Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Mario Carneiro. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Mario Carneiro, Johan Commelin | |
-/ | |
import algebra.hom.equiv | |
import algebra.ring.basic | |
import logic.equiv.basic | |
import logic.equiv.option | |
/-! | |
# Adjoining a zero/one to semigroups and related algebraic structures | |
This file contains different results about adjoining an element to an algebraic structure which then | |
behaves like a zero or a one. An example is adjoining a one to a semigroup to obtain a monoid. That | |
this provides an example of an adjunction is proved in `algebra.category.Mon.adjunctions`. | |
Another result says that adjoining to a group an element `zero` gives a `group_with_zero`. For more | |
information about these structures (which are not that standard in informal mathematics, see | |
`algebra.group_with_zero.basic`) | |
-/ | |
universes u v w | |
variables {α : Type u} {β : Type v} {γ : Type w} | |
/-- Add an extra element `1` to a type -/ | |
@[to_additive "Add an extra element `0` to a type"] | |
def with_one (α) := option α | |
namespace with_one | |
instance [has_repr α] : has_repr (with_zero α) := | |
⟨λ o, match o with | none := "0" | (some a) := "↑" ++ repr a end⟩ | |
@[to_additive] | |
instance [has_repr α] : has_repr (with_one α) := | |
⟨λ o, match o with | none := "1" | (some a) := "↑" ++ repr a end⟩ | |
@[to_additive] | |
instance : monad with_one := option.monad | |
@[to_additive] | |
instance : has_one (with_one α) := ⟨none⟩ | |
@[to_additive] | |
instance [has_mul α] : has_mul (with_one α) := ⟨option.lift_or_get (*)⟩ | |
@[to_additive] instance [has_inv α] : has_inv (with_one α) := ⟨λ a, option.map has_inv.inv a⟩ | |
@[to_additive] instance [has_involutive_inv α] : has_involutive_inv (with_one α) := | |
{ inv_inv := λ a, (option.map_map _ _ _).trans $ by simp_rw [inv_comp_inv, option.map_id, id], | |
..with_one.has_inv } | |
@[to_additive] | |
instance : inhabited (with_one α) := ⟨1⟩ | |
@[to_additive] | |
instance [nonempty α] : nontrivial (with_one α) := option.nontrivial | |
@[to_additive] | |
instance : has_coe_t α (with_one α) := ⟨some⟩ | |
/-- Recursor for `with_one` using the preferred forms `1` and `↑a`. -/ | |
@[elab_as_eliminator, | |
to_additive "Recursor for `with_zero` using the preferred forms `0` and `↑a`."] | |
def rec_one_coe {C : with_one α → Sort*} (h₁ : C 1) (h₂ : Π (a : α), C a) : | |
Π (n : with_one α), C n := | |
option.rec h₁ h₂ | |
/-- Deconstruct a `x : with_one α` to the underlying value in `α`, given a proof that `x ≠ 1`. -/ | |
@[to_additive unzero | |
"Deconstruct a `x : with_zero α` to the underlying value in `α`, given a proof that `x ≠ 0`."] | |
def unone {x : with_one α} (hx : x ≠ 1) : α := with_bot.unbot x hx | |
@[simp, to_additive unzero_coe] | |
lemma unone_coe {x : α} (hx : (x : with_one α) ≠ 1) : unone hx = x := rfl | |
@[simp, to_additive coe_unzero] | |
lemma coe_unone {x : with_one α} (hx : x ≠ 1) : ↑(unone hx) = x := with_bot.coe_unbot x hx | |
@[to_additive] | |
lemma some_eq_coe {a : α} : (some a : with_one α) = ↑a := rfl | |
@[simp, to_additive] | |
lemma coe_ne_one {a : α} : (a : with_one α) ≠ (1 : with_one α) := | |
option.some_ne_none a | |
@[simp, to_additive] | |
lemma one_ne_coe {a : α} : (1 : with_one α) ≠ a := | |
coe_ne_one.symm | |
@[to_additive] | |
lemma ne_one_iff_exists {x : with_one α} : x ≠ 1 ↔ ∃ (a : α), ↑a = x := | |
option.ne_none_iff_exists | |
@[to_additive] | |
instance : can_lift (with_one α) α := | |
{ coe := coe, | |
cond := λ a, a ≠ 1, | |
prf := λ a, ne_one_iff_exists.1 } | |
@[simp, norm_cast, to_additive] | |
lemma coe_inj {a b : α} : (a : with_one α) = b ↔ a = b := | |
option.some_inj | |
@[elab_as_eliminator, to_additive] | |
protected lemma cases_on {P : with_one α → Prop} : | |
∀ (x : with_one α), P 1 → (∀ a : α, P a) → P x := | |
option.cases_on | |
-- the `show` statements in the proofs are important, because otherwise the generated lemmas | |
-- `with_one.mul_one_class._proof_{1,2}` have an ill-typed statement after `with_one` is made | |
-- irreducible. | |
@[to_additive] | |
instance [has_mul α] : mul_one_class (with_one α) := | |
{ mul := (*), | |
one := (1), | |
one_mul := show ∀ x : with_one α, 1 * x = x, from (option.lift_or_get_is_left_id _).1, | |
mul_one := show ∀ x : with_one α, x * 1 = x, from (option.lift_or_get_is_right_id _).1 } | |
@[to_additive] | |
instance [semigroup α] : monoid (with_one α) := | |
{ mul_assoc := (option.lift_or_get_assoc _).1, | |
..with_one.mul_one_class } | |
example [semigroup α] : | |
@monoid.to_mul_one_class _ (@with_one.monoid α _) = @with_one.mul_one_class α _ := rfl | |
@[to_additive] | |
instance [comm_semigroup α] : comm_monoid (with_one α) := | |
{ mul_comm := (option.lift_or_get_comm _).1, | |
..with_one.monoid } | |
section | |
-- workaround: we make `with_one`/`with_zero` irreducible for this definition, otherwise `simps` | |
-- will unfold it in the statement of the lemma it generates. | |
local attribute [irreducible] with_one with_zero | |
/-- `coe` as a bundled morphism -/ | |
@[to_additive "`coe` as a bundled morphism", simps apply] | |
def coe_mul_hom [has_mul α] : α →ₙ* (with_one α) := | |
{ to_fun := coe, map_mul' := λ x y, rfl } | |
end | |
section lift | |
variables [has_mul α] [mul_one_class β] | |
/-- Lift a semigroup homomorphism `f` to a bundled monoid homorphism. -/ | |
@[to_additive "Lift an add_semigroup homomorphism `f` to a bundled add_monoid homorphism."] | |
def lift : (α →ₙ* β) ≃ (with_one α →* β) := | |
{ to_fun := λ f, | |
{ to_fun := λ x, option.cases_on x 1 f, | |
map_one' := rfl, | |
map_mul' := λ x y, | |
with_one.cases_on x (by { rw one_mul, exact (one_mul _).symm }) $ λ x, | |
with_one.cases_on y (by { rw mul_one, exact (mul_one _).symm }) $ λ y, | |
f.map_mul x y }, | |
inv_fun := λ F, F.to_mul_hom.comp coe_mul_hom, | |
left_inv := λ f, mul_hom.ext $ λ x, rfl, | |
right_inv := λ F, monoid_hom.ext $ λ x, with_one.cases_on x F.map_one.symm $ λ x, rfl } | |
variables (f : α →ₙ* β) | |
@[simp, to_additive] | |
lemma lift_coe (x : α) : lift f x = f x := rfl | |
@[simp, to_additive] | |
lemma lift_one : lift f 1 = 1 := rfl | |
@[to_additive] | |
theorem lift_unique (f : with_one α →* β) : f = lift (f.to_mul_hom.comp coe_mul_hom) := | |
(lift.apply_symm_apply f).symm | |
end lift | |
attribute [irreducible] with_one | |
section map | |
variables [has_mul α] [has_mul β] [has_mul γ] | |
/-- Given a multiplicative map from `α → β` returns a monoid homomorphism | |
from `with_one α` to `with_one β` -/ | |
@[to_additive "Given an additive map from `α → β` returns an add_monoid homomorphism | |
from `with_zero α` to `with_zero β`"] | |
def map (f : α →ₙ* β) : with_one α →* with_one β := | |
lift (coe_mul_hom.comp f) | |
@[simp, to_additive] lemma map_coe (f : α →ₙ* β) (a : α) : map f (a : with_one α) = f a := | |
lift_coe _ _ | |
@[simp, to_additive] | |
lemma map_id : map (mul_hom.id α) = monoid_hom.id (with_one α) := | |
by { ext, induction x using with_one.cases_on; refl } | |
@[to_additive] | |
lemma map_map (f : α →ₙ* β) (g : β →ₙ* γ) (x) : | |
map g (map f x) = map (g.comp f) x := | |
by { induction x using with_one.cases_on; refl } | |
@[simp, to_additive] | |
lemma map_comp (f : α →ₙ* β) (g : β →ₙ* γ) : | |
map (g.comp f) = (map g).comp (map f) := | |
monoid_hom.ext $ λ x, (map_map f g x).symm | |
/-- A version of `equiv.option_congr` for `with_one`. -/ | |
@[to_additive "A version of `equiv.option_congr` for `with_zero`.", simps apply] | |
def _root_.mul_equiv.with_one_congr (e : α ≃* β) : with_one α ≃* with_one β := | |
{ to_fun := map e.to_mul_hom, | |
inv_fun := map e.symm.to_mul_hom, | |
left_inv := λ x, (map_map _ _ _).trans $ by induction x using with_one.cases_on; { simp }, | |
right_inv := λ x, (map_map _ _ _).trans $ by induction x using with_one.cases_on; { simp }, | |
.. map e.to_mul_hom } | |
@[simp] | |
lemma _root_.mul_equiv.with_one_congr_refl : (mul_equiv.refl α).with_one_congr = mul_equiv.refl _ := | |
mul_equiv.to_monoid_hom_injective map_id | |
@[simp] | |
lemma _root_.mul_equiv.with_one_congr_symm (e : α ≃* β) : | |
e.with_one_congr.symm = e.symm.with_one_congr := rfl | |
@[simp] | |
lemma _root_.mul_equiv.with_one_congr_trans (e₁ : α ≃* β) (e₂ : β ≃* γ) : | |
e₁.with_one_congr.trans e₂.with_one_congr = (e₁.trans e₂).with_one_congr := | |
mul_equiv.to_monoid_hom_injective (map_comp _ _).symm | |
end map | |
@[simp, norm_cast, to_additive] | |
lemma coe_mul [has_mul α] (a b : α) : ((a * b : α) : with_one α) = a * b := rfl | |
@[simp, norm_cast, to_additive] | |
lemma coe_inv [has_inv α] (a : α) : ((a⁻¹ : α) : with_one α) = a⁻¹ := rfl | |
end with_one | |
namespace with_zero | |
instance [one : has_one α] : has_one (with_zero α) := | |
{ ..one } | |
@[simp, norm_cast] lemma coe_one [has_one α] : ((1 : α) : with_zero α) = 1 := rfl | |
instance [has_mul α] : mul_zero_class (with_zero α) := | |
{ mul := λ o₁ o₂, o₁.bind (λ a, option.map (λ b, a * b) o₂), | |
zero_mul := λ a, rfl, | |
mul_zero := λ a, by cases a; refl, | |
..with_zero.has_zero } | |
@[simp, norm_cast] lemma coe_mul {α : Type u} [has_mul α] | |
{a b : α} : ((a * b : α) : with_zero α) = a * b := rfl | |
@[simp] lemma zero_mul {α : Type u} [has_mul α] | |
(a : with_zero α) : 0 * a = 0 := rfl | |
@[simp] lemma mul_zero {α : Type u} [has_mul α] | |
(a : with_zero α) : a * 0 = 0 := by cases a; refl | |
instance [has_mul α] : no_zero_divisors (with_zero α) := | |
⟨by { rintro (a|a) (b|b) h, exacts [or.inl rfl, or.inl rfl, or.inr rfl, option.no_confusion h] }⟩ | |
instance [semigroup α] : semigroup_with_zero (with_zero α) := | |
{ mul_assoc := λ a b c, match a, b, c with | |
| none, _, _ := rfl | |
| some a, none, _ := rfl | |
| some a, some b, none := rfl | |
| some a, some b, some c := congr_arg some (mul_assoc _ _ _) | |
end, | |
..with_zero.mul_zero_class } | |
instance [comm_semigroup α] : comm_semigroup (with_zero α) := | |
{ mul_comm := λ a b, match a, b with | |
| none, _ := (mul_zero _).symm | |
| some a, none := rfl | |
| some a, some b := congr_arg some (mul_comm _ _) | |
end, | |
..with_zero.semigroup_with_zero } | |
instance [mul_one_class α] : mul_zero_one_class (with_zero α) := | |
{ one_mul := λ a, match a with | |
| none := rfl | |
| some a := congr_arg some $ one_mul _ | |
end, | |
mul_one := λ a, match a with | |
| none := rfl | |
| some a := congr_arg some $ mul_one _ | |
end, | |
..with_zero.mul_zero_class, | |
..with_zero.has_one } | |
instance [has_one α] [has_pow α ℕ] : has_pow (with_zero α) ℕ := | |
⟨λ x n, match x, n with | |
| none, 0 := 1 | |
| none, n + 1 := 0 | |
| some x, n := ↑(x ^ n) | |
end⟩ | |
@[simp, norm_cast] lemma coe_pow [has_one α] [has_pow α ℕ] {a : α} (n : ℕ) : | |
↑(a ^ n : α) = (↑a ^ n : with_zero α) := rfl | |
instance [monoid α] : monoid_with_zero (with_zero α) := | |
{ npow := λ n x, x ^ n, | |
npow_zero' := λ x, match x with | |
| none := rfl | |
| some x := congr_arg some $ pow_zero _ | |
end, | |
npow_succ' := λ n x, match x with | |
| none := rfl | |
| some x := congr_arg some $ pow_succ _ _ | |
end, | |
.. with_zero.mul_zero_one_class, | |
.. with_zero.semigroup_with_zero } | |
instance [comm_monoid α] : comm_monoid_with_zero (with_zero α) := | |
{ ..with_zero.monoid_with_zero, ..with_zero.comm_semigroup } | |
/-- Given an inverse operation on `α` there is an inverse operation | |
on `with_zero α` sending `0` to `0`-/ | |
instance [has_inv α] : has_inv (with_zero α) := ⟨λ a, option.map has_inv.inv a⟩ | |
@[simp, norm_cast] lemma coe_inv [has_inv α] (a : α) : ((a⁻¹ : α) : with_zero α) = a⁻¹ := rfl | |
@[simp] lemma inv_zero [has_inv α] : (0 : with_zero α)⁻¹ = 0 := rfl | |
instance [has_involutive_inv α] : has_involutive_inv (with_zero α) := | |
{ inv_inv := λ a, (option.map_map _ _ _).trans $ by simp_rw [inv_comp_inv, option.map_id, id], | |
..with_zero.has_inv } | |
instance [has_div α] : has_div (with_zero α) := | |
⟨λ o₁ o₂, o₁.bind (λ a, option.map (λ b, a / b) o₂)⟩ | |
@[norm_cast] lemma coe_div [has_div α] (a b : α) : ↑(a / b : α) = (a / b : with_zero α) := rfl | |
instance [has_one α] [has_pow α ℤ] : has_pow (with_zero α) ℤ := | |
⟨λ x n, match x, n with | |
| none, int.of_nat 0 := 1 | |
| none, int.of_nat (nat.succ n) := 0 | |
| none, int.neg_succ_of_nat n := 0 | |
| some x, n := ↑(x ^ n) | |
end⟩ | |
@[simp, norm_cast] lemma coe_zpow [div_inv_monoid α] {a : α} (n : ℤ) : | |
↑(a ^ n : α) = (↑a ^ n : with_zero α) := rfl | |
instance [div_inv_monoid α] : div_inv_monoid (with_zero α) := | |
{ div_eq_mul_inv := λ a b, match a, b with | |
| none, _ := rfl | |
| some a, none := rfl | |
| some a, some b := congr_arg some (div_eq_mul_inv _ _) | |
end, | |
zpow := λ n x, x ^ n, | |
zpow_zero' := λ x, match x with | |
| none := rfl | |
| some x := congr_arg some $ zpow_zero _ | |
end, | |
zpow_succ' := λ n x, match x with | |
| none := rfl | |
| some x := congr_arg some $ div_inv_monoid.zpow_succ' _ _ | |
end, | |
zpow_neg' := λ n x, match x with | |
| none := rfl | |
| some x := congr_arg some $ div_inv_monoid.zpow_neg' _ _ | |
end, | |
.. with_zero.has_div, | |
.. with_zero.has_inv, | |
.. with_zero.monoid_with_zero, } | |
instance [division_monoid α] : division_monoid (with_zero α) := | |
{ mul_inv_rev := λ a b, match a, b with | |
| none, none := rfl | |
| none, some b := rfl | |
| some a, none := rfl | |
| some a, some b := congr_arg some $ mul_inv_rev _ _ | |
end, | |
inv_eq_of_mul := λ a b, match a, b with | |
| none, none := λ _, rfl | |
| none, some b := by contradiction | |
| some a, none := by contradiction | |
| some a, some b := λ h, congr_arg some $ inv_eq_of_mul_eq_one_right $ option.some_injective _ h | |
end, | |
.. with_zero.div_inv_monoid, .. with_zero.has_involutive_inv } | |
instance [division_comm_monoid α] : division_comm_monoid (with_zero α) := | |
{ .. with_zero.division_monoid, .. with_zero.comm_semigroup } | |
section group | |
variables [group α] | |
@[simp] lemma inv_one : (1 : with_zero α)⁻¹ = 1 := | |
show ((1⁻¹ : α) : with_zero α) = 1, by simp | |
/-- if `G` is a group then `with_zero G` is a group with zero. -/ | |
instance : group_with_zero (with_zero α) := | |
{ inv_zero := inv_zero, | |
mul_inv_cancel := λ a ha, by { lift a to α using ha, norm_cast, apply mul_right_inv }, | |
.. with_zero.monoid_with_zero, | |
.. with_zero.div_inv_monoid, | |
.. with_zero.nontrivial } | |
end group | |
instance [comm_group α] : comm_group_with_zero (with_zero α) := | |
{ .. with_zero.group_with_zero, .. with_zero.comm_monoid_with_zero } | |
instance [add_monoid_with_one α] : add_monoid_with_one (with_zero α) := | |
{ nat_cast := λ n, if n = 0 then 0 else (n.cast : α), | |
nat_cast_zero := rfl, | |
nat_cast_succ := λ n, begin | |
cases n, | |
show (((1 : ℕ) : α) : with_zero α) = 0 + 1, by rw [nat.cast_one, coe_one, zero_add], | |
show (((n + 2 : ℕ) : α) : with_zero α) = ((n + 1 : ℕ) : α) + 1, | |
by rw [nat.cast_succ, coe_add, coe_one], | |
end, | |
.. with_zero.add_monoid, ..with_zero.has_one } | |
instance [semiring α] : semiring (with_zero α) := | |
{ left_distrib := λ a b c, begin | |
cases a with a, {refl}, | |
cases b with b; cases c with c; try {refl}, | |
exact congr_arg some (left_distrib _ _ _) | |
end, | |
right_distrib := λ a b c, begin | |
cases c with c, | |
{ change (a + b) * 0 = a * 0 + b * 0, simp }, | |
cases a with a; cases b with b; try {refl}, | |
exact congr_arg some (right_distrib _ _ _) | |
end, | |
..with_zero.add_monoid_with_one, | |
..with_zero.add_comm_monoid, | |
..with_zero.mul_zero_class, | |
..with_zero.monoid_with_zero } | |
/-- Any group is isomorphic to the units of itself adjoined with `0`. -/ | |
def units_with_zero_equiv [group α] : (with_zero α)ˣ ≃* α := | |
{ to_fun := λ a, unzero a.ne_zero, | |
inv_fun := λ a, units.mk0 a coe_ne_zero, | |
left_inv := λ _, units.ext $ by simpa only [coe_unzero], | |
right_inv := λ _, rfl, | |
map_mul' := λ _ _, coe_inj.mp $ by simpa only [coe_unzero, coe_mul] } | |
attribute [irreducible] with_zero | |
end with_zero | |