
{ smul_add := λ r x y, add_mul _ _ _, | |
add_smul := λ r x y, mul_add _ _ _, | |
..monoid_with_zero.to_opposite_mul_action_with_zero R} | |
/-- A ring homomorphism `f : R →+* M` defines a module structure by `r • x = f r * x`. -/ | |
def ring_hom.to_module [semiring R] [semiring S] (f : R →+* S) : module R S := | |
module.comp_hom S f | |
/-- The tautological action by `R →+* R` on `R`. | |
This generalizes `function.End.apply_mul_action`. -/ | |
instance ring_hom.apply_distrib_mul_action [semiring R] : distrib_mul_action (R →+* R) R := | |
{ smul := ($), | |
smul_zero := ring_hom.map_zero, | |
smul_add := ring_hom.map_add, | |
one_smul := λ _, rfl, | |
mul_smul := λ _ _ _, rfl } | |
@[simp] protected lemma ring_hom.smul_def [semiring R] (f : R →+* R) (a : R) : | |
f • a = f a := rfl | |
/-- `ring_hom.apply_distrib_mul_action` is faithful. -/ | |
instance ring_hom.apply_has_faithful_smul [semiring R] : has_faithful_smul (R →+* R) R := | |
⟨ring_hom.ext⟩ | |
section add_comm_monoid | |
variables [semiring R] [add_comm_monoid M] [module R M] | |
section | |
variables (R) | |
/-- `nsmul` is equal to any other module structure via a cast. -/ | |
lemma nsmul_eq_smul_cast (n : ℕ) (b : M) : | |
n • b = (n : R) • b := | |
begin | |
induction n with n ih, | |
{ rw [nat.cast_zero, zero_smul, zero_smul] }, | |
{ rw [nat.succ_eq_add_one, nat.cast_succ, add_smul, add_smul, one_smul, ih, one_smul], } | |
end | |
end | |
/-- Convert back any exotic `ℕ`-smul to the canonical instance. This should not be needed since in | |
mathlib all `add_comm_monoid`s should normally have exactly one `ℕ`-module structure by design. | |
-/ | |
lemma nat_smul_eq_nsmul (h : module ℕ M) (n : ℕ) (x : M) : | |
@has_smul.smul ℕ M h.to_has_smul n x = n • x := | |
by rw [nsmul_eq_smul_cast ℕ n x, nat.cast_id] | |
/-- All `ℕ`-module structures are equal. Not an instance since in mathlib all `add_comm_monoid` | |
should normally have exactly one `ℕ`-module structure by design. -/ | |
def add_comm_monoid.nat_module.unique : unique (module ℕ M) := | |
{ default := by apply_instance, | |
uniq := λ P, module.ext' P _ $ λ n, nat_smul_eq_nsmul P n } | |
instance add_comm_monoid.nat_is_scalar_tower : | |
is_scalar_tower ℕ R M := | |
{ smul_assoc := λ n x y, nat.rec_on n | |
(by simp only [zero_smul]) | |
(λ n ih, by simp only [nat.succ_eq_add_one, add_smul, one_smul, ih]) } | |
end add_comm_monoid | |
section add_comm_group | |
variables [semiring S] [ring R] [add_comm_group M] [module S M] [module R M] | |
section | |
variables (R) | |
/-- `zsmul` is equal to any other module structure via a cast. -/ | |
lemma zsmul_eq_smul_cast (n : ℤ) (b : M) : n • b = (n : R) • b := | |
have (smul_add_hom ℤ M).flip b = ((smul_add_hom R M).flip b).comp (int.cast_add_hom R), | |
by { ext, simp }, | |
add_monoid_hom.congr_fun this n | |
end | |
/-- Convert back any exotic `ℤ`-smul to the canonical instance. This should not be needed since in | |
mathlib all `add_comm_group`s should normally have exactly one `ℤ`-module structure by design. -/ | |
lemma int_smul_eq_zsmul (h : module ℤ M) (n : ℤ) (x : M) : | |
@has_smul.smul ℤ M h.to_has_smul n x = n • x := | |
by rw [zsmul_eq_smul_cast ℤ n x, int.cast_id] | |
/-- All `ℤ`-module structures are equal. Not an instance since in mathlib all `add_comm_group` | |
should normally have exactly one `ℤ`-module structure by design. -/ | |
def add_comm_group.int_module.unique : unique (module ℤ M) := | |
{ default := by apply_instance, | |
uniq := λ P, module.ext' P _ $ λ n, int_smul_eq_zsmul P n } | |
end add_comm_group | |
lemma map_int_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*} | |
[add_monoid_hom_class F M M₂] (f : F) (R S : Type*) [ring R] [ring S] [module R M] [module S M₂] | |
(x : ℤ) (a : M) : f ((x : R) • a) = (x : S) • f a := | |
by simp only [←zsmul_eq_smul_cast, map_zsmul] | |
lemma map_nat_cast_smul [add_comm_monoid M] [add_comm_monoid M₂] {F : Type*} | |
[add_monoid_hom_class F M M₂] (f : F) | |
(R S : Type*) [semiring R] [semiring S] [module R M] [module S M₂] (x : ℕ) (a : M) : | |
f ((x : R) • a) = (x : S) • f a := | |
by simp only [←nsmul_eq_smul_cast, map_nsmul] | |
lemma map_inv_int_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*} | |
[add_monoid_hom_class F M M₂] (f : F) | |
(R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂] | |
(n : ℤ) (x : M) : | |
f ((n⁻¹ : R) • x) = (n⁻¹ : S) • f x := | |
begin | |
by_cases hR : (n : R) = 0; by_cases hS : (n : S) = 0, | |
{ simp [hR, hS] }, | |
{ suffices : ∀ y, f y = 0, by simp [this], clear x, intro x, | |
rw [← inv_smul_smul₀ hS (f x), ← map_int_cast_smul f R S], simp [hR] }, | |
{ suffices : ∀ y, f y = 0, by simp [this], clear x, intro x, | |
rw [← smul_inv_smul₀ hR x, map_int_cast_smul f R S, hS, zero_smul] }, | |
{ rw [← inv_smul_smul₀ hS (f _), ← map_int_cast_smul f R S, smul_inv_smul₀ hR] } | |
end | |
lemma map_inv_nat_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*} | |
[add_monoid_hom_class F M M₂] (f : F) | |
(R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂] | |
(n : ℕ) (x : M) : | |
f ((n⁻¹ : R) • x) = (n⁻¹ : S) • f x := | |
by exact_mod_cast map_inv_int_cast_smul f R S n x | |
lemma map_rat_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*} | |
[add_monoid_hom_class F M M₂] (f : F) | |
(R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂] | |
(c : ℚ) (x : M) : | |
f ((c : R) • x) = (c : S) • f x := | |
by rw [rat.cast_def, rat.cast_def, div_eq_mul_inv, div_eq_mul_inv, mul_smul, mul_smul, | |
map_int_cast_smul f R S, map_inv_nat_cast_smul f R S] | |
lemma map_rat_smul [add_comm_group M] [add_comm_group M₂] [module ℚ M] [module ℚ M₂] {F : Type*} | |
[add_monoid_hom_class F M M₂] (f : F) (c : ℚ) (x : M) : | |
f (c • x) = c • f x := | |
rat.cast_id c ▸ map_rat_cast_smul f ℚ ℚ c x | |
/-- There can be at most one `module ℚ E` structure on an additive commutative group. This is not | |
an instance because `simp` becomes very slow if we have many `subsingleton` instances, | |
see [gh-6025]. -/ | |
lemma subsingleton_rat_module (E : Type*) [add_comm_group E] : subsingleton (module ℚ E) := | |
⟨λ P Q, module.ext' P Q $ λ r x, | |
@map_rat_smul _ _ _ _ P Q _ _ (add_monoid_hom.id E) r x⟩ | |
/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications | |
agree on inverses of integer numbers in `R` and `S`. -/ | |
lemma inv_int_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R] | |
[division_ring S] [module R E] [module S E] (n : ℤ) (x : E) : | |
(n⁻¹ : R) • x = (n⁻¹ : S) • x := | |
map_inv_int_cast_smul (add_monoid_hom.id E) R S n x | |
/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications | |
agree on inverses of natural numbers in `R` and `S`. -/ | |
lemma inv_nat_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R] | |
[division_ring S] [module R E] [module S E] (n : ℕ) (x : E) : | |
(n⁻¹ : R) • x = (n⁻¹ : S) • x := | |
map_inv_nat_cast_smul (add_monoid_hom.id E) R S n x | |
/-- If `E` is a vector space over a division rings `R` and has a monoid action by `α`, then that | |
action commutes by scalar multiplication of inverses of integers in `R` -/ | |
lemma inv_int_cast_smul_comm {α E : Type*} (R : Type*) [add_comm_group E] [division_ring R] | |
[monoid α] [module R E] [distrib_mul_action α E] (n : ℤ) (s : α) (x : E) : | |
(n⁻¹ : R) • s • x = s • (n⁻¹ : R) • x := | |
(map_inv_int_cast_smul (distrib_mul_action.to_add_monoid_hom E s) R R n x).symm | |
/-- If `E` is a vector space over a division rings `R` and has a monoid action by `α`, then that | |
action commutes by scalar multiplication of inverses of natural numbers in `R`. -/ | |
lemma inv_nat_cast_smul_comm {α E : Type*} (R : Type*) [add_comm_group E] [division_ring R] | |
[monoid α] [module R E] [distrib_mul_action α E] (n : ℕ) (s : α) (x : E) : | |
(n⁻¹ : R) • s • x = s • (n⁻¹ : R) • x := | |
(map_inv_nat_cast_smul (distrib_mul_action.to_add_monoid_hom E s) R R n x).symm | |
/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications | |
agree on rational numbers in `R` and `S`. -/ | |
lemma rat_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R] | |
[division_ring S] [module R E] [module S E] (r : ℚ) (x : E) : | |
(r : R) • x = (r : S) • x := | |
map_rat_cast_smul (add_monoid_hom.id E) R S r x | |
instance add_comm_group.int_is_scalar_tower {R : Type u} {M : Type v} [ring R] [add_comm_group M] | |
[module R M]: is_scalar_tower ℤ R M := | |
{ smul_assoc := λ n x y, ((smul_add_hom R M).flip y).map_zsmul x n } | |
instance is_scalar_tower.rat {R : Type u} {M : Type v} [ring R] [add_comm_group M] | |
[module R M] [module ℚ R] [module ℚ M] : is_scalar_tower ℚ R M := | |
{ smul_assoc := λ r x y, map_rat_smul ((smul_add_hom R M).flip y) r x } | |
instance smul_comm_class.rat {R : Type u} {M : Type v} [semiring R] [add_comm_group M] | |
[module R M] [module ℚ M] : smul_comm_class ℚ R M := | |
{ smul_comm := λ r x y, (map_rat_smul (smul_add_hom R M x) r y).symm } | |
instance smul_comm_class.rat' {R : Type u} {M : Type v} [semiring R] [add_comm_group M] | |
[module R M] [module ℚ M] : smul_comm_class R ℚ M := | |
smul_comm_class.symm _ _ _ | |
section no_zero_smul_divisors | |
/-! ### `no_zero_smul_divisors` | |
This section defines the `no_zero_smul_divisors` class, and includes some tests | |
for the vanishing of elements (especially in modules over division rings). | |
-/ | |
/-- `no_zero_smul_divisors R M` states that a scalar multiple is `0` only if either argument is `0`. | |
This a version of saying that `M` is torsion free, without assuming `R` is zero-divisor free. | |
The main application of `no_zero_smul_divisors R M`, when `M` is a module, | |
is the result `smul_eq_zero`: a scalar multiple is `0` iff either argument is `0`. | |
It is a generalization of the `no_zero_divisors` class to heterogeneous multiplication. | |
-/ | |
class no_zero_smul_divisors (R M : Type*) [has_zero R] [has_zero M] [has_smul R M] : Prop := | |
(eq_zero_or_eq_zero_of_smul_eq_zero : ∀ {c : R} {x : M}, c • x = 0 → c = 0 ∨ x = 0) | |
export no_zero_smul_divisors (eq_zero_or_eq_zero_of_smul_eq_zero) | |
/-- Pullback a `no_zero_smul_divisors` instance along an injective function. -/ | |
lemma function.injective.no_zero_smul_divisors {R M N : Type*} [has_zero R] [has_zero M] | |
[has_zero N] [has_smul R M] [has_smul R N] [no_zero_smul_divisors R N] (f : M → N) | |
(hf : function.injective f) (h0 : f 0 = 0) (hs : ∀ (c : R) (x : M), f (c • x) = c • f x) : | |
no_zero_smul_divisors R M := | |
⟨λ c m h, | |
or.imp_right (@hf _ _) $ h0.symm ▸ eq_zero_or_eq_zero_of_smul_eq_zero (by rw [←hs, h, h0])⟩ | |
@[priority 100] -- See note [lower instance priority] | |
instance no_zero_divisors.to_no_zero_smul_divisors [has_zero R] [has_mul R] [no_zero_divisors R] : | |
no_zero_smul_divisors R R := | |
⟨λ c x, eq_zero_or_eq_zero_of_mul_eq_zero⟩ | |
section module | |
variables [semiring R] [add_comm_monoid M] [module R M] | |
@[simp] | |
theorem smul_eq_zero [no_zero_smul_divisors R M] {c : R} {x : M} : | |
c • x = 0 ↔ c = 0 ∨ x = 0 := | |
⟨eq_zero_or_eq_zero_of_smul_eq_zero, | |
λ h, h.elim (λ h, h.symm ▸ zero_smul R x) (λ h, h.symm ▸ smul_zero c)⟩ | |
theorem smul_ne_zero [no_zero_smul_divisors R M] {c : R} {x : M} : | |
c • x ≠ 0 ↔ c ≠ 0 ∧ x ≠ 0 := | |
by simp only [ne.def, smul_eq_zero, not_or_distrib] | |
section nat | |
variables (R) (M) [no_zero_smul_divisors R M] [char_zero R] | |
include R | |
lemma nat.no_zero_smul_divisors : no_zero_smul_divisors ℕ M := | |
⟨by { intros c x, rw [nsmul_eq_smul_cast R, smul_eq_zero], simp }⟩ | |
@[simp] lemma two_nsmul_eq_zero {v : M} : 2 • v = 0 ↔ v = 0 := | |
by { haveI := nat.no_zero_smul_divisors R M, simp [smul_eq_zero] } | |
end nat | |
variables (R M) | |
/-- If `M` is an `R`-module with one and `M` has characteristic zero, then `R` has characteristic | |
zero as well. Usually `M` is an `R`-algebra. -/ | |
lemma char_zero.of_module (M) [add_comm_monoid_with_one M] [char_zero M] [module R M] : | |
char_zero R := | |
begin | |
refine ⟨λ m n h, @nat.cast_injective M _ _ _ _ _⟩, | |
rw [← nsmul_one, ← nsmul_one, nsmul_eq_smul_cast R m (1 : M), nsmul_eq_smul_cast R n (1 : M), h] | |
end | |
end module | |
section add_comm_group -- `R` can still be a semiring here | |
variables [semiring R] [add_comm_group M] [module R M] | |
section smul_injective | |
variables (M) | |
lemma smul_right_injective [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) : | |
function.injective ((•) c : M → M) := | |
(injective_iff_map_eq_zero (smul_add_hom R M c)).2 $ λ a ha, (smul_eq_zero.mp ha).resolve_left hc | |
variables {M} | |
lemma smul_right_inj [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) {x y : M} : | |
c • x = c • y ↔ x = y := | |
(smul_right_injective M hc).eq_iff | |
end smul_injective | |
section nat | |
variables (R M) [no_zero_smul_divisors R M] [char_zero R] | |
include R | |
lemma self_eq_neg {v : M} : v = - v ↔ v = 0 := | |
by rw [← two_nsmul_eq_zero R M, two_smul, add_eq_zero_iff_eq_neg] | |
lemma neg_eq_self {v : M} : - v = v ↔ v = 0 := | |
by rw [eq_comm, self_eq_neg R M] | |
lemma self_ne_neg {v : M} : v ≠ -v ↔ v ≠ 0 := | |
(self_eq_neg R M).not | |
lemma neg_ne_self {v : M} : -v ≠ v ↔ v ≠ 0 := | |
(neg_eq_self R M).not | |
end nat | |
end add_comm_group | |
section module | |
variables [ring R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M] | |
section smul_injective | |
variables (R) | |
lemma smul_left_injective {x : M} (hx : x ≠ 0) : | |
function.injective (λ (c : R), c • x) := | |
λ c d h, sub_eq_zero.mp ((smul_eq_zero.mp | |
(calc (c - d) • x = c • x - d • x : sub_smul c d x | |
... = 0 : sub_eq_zero.mpr h)).resolve_right hx) | |
end smul_injective | |
end module | |
section division_ring | |
variables [division_ring R] [add_comm_group M] [module R M] | |
@[priority 100] -- see note [lower instance priority] | |
instance division_ring.to_no_zero_smul_divisors : no_zero_smul_divisors R M := | |
⟨λ c x h, or_iff_not_imp_left.2 $ λ hc, (smul_eq_zero_iff_eq' hc).1 h⟩ | |
end division_ring | |
end no_zero_smul_divisors | |
@[simp] lemma nat.smul_one_eq_coe {R : Type*} [semiring R] (m : ℕ) : | |
m • (1 : R) = ↑m := | |
by rw [nsmul_eq_mul, mul_one] | |
@[simp] lemma int.smul_one_eq_coe {R : Type*} [ring R] (m : ℤ) : | |
m • (1 : R) = ↑m := | |
by rw [zsmul_eq_mul, mul_one] | |
lemma finset.cast_card [comm_semiring R] (s : finset α) : (s.card : R) = ∑ a in s, 1 := | |
by rw [finset.sum_const, nat.smul_one_eq_coe] | |