Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
I think it's all done!
fc5e983
raw
history blame
25.5 kB
/-
Copyright (c) 2015 Nathaniel Thomas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro
-/
import algebra.big_operators.basic
import algebra.smul_with_zero
import data.rat.cast
import group_theory.group_action.big_operators
import group_theory.group_action.group
/-!
# Modules over a ring
In this file we define
* `module R M` : an additive commutative monoid `M` is a `module` over a
`semiring R` if for `r : R` and `x : M` their "scalar multiplication `r • x : M` is defined, and
the operation `•` satisfies some natural associativity and distributivity axioms similar to those
on a ring.
## Implementation notes
In typical mathematical usage, our definition of `module` corresponds to "semimodule", and the
word "module" is reserved for `module R M` where `R` is a `ring` and `M` an `add_comm_group`.
If `R` is a `field` and `M` an `add_comm_group`, `M` would be called an `R`-vector space.
Since those assumptions can be made by changing the typeclasses applied to `R` and `M`,
without changing the axioms in `module`, mathlib calls everything a `module`.
In older versions of mathlib, we had separate `semimodule` and `vector_space` abbreviations.
This caused inference issues in some cases, while not providing any real advantages, so we decided
to use a canonical `module` typeclass throughout.
## Tags
semimodule, module, vector space
-/
open function
open_locale big_operators
universes u v
variables {α R k S M M₂ M₃ ι : Type*}
/-- A module is a generalization of vector spaces to a scalar semiring.
It consists of a scalar semiring `R` and an additive monoid of "vectors" `M`,
connected by a "scalar multiplication" operation `r • x : M`
(where `r : R` and `x : M`) with some natural associativity and
distributivity axioms similar to those on a ring. -/
@[ext, protect_proj] class module (R : Type u) (M : Type v) [semiring R]
[add_comm_monoid M] extends distrib_mul_action R M :=
(add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x)
(zero_smul : ∀x : M, (0 : R) • x = 0)
section add_comm_monoid
variables [semiring R] [add_comm_monoid M] [module R M] (r s : R) (x y : M)
/-- A module over a semiring automatically inherits a `mul_action_with_zero` structure. -/
@[priority 100] -- see Note [lower instance priority]
instance module.to_mul_action_with_zero :
mul_action_with_zero R M :=
{ smul_zero := smul_zero,
zero_smul := module.zero_smul,
..(infer_instance : mul_action R M) }
instance add_comm_monoid.nat_module : module ℕ M :=
{ one_smul := one_nsmul,
mul_smul := λ m n a, mul_nsmul a m n,
smul_add := λ n a b, nsmul_add a b n,
smul_zero := nsmul_zero,
zero_smul := zero_nsmul,
add_smul := λ r s x, add_nsmul x r s }
lemma add_monoid.End.nat_cast_def (n : ℕ) :
(↑n : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℕ M n := rfl
theorem add_smul : (r + s) • x = r • x + s • x := module.add_smul r s x
lemma convex.combo_self {a b : R} (h : a + b = 1) (x : M) : a • x + b • x = x :=
by rw [←add_smul, h, one_smul]
variables (R)
theorem two_smul : (2 : R) • x = x + x := by rw [bit0, add_smul, one_smul]
theorem two_smul' : (2 : R) • x = bit0 x := two_smul R x
@[simp] lemma inv_of_two_smul_add_inv_of_two_smul [invertible (2 : R)] (x : M) :
(⅟2 : R) • x + (⅟2 : R) • x = x :=
convex.combo_self inv_of_two_add_inv_of_two _
/-- Pullback a `module` structure along an injective additive monoid homomorphism.
See note [reducible non-instances]. -/
@[reducible]
protected def function.injective.module [add_comm_monoid M₂] [has_smul R M₂] (f : M₂ →+ M)
(hf : injective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) :
module R M₂ :=
{ smul := (•),
add_smul := λ c₁ c₂ x, hf $ by simp only [smul, f.map_add, add_smul],
zero_smul := λ x, hf $ by simp only [smul, zero_smul, f.map_zero],
.. hf.distrib_mul_action f smul }
/-- Pushforward a `module` structure along a surjective additive monoid homomorphism. -/
protected def function.surjective.module [add_comm_monoid M₂] [has_smul R M₂] (f : M →+ M₂)
(hf : surjective f) (smul : ∀ (c : R) x, f (c • x) = c • f x) :
module R M₂ :=
{ smul := (•),
add_smul := λ c₁ c₂ x, by { rcases hf x with ⟨x, rfl⟩,
simp only [add_smul, ← smul, ← f.map_add] },
zero_smul := λ x, by { rcases hf x with ⟨x, rfl⟩, simp only [← f.map_zero, ← smul, zero_smul] },
.. hf.distrib_mul_action f smul }
/-- Push forward the action of `R` on `M` along a compatible surjective map `f : R →+* S`.
See also `function.surjective.mul_action_left` and `function.surjective.distrib_mul_action_left`.
-/
@[reducible]
def function.surjective.module_left {R S M : Type*} [semiring R] [add_comm_monoid M]
[module R M] [semiring S] [has_smul S M]
(f : R →+* S) (hf : function.surjective f) (hsmul : ∀ c (x : M), f c • x = c • x) :
module S M :=
{ smul := (•),
zero_smul := λ x, by rw [← f.map_zero, hsmul, zero_smul],
add_smul := hf.forall₂.mpr (λ a b x, by simp only [← f.map_add, hsmul, add_smul]),
.. hf.distrib_mul_action_left f.to_monoid_hom hsmul }
variables {R} (M)
/-- Compose a `module` with a `ring_hom`, with action `f s • m`.
See note [reducible non-instances]. -/
@[reducible] def module.comp_hom [semiring S] (f : S →+* R) :
module S M :=
{ smul := has_smul.comp.smul f,
add_smul := λ r s x, by simp [add_smul],
.. mul_action_with_zero.comp_hom M f.to_monoid_with_zero_hom,
.. distrib_mul_action.comp_hom M (f : S →* R) }
variables (R) (M)
/-- `(•)` as an `add_monoid_hom`.
This is a stronger version of `distrib_mul_action.to_add_monoid_End` -/
@[simps apply_apply]
def module.to_add_monoid_End : R →+* add_monoid.End M :=
{ map_zero' := add_monoid_hom.ext $ λ r, by simp,
map_add' := λ x y, add_monoid_hom.ext $ λ r, by simp [add_smul],
..distrib_mul_action.to_add_monoid_End R M }
/-- A convenience alias for `module.to_add_monoid_End` as an `add_monoid_hom`, usually to allow the
use of `add_monoid_hom.flip`. -/
def smul_add_hom : R →+ M →+ M :=
(module.to_add_monoid_End R M).to_add_monoid_hom
variables {R M}
@[simp] lemma smul_add_hom_apply (r : R) (x : M) :
smul_add_hom R M r x = r • x := rfl
lemma module.eq_zero_of_zero_eq_one (zero_eq_one : (0 : R) = 1) : x = 0 :=
by rw [←one_smul R x, ←zero_eq_one, zero_smul]
lemma list.sum_smul {l : list R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum :=
((smul_add_hom R M).flip x).map_list_sum l
lemma multiset.sum_smul {l : multiset R} {x : M} : l.sum • x = (l.map (λ r, r • x)).sum :=
((smul_add_hom R M).flip x).map_multiset_sum l
lemma finset.sum_smul {f : ι → R} {s : finset ι} {x : M} :
(∑ i in s, f i) • x = (∑ i in s, (f i) • x) :=
((smul_add_hom R M).flip x).map_sum f s
end add_comm_monoid
variables (R)
/-- An `add_comm_monoid` that is a `module` over a `ring` carries a natural `add_comm_group`
structure.
See note [reducible non-instances]. -/
@[reducible]
def module.add_comm_monoid_to_add_comm_group [ring R] [add_comm_monoid M] [module R M] :
add_comm_group M :=
{ neg := λ a, (-1 : R) • a,
add_left_neg := λ a, show (-1 : R) • a + a = 0, by
{ nth_rewrite 1 ← one_smul _ a,
rw [← add_smul, add_left_neg, zero_smul] },
..(infer_instance : add_comm_monoid M), }
variables {R}
section add_comm_group
variables (R M) [semiring R] [add_comm_group M]
instance add_comm_group.int_module : module ℤ M :=
{ one_smul := one_zsmul,
mul_smul := λ m n a, mul_zsmul a m n,
smul_add := λ n a b, zsmul_add a b n,
smul_zero := zsmul_zero,
zero_smul := zero_zsmul,
add_smul := λ r s x, add_zsmul x r s }
lemma add_monoid.End.int_cast_def (z : ℤ) :
(↑z : add_monoid.End M) = distrib_mul_action.to_add_monoid_End ℤ M z := rfl
/-- A structure containing most informations as in a module, except the fields `zero_smul`
and `smul_zero`. As these fields can be deduced from the other ones when `M` is an `add_comm_group`,
this provides a way to construct a module structure by checking less properties, in
`module.of_core`. -/
@[nolint has_nonempty_instance]
structure module.core extends has_smul R M :=
(smul_add : ∀(r : R) (x y : M), r • (x + y) = r • x + r • y)
(add_smul : ∀(r s : R) (x : M), (r + s) • x = r • x + s • x)
(mul_smul : ∀(r s : R) (x : M), (r * s) • x = r • s • x)
(one_smul : ∀x : M, (1 : R) • x = x)
variables {R M}
/-- Define `module` without proving `zero_smul` and `smul_zero` by using an auxiliary
structure `module.core`, when the underlying space is an `add_comm_group`. -/
def module.of_core (H : module.core R M) : module R M :=
by letI := H.to_has_smul; exact
{ zero_smul := λ x, (add_monoid_hom.mk' (λ r : R, r • x) (λ r s, H.add_smul r s x)).map_zero,
smul_zero := λ r, (add_monoid_hom.mk' ((•) r) (H.smul_add r)).map_zero,
..H }
end add_comm_group
/-- A variant of `module.ext` that's convenient for term-mode. -/
-- We'll later use this to show `module ℕ M` and `module ℤ M` are subsingletons.
lemma module.ext' {R : Type*} [semiring R] {M : Type*} [add_comm_monoid M] (P Q : module R M)
(w : ∀ (r : R) (m : M), by { haveI := P, exact r • m } = by { haveI := Q, exact r • m }) :
P = Q :=
begin
ext,
exact w _ _
end
section module
variables [ring R] [add_comm_group M] [module R M] (r s : R) (x y : M)
@[simp] theorem neg_smul : -r • x = - (r • x) :=
eq_neg_of_add_eq_zero_left $ by rw [← add_smul, add_left_neg, zero_smul]
@[simp] lemma neg_smul_neg : -r • -x = r • x :=
by rw [neg_smul, smul_neg, neg_neg]
@[simp] theorem units.neg_smul (u : Rˣ) (x : M) : -u • x = - (u • x) :=
by rw [units.smul_def, units.coe_neg, neg_smul, units.smul_def]
variables (R)
theorem neg_one_smul (x : M) : (-1 : R) • x = -x := by simp
variables {R}
theorem sub_smul (r s : R) (y : M) : (r - s) • y = r • y - s • y :=
by simp [add_smul, sub_eq_add_neg]
end module
/-- A module over a `subsingleton` semiring is a `subsingleton`. We cannot register this
as an instance because Lean has no way to guess `R`. -/
protected theorem module.subsingleton (R M : Type*) [semiring R] [subsingleton R]
[add_comm_monoid M] [module R M] :
subsingleton M :=
⟨λ x y, by rw [← one_smul R x, ← one_smul R y, subsingleton.elim (1:R) 0, zero_smul, zero_smul]⟩
/-- A semiring is `nontrivial` provided that there exists a nontrivial module over this semiring. -/
protected theorem module.nontrivial (R M : Type*) [semiring R] [nontrivial M] [add_comm_monoid M]
[module R M] :
nontrivial R :=
(subsingleton_or_nontrivial R).resolve_left $ λ hR, not_subsingleton M $
by exactI module.subsingleton R M
@[priority 910] -- see Note [lower instance priority]
instance semiring.to_module [semiring R] : module R R :=
{ smul_add := mul_add,
add_smul := add_mul,
zero_smul := zero_mul,
smul_zero := mul_zero }
/-- Like `semiring.to_module`, but multiplies on the right. -/
@[priority 910] -- see Note [lower instance priority]
instance semiring.to_opposite_module [semiring R] : module Rᵐᵒᵖ R :=
{ smul_add := λ r x y, add_mul _ _ _,
add_smul := λ r x y, mul_add _ _ _,
..monoid_with_zero.to_opposite_mul_action_with_zero R}
/-- A ring homomorphism `f : R →+* M` defines a module structure by `r • x = f r * x`. -/
def ring_hom.to_module [semiring R] [semiring S] (f : R →+* S) : module R S :=
module.comp_hom S f
/-- The tautological action by `R →+* R` on `R`.
This generalizes `function.End.apply_mul_action`. -/
instance ring_hom.apply_distrib_mul_action [semiring R] : distrib_mul_action (R →+* R) R :=
{ smul := ($),
smul_zero := ring_hom.map_zero,
smul_add := ring_hom.map_add,
one_smul := λ _, rfl,
mul_smul := λ _ _ _, rfl }
@[simp] protected lemma ring_hom.smul_def [semiring R] (f : R →+* R) (a : R) :
f • a = f a := rfl
/-- `ring_hom.apply_distrib_mul_action` is faithful. -/
instance ring_hom.apply_has_faithful_smul [semiring R] : has_faithful_smul (R →+* R) R :=
⟨ring_hom.ext⟩
section add_comm_monoid
variables [semiring R] [add_comm_monoid M] [module R M]
section
variables (R)
/-- `nsmul` is equal to any other module structure via a cast. -/
lemma nsmul_eq_smul_cast (n : ℕ) (b : M) :
n • b = (n : R) • b :=
begin
induction n with n ih,
{ rw [nat.cast_zero, zero_smul, zero_smul] },
{ rw [nat.succ_eq_add_one, nat.cast_succ, add_smul, add_smul, one_smul, ih, one_smul], }
end
end
/-- Convert back any exotic `ℕ`-smul to the canonical instance. This should not be needed since in
mathlib all `add_comm_monoid`s should normally have exactly one `ℕ`-module structure by design.
-/
lemma nat_smul_eq_nsmul (h : module ℕ M) (n : ℕ) (x : M) :
@has_smul.smul ℕ M h.to_has_smul n x = n • x :=
by rw [nsmul_eq_smul_cast ℕ n x, nat.cast_id]
/-- All `ℕ`-module structures are equal. Not an instance since in mathlib all `add_comm_monoid`
should normally have exactly one `ℕ`-module structure by design. -/
def add_comm_monoid.nat_module.unique : unique (module ℕ M) :=
{ default := by apply_instance,
uniq := λ P, module.ext' P _ $ λ n, nat_smul_eq_nsmul P n }
instance add_comm_monoid.nat_is_scalar_tower :
is_scalar_tower ℕ R M :=
{ smul_assoc := λ n x y, nat.rec_on n
(by simp only [zero_smul])
(λ n ih, by simp only [nat.succ_eq_add_one, add_smul, one_smul, ih]) }
end add_comm_monoid
section add_comm_group
variables [semiring S] [ring R] [add_comm_group M] [module S M] [module R M]
section
variables (R)
/-- `zsmul` is equal to any other module structure via a cast. -/
lemma zsmul_eq_smul_cast (n : ℤ) (b : M) : n • b = (n : R) • b :=
have (smul_add_hom ℤ M).flip b = ((smul_add_hom R M).flip b).comp (int.cast_add_hom R),
by { ext, simp },
add_monoid_hom.congr_fun this n
end
/-- Convert back any exotic `ℤ`-smul to the canonical instance. This should not be needed since in
mathlib all `add_comm_group`s should normally have exactly one `ℤ`-module structure by design. -/
lemma int_smul_eq_zsmul (h : module ℤ M) (n : ℤ) (x : M) :
@has_smul.smul ℤ M h.to_has_smul n x = n • x :=
by rw [zsmul_eq_smul_cast ℤ n x, int.cast_id]
/-- All `ℤ`-module structures are equal. Not an instance since in mathlib all `add_comm_group`
should normally have exactly one `ℤ`-module structure by design. -/
def add_comm_group.int_module.unique : unique (module ℤ M) :=
{ default := by apply_instance,
uniq := λ P, module.ext' P _ $ λ n, int_smul_eq_zsmul P n }
end add_comm_group
lemma map_int_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F) (R S : Type*) [ring R] [ring S] [module R M] [module S M₂]
(x : ℤ) (a : M) : f ((x : R) • a) = (x : S) • f a :=
by simp only [←zsmul_eq_smul_cast, map_zsmul]
lemma map_nat_cast_smul [add_comm_monoid M] [add_comm_monoid M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F)
(R S : Type*) [semiring R] [semiring S] [module R M] [module S M₂] (x : ℕ) (a : M) :
f ((x : R) • a) = (x : S) • f a :=
by simp only [←nsmul_eq_smul_cast, map_nsmul]
lemma map_inv_int_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F)
(R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂]
(n : ℤ) (x : M) :
f ((n⁻¹ : R) • x) = (n⁻¹ : S) • f x :=
begin
by_cases hR : (n : R) = 0; by_cases hS : (n : S) = 0,
{ simp [hR, hS] },
{ suffices : ∀ y, f y = 0, by simp [this], clear x, intro x,
rw [← inv_smul_smul₀ hS (f x), ← map_int_cast_smul f R S], simp [hR] },
{ suffices : ∀ y, f y = 0, by simp [this], clear x, intro x,
rw [← smul_inv_smul₀ hR x, map_int_cast_smul f R S, hS, zero_smul] },
{ rw [← inv_smul_smul₀ hS (f _), ← map_int_cast_smul f R S, smul_inv_smul₀ hR] }
end
lemma map_inv_nat_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F)
(R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂]
(n : ℕ) (x : M) :
f ((n⁻¹ : R) • x) = (n⁻¹ : S) • f x :=
by exact_mod_cast map_inv_int_cast_smul f R S n x
lemma map_rat_cast_smul [add_comm_group M] [add_comm_group M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F)
(R S : Type*) [division_ring R] [division_ring S] [module R M] [module S M₂]
(c : ℚ) (x : M) :
f ((c : R) • x) = (c : S) • f x :=
by rw [rat.cast_def, rat.cast_def, div_eq_mul_inv, div_eq_mul_inv, mul_smul, mul_smul,
map_int_cast_smul f R S, map_inv_nat_cast_smul f R S]
lemma map_rat_smul [add_comm_group M] [add_comm_group M₂] [module ℚ M] [module ℚ M₂] {F : Type*}
[add_monoid_hom_class F M M₂] (f : F) (c : ℚ) (x : M) :
f (c • x) = c • f x :=
rat.cast_id c ▸ map_rat_cast_smul f ℚ ℚ c x
/-- There can be at most one `module ℚ E` structure on an additive commutative group. This is not
an instance because `simp` becomes very slow if we have many `subsingleton` instances,
see [gh-6025]. -/
lemma subsingleton_rat_module (E : Type*) [add_comm_group E] : subsingleton (module ℚ E) :=
⟨λ P Q, module.ext' P Q $ λ r x,
@map_rat_smul _ _ _ _ P Q _ _ (add_monoid_hom.id E) r x⟩
/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications
agree on inverses of integer numbers in `R` and `S`. -/
lemma inv_int_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R]
[division_ring S] [module R E] [module S E] (n : ℤ) (x : E) :
(n⁻¹ : R) • x = (n⁻¹ : S) • x :=
map_inv_int_cast_smul (add_monoid_hom.id E) R S n x
/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications
agree on inverses of natural numbers in `R` and `S`. -/
lemma inv_nat_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R]
[division_ring S] [module R E] [module S E] (n : ℕ) (x : E) :
(n⁻¹ : R) • x = (n⁻¹ : S) • x :=
map_inv_nat_cast_smul (add_monoid_hom.id E) R S n x
/-- If `E` is a vector space over a division rings `R` and has a monoid action by `α`, then that
action commutes by scalar multiplication of inverses of integers in `R` -/
lemma inv_int_cast_smul_comm {α E : Type*} (R : Type*) [add_comm_group E] [division_ring R]
[monoid α] [module R E] [distrib_mul_action α E] (n : ℤ) (s : α) (x : E) :
(n⁻¹ : R) • s • x = s • (n⁻¹ : R) • x :=
(map_inv_int_cast_smul (distrib_mul_action.to_add_monoid_hom E s) R R n x).symm
/-- If `E` is a vector space over a division rings `R` and has a monoid action by `α`, then that
action commutes by scalar multiplication of inverses of natural numbers in `R`. -/
lemma inv_nat_cast_smul_comm {α E : Type*} (R : Type*) [add_comm_group E] [division_ring R]
[monoid α] [module R E] [distrib_mul_action α E] (n : ℕ) (s : α) (x : E) :
(n⁻¹ : R) • s • x = s • (n⁻¹ : R) • x :=
(map_inv_nat_cast_smul (distrib_mul_action.to_add_monoid_hom E s) R R n x).symm
/-- If `E` is a vector space over two division rings `R` and `S`, then scalar multiplications
agree on rational numbers in `R` and `S`. -/
lemma rat_cast_smul_eq {E : Type*} (R S : Type*) [add_comm_group E] [division_ring R]
[division_ring S] [module R E] [module S E] (r : ℚ) (x : E) :
(r : R) • x = (r : S) • x :=
map_rat_cast_smul (add_monoid_hom.id E) R S r x
instance add_comm_group.int_is_scalar_tower {R : Type u} {M : Type v} [ring R] [add_comm_group M]
[module R M]: is_scalar_tower ℤ R M :=
{ smul_assoc := λ n x y, ((smul_add_hom R M).flip y).map_zsmul x n }
instance is_scalar_tower.rat {R : Type u} {M : Type v} [ring R] [add_comm_group M]
[module R M] [module ℚ R] [module ℚ M] : is_scalar_tower ℚ R M :=
{ smul_assoc := λ r x y, map_rat_smul ((smul_add_hom R M).flip y) r x }
instance smul_comm_class.rat {R : Type u} {M : Type v} [semiring R] [add_comm_group M]
[module R M] [module ℚ M] : smul_comm_class ℚ R M :=
{ smul_comm := λ r x y, (map_rat_smul (smul_add_hom R M x) r y).symm }
instance smul_comm_class.rat' {R : Type u} {M : Type v} [semiring R] [add_comm_group M]
[module R M] [module ℚ M] : smul_comm_class R ℚ M :=
smul_comm_class.symm _ _ _
section no_zero_smul_divisors
/-! ### `no_zero_smul_divisors`
This section defines the `no_zero_smul_divisors` class, and includes some tests
for the vanishing of elements (especially in modules over division rings).
-/
/-- `no_zero_smul_divisors R M` states that a scalar multiple is `0` only if either argument is `0`.
This a version of saying that `M` is torsion free, without assuming `R` is zero-divisor free.
The main application of `no_zero_smul_divisors R M`, when `M` is a module,
is the result `smul_eq_zero`: a scalar multiple is `0` iff either argument is `0`.
It is a generalization of the `no_zero_divisors` class to heterogeneous multiplication.
-/
class no_zero_smul_divisors (R M : Type*) [has_zero R] [has_zero M] [has_smul R M] : Prop :=
(eq_zero_or_eq_zero_of_smul_eq_zero : ∀ {c : R} {x : M}, c • x = 0 → c = 0 ∨ x = 0)
export no_zero_smul_divisors (eq_zero_or_eq_zero_of_smul_eq_zero)
/-- Pullback a `no_zero_smul_divisors` instance along an injective function. -/
lemma function.injective.no_zero_smul_divisors {R M N : Type*} [has_zero R] [has_zero M]
[has_zero N] [has_smul R M] [has_smul R N] [no_zero_smul_divisors R N] (f : M → N)
(hf : function.injective f) (h0 : f 0 = 0) (hs : ∀ (c : R) (x : M), f (c • x) = c • f x) :
no_zero_smul_divisors R M :=
⟨λ c m h,
or.imp_right (@hf _ _) $ h0.symm ▸ eq_zero_or_eq_zero_of_smul_eq_zero (by rw [←hs, h, h0])⟩
@[priority 100] -- See note [lower instance priority]
instance no_zero_divisors.to_no_zero_smul_divisors [has_zero R] [has_mul R] [no_zero_divisors R] :
no_zero_smul_divisors R R :=
⟨λ c x, eq_zero_or_eq_zero_of_mul_eq_zero⟩
section module
variables [semiring R] [add_comm_monoid M] [module R M]
@[simp]
theorem smul_eq_zero [no_zero_smul_divisors R M] {c : R} {x : M} :
c • x = 0 ↔ c = 0 ∨ x = 0 :=
⟨eq_zero_or_eq_zero_of_smul_eq_zero,
λ h, h.elim (λ h, h.symm ▸ zero_smul R x) (λ h, h.symm ▸ smul_zero c)⟩
theorem smul_ne_zero [no_zero_smul_divisors R M] {c : R} {x : M} :
c • x ≠ 0 ↔ c ≠ 0 ∧ x ≠ 0 :=
by simp only [ne.def, smul_eq_zero, not_or_distrib]
section nat
variables (R) (M) [no_zero_smul_divisors R M] [char_zero R]
include R
lemma nat.no_zero_smul_divisors : no_zero_smul_divisors ℕ M :=
⟨by { intros c x, rw [nsmul_eq_smul_cast R, smul_eq_zero], simp }⟩
@[simp] lemma two_nsmul_eq_zero {v : M} : 2 • v = 0 ↔ v = 0 :=
by { haveI := nat.no_zero_smul_divisors R M, simp [smul_eq_zero] }
end nat
variables (R M)
/-- If `M` is an `R`-module with one and `M` has characteristic zero, then `R` has characteristic
zero as well. Usually `M` is an `R`-algebra. -/
lemma char_zero.of_module (M) [add_comm_monoid_with_one M] [char_zero M] [module R M] :
char_zero R :=
begin
refine ⟨λ m n h, @nat.cast_injective M _ _ _ _ _⟩,
rw [← nsmul_one, ← nsmul_one, nsmul_eq_smul_cast R m (1 : M), nsmul_eq_smul_cast R n (1 : M), h]
end
end module
section add_comm_group -- `R` can still be a semiring here
variables [semiring R] [add_comm_group M] [module R M]
section smul_injective
variables (M)
lemma smul_right_injective [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) :
function.injective ((•) c : M → M) :=
(injective_iff_map_eq_zero (smul_add_hom R M c)).2 $ λ a ha, (smul_eq_zero.mp ha).resolve_left hc
variables {M}
lemma smul_right_inj [no_zero_smul_divisors R M] {c : R} (hc : c ≠ 0) {x y : M} :
c • x = c • y ↔ x = y :=
(smul_right_injective M hc).eq_iff
end smul_injective
section nat
variables (R M) [no_zero_smul_divisors R M] [char_zero R]
include R
lemma self_eq_neg {v : M} : v = - v ↔ v = 0 :=
by rw [← two_nsmul_eq_zero R M, two_smul, add_eq_zero_iff_eq_neg]
lemma neg_eq_self {v : M} : - v = v ↔ v = 0 :=
by rw [eq_comm, self_eq_neg R M]
lemma self_ne_neg {v : M} : v ≠ -v ↔ v ≠ 0 :=
(self_eq_neg R M).not
lemma neg_ne_self {v : M} : -v ≠ v ↔ v ≠ 0 :=
(neg_eq_self R M).not
end nat
end add_comm_group
section module
variables [ring R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M]
section smul_injective
variables (R)
lemma smul_left_injective {x : M} (hx : x ≠ 0) :
function.injective (λ (c : R), c • x) :=
λ c d h, sub_eq_zero.mp ((smul_eq_zero.mp
(calc (c - d) • x = c • x - d • x : sub_smul c d x
... = 0 : sub_eq_zero.mpr h)).resolve_right hx)
end smul_injective
end module
section division_ring
variables [division_ring R] [add_comm_group M] [module R M]
@[priority 100] -- see note [lower instance priority]
instance division_ring.to_no_zero_smul_divisors : no_zero_smul_divisors R M :=
⟨λ c x h, or_iff_not_imp_left.2 $ λ hc, (smul_eq_zero_iff_eq' hc).1 h⟩
end division_ring
end no_zero_smul_divisors
@[simp] lemma nat.smul_one_eq_coe {R : Type*} [semiring R] (m : ℕ) :
m • (1 : R) = ↑m :=
by rw [nsmul_eq_mul, mul_one]
@[simp] lemma int.smul_one_eq_coe {R : Type*} [ring R] (m : ℤ) :
m • (1 : R) = ↑m :=
by rw [zsmul_eq_mul, mul_one]
lemma finset.cast_card [comm_semiring R] (s : finset α) : (s.card : R) = ∑ a in s, 1 :=
by rw [finset.sum_const, nat.smul_one_eq_coe]