/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Johan Commelin -/ import algebra.hom.equiv import algebra.ring.basic import logic.equiv.basic import logic.equiv.option /-! # Adjoining a zero/one to semigroups and related algebraic structures This file contains different results about adjoining an element to an algebraic structure which then behaves like a zero or a one. An example is adjoining a one to a semigroup to obtain a monoid. That this provides an example of an adjunction is proved in `algebra.category.Mon.adjunctions`. Another result says that adjoining to a group an element `zero` gives a `group_with_zero`. For more information about these structures (which are not that standard in informal mathematics, see `algebra.group_with_zero.basic`) -/ universes u v w variables {α : Type u} {β : Type v} {γ : Type w} /-- Add an extra element `1` to a type -/ @[to_additive "Add an extra element `0` to a type"] def with_one (α) := option α namespace with_one instance [has_repr α] : has_repr (with_zero α) := ⟨λ o, match o with | none := "0" | (some a) := "↑" ++ repr a end⟩ @[to_additive] instance [has_repr α] : has_repr (with_one α) := ⟨λ o, match o with | none := "1" | (some a) := "↑" ++ repr a end⟩ @[to_additive] instance : monad with_one := option.monad @[to_additive] instance : has_one (with_one α) := ⟨none⟩ @[to_additive] instance [has_mul α] : has_mul (with_one α) := ⟨option.lift_or_get (*)⟩ @[to_additive] instance [has_inv α] : has_inv (with_one α) := ⟨λ a, option.map has_inv.inv a⟩ @[to_additive] instance [has_involutive_inv α] : has_involutive_inv (with_one α) := { inv_inv := λ a, (option.map_map _ _ _).trans $ by simp_rw [inv_comp_inv, option.map_id, id], ..with_one.has_inv } @[to_additive] instance : inhabited (with_one α) := ⟨1⟩ @[to_additive] instance [nonempty α] : nontrivial (with_one α) := option.nontrivial @[to_additive] instance : has_coe_t α (with_one α) := ⟨some⟩ /-- Recursor for `with_one` using the preferred forms `1` and `↑a`. -/ @[elab_as_eliminator, to_additive "Recursor for `with_zero` using the preferred forms `0` and `↑a`."] def rec_one_coe {C : with_one α → Sort*} (h₁ : C 1) (h₂ : Π (a : α), C a) : Π (n : with_one α), C n := option.rec h₁ h₂ /-- Deconstruct a `x : with_one α` to the underlying value in `α`, given a proof that `x ≠ 1`. -/ @[to_additive unzero "Deconstruct a `x : with_zero α` to the underlying value in `α`, given a proof that `x ≠ 0`."] def unone {x : with_one α} (hx : x ≠ 1) : α := with_bot.unbot x hx @[simp, to_additive unzero_coe] lemma unone_coe {x : α} (hx : (x : with_one α) ≠ 1) : unone hx = x := rfl @[simp, to_additive coe_unzero] lemma coe_unone {x : with_one α} (hx : x ≠ 1) : ↑(unone hx) = x := with_bot.coe_unbot x hx @[to_additive] lemma some_eq_coe {a : α} : (some a : with_one α) = ↑a := rfl @[simp, to_additive] lemma coe_ne_one {a : α} : (a : with_one α) ≠ (1 : with_one α) := option.some_ne_none a @[simp, to_additive] lemma one_ne_coe {a : α} : (1 : with_one α) ≠ a := coe_ne_one.symm @[to_additive] lemma ne_one_iff_exists {x : with_one α} : x ≠ 1 ↔ ∃ (a : α), ↑a = x := option.ne_none_iff_exists @[to_additive] instance : can_lift (with_one α) α := { coe := coe, cond := λ a, a ≠ 1, prf := λ a, ne_one_iff_exists.1 } @[simp, norm_cast, to_additive] lemma coe_inj {a b : α} : (a : with_one α) = b ↔ a = b := option.some_inj @[elab_as_eliminator, to_additive] protected lemma cases_on {P : with_one α → Prop} : ∀ (x : with_one α), P 1 → (∀ a : α, P a) → P x := option.cases_on -- the `show` statements in the proofs are important, because otherwise the generated lemmas -- `with_one.mul_one_class._proof_{1,2}` have an ill-typed statement after `with_one` is made -- irreducible. @[to_additive] instance [has_mul α] : mul_one_class (with_one α) := { mul := (*), one := (1), one_mul := show ∀ x : with_one α, 1 * x = x, from (option.lift_or_get_is_left_id _).1, mul_one := show ∀ x : with_one α, x * 1 = x, from (option.lift_or_get_is_right_id _).1 } @[to_additive] instance [semigroup α] : monoid (with_one α) := { mul_assoc := (option.lift_or_get_assoc _).1, ..with_one.mul_one_class } example [semigroup α] : @monoid.to_mul_one_class _ (@with_one.monoid α _) = @with_one.mul_one_class α _ := rfl @[to_additive] instance [comm_semigroup α] : comm_monoid (with_one α) := { mul_comm := (option.lift_or_get_comm _).1, ..with_one.monoid } section -- workaround: we make `with_one`/`with_zero` irreducible for this definition, otherwise `simps` -- will unfold it in the statement of the lemma it generates. local attribute [irreducible] with_one with_zero /-- `coe` as a bundled morphism -/ @[to_additive "`coe` as a bundled morphism", simps apply] def coe_mul_hom [has_mul α] : α →ₙ* (with_one α) := { to_fun := coe, map_mul' := λ x y, rfl } end section lift variables [has_mul α] [mul_one_class β] /-- Lift a semigroup homomorphism `f` to a bundled monoid homorphism. -/ @[to_additive "Lift an add_semigroup homomorphism `f` to a bundled add_monoid homorphism."] def lift : (α →ₙ* β) ≃ (with_one α →* β) := { to_fun := λ f, { to_fun := λ x, option.cases_on x 1 f, map_one' := rfl, map_mul' := λ x y, with_one.cases_on x (by { rw one_mul, exact (one_mul _).symm }) $ λ x, with_one.cases_on y (by { rw mul_one, exact (mul_one _).symm }) $ λ y, f.map_mul x y }, inv_fun := λ F, F.to_mul_hom.comp coe_mul_hom, left_inv := λ f, mul_hom.ext $ λ x, rfl, right_inv := λ F, monoid_hom.ext $ λ x, with_one.cases_on x F.map_one.symm $ λ x, rfl } variables (f : α →ₙ* β) @[simp, to_additive] lemma lift_coe (x : α) : lift f x = f x := rfl @[simp, to_additive] lemma lift_one : lift f 1 = 1 := rfl @[to_additive] theorem lift_unique (f : with_one α →* β) : f = lift (f.to_mul_hom.comp coe_mul_hom) := (lift.apply_symm_apply f).symm end lift attribute [irreducible] with_one section map variables [has_mul α] [has_mul β] [has_mul γ] /-- Given a multiplicative map from `α → β` returns a monoid homomorphism from `with_one α` to `with_one β` -/ @[to_additive "Given an additive map from `α → β` returns an add_monoid homomorphism from `with_zero α` to `with_zero β`"] def map (f : α →ₙ* β) : with_one α →* with_one β := lift (coe_mul_hom.comp f) @[simp, to_additive] lemma map_coe (f : α →ₙ* β) (a : α) : map f (a : with_one α) = f a := lift_coe _ _ @[simp, to_additive] lemma map_id : map (mul_hom.id α) = monoid_hom.id (with_one α) := by { ext, induction x using with_one.cases_on; refl } @[to_additive] lemma map_map (f : α →ₙ* β) (g : β →ₙ* γ) (x) : map g (map f x) = map (g.comp f) x := by { induction x using with_one.cases_on; refl } @[simp, to_additive] lemma map_comp (f : α →ₙ* β) (g : β →ₙ* γ) : map (g.comp f) = (map g).comp (map f) := monoid_hom.ext $ λ x, (map_map f g x).symm /-- A version of `equiv.option_congr` for `with_one`. -/ @[to_additive "A version of `equiv.option_congr` for `with_zero`.", simps apply] def _root_.mul_equiv.with_one_congr (e : α ≃* β) : with_one α ≃* with_one β := { to_fun := map e.to_mul_hom, inv_fun := map e.symm.to_mul_hom, left_inv := λ x, (map_map _ _ _).trans $ by induction x using with_one.cases_on; { simp }, right_inv := λ x, (map_map _ _ _).trans $ by induction x using with_one.cases_on; { simp }, .. map e.to_mul_hom } @[simp] lemma _root_.mul_equiv.with_one_congr_refl : (mul_equiv.refl α).with_one_congr = mul_equiv.refl _ := mul_equiv.to_monoid_hom_injective map_id @[simp] lemma _root_.mul_equiv.with_one_congr_symm (e : α ≃* β) : e.with_one_congr.symm = e.symm.with_one_congr := rfl @[simp] lemma _root_.mul_equiv.with_one_congr_trans (e₁ : α ≃* β) (e₂ : β ≃* γ) : e₁.with_one_congr.trans e₂.with_one_congr = (e₁.trans e₂).with_one_congr := mul_equiv.to_monoid_hom_injective (map_comp _ _).symm end map @[simp, norm_cast, to_additive] lemma coe_mul [has_mul α] (a b : α) : ((a * b : α) : with_one α) = a * b := rfl @[simp, norm_cast, to_additive] lemma coe_inv [has_inv α] (a : α) : ((a⁻¹ : α) : with_one α) = a⁻¹ := rfl end with_one namespace with_zero instance [one : has_one α] : has_one (with_zero α) := { ..one } @[simp, norm_cast] lemma coe_one [has_one α] : ((1 : α) : with_zero α) = 1 := rfl instance [has_mul α] : mul_zero_class (with_zero α) := { mul := λ o₁ o₂, o₁.bind (λ a, option.map (λ b, a * b) o₂), zero_mul := λ a, rfl, mul_zero := λ a, by cases a; refl, ..with_zero.has_zero } @[simp, norm_cast] lemma coe_mul {α : Type u} [has_mul α] {a b : α} : ((a * b : α) : with_zero α) = a * b := rfl @[simp] lemma zero_mul {α : Type u} [has_mul α] (a : with_zero α) : 0 * a = 0 := rfl @[simp] lemma mul_zero {α : Type u} [has_mul α] (a : with_zero α) : a * 0 = 0 := by cases a; refl instance [has_mul α] : no_zero_divisors (with_zero α) := ⟨by { rintro (a|a) (b|b) h, exacts [or.inl rfl, or.inl rfl, or.inr rfl, option.no_confusion h] }⟩ instance [semigroup α] : semigroup_with_zero (with_zero α) := { mul_assoc := λ a b c, match a, b, c with | none, _, _ := rfl | some a, none, _ := rfl | some a, some b, none := rfl | some a, some b, some c := congr_arg some (mul_assoc _ _ _) end, ..with_zero.mul_zero_class } instance [comm_semigroup α] : comm_semigroup (with_zero α) := { mul_comm := λ a b, match a, b with | none, _ := (mul_zero _).symm | some a, none := rfl | some a, some b := congr_arg some (mul_comm _ _) end, ..with_zero.semigroup_with_zero } instance [mul_one_class α] : mul_zero_one_class (with_zero α) := { one_mul := λ a, match a with | none := rfl | some a := congr_arg some $ one_mul _ end, mul_one := λ a, match a with | none := rfl | some a := congr_arg some $ mul_one _ end, ..with_zero.mul_zero_class, ..with_zero.has_one } instance [has_one α] [has_pow α ℕ] : has_pow (with_zero α) ℕ := ⟨λ x n, match x, n with | none, 0 := 1 | none, n + 1 := 0 | some x, n := ↑(x ^ n) end⟩ @[simp, norm_cast] lemma coe_pow [has_one α] [has_pow α ℕ] {a : α} (n : ℕ) : ↑(a ^ n : α) = (↑a ^ n : with_zero α) := rfl instance [monoid α] : monoid_with_zero (with_zero α) := { npow := λ n x, x ^ n, npow_zero' := λ x, match x with | none := rfl | some x := congr_arg some $ pow_zero _ end, npow_succ' := λ n x, match x with | none := rfl | some x := congr_arg some $ pow_succ _ _ end, .. with_zero.mul_zero_one_class, .. with_zero.semigroup_with_zero } instance [comm_monoid α] : comm_monoid_with_zero (with_zero α) := { ..with_zero.monoid_with_zero, ..with_zero.comm_semigroup } /-- Given an inverse operation on `α` there is an inverse operation on `with_zero α` sending `0` to `0`-/ instance [has_inv α] : has_inv (with_zero α) := ⟨λ a, option.map has_inv.inv a⟩ @[simp, norm_cast] lemma coe_inv [has_inv α] (a : α) : ((a⁻¹ : α) : with_zero α) = a⁻¹ := rfl @[simp] lemma inv_zero [has_inv α] : (0 : with_zero α)⁻¹ = 0 := rfl instance [has_involutive_inv α] : has_involutive_inv (with_zero α) := { inv_inv := λ a, (option.map_map _ _ _).trans $ by simp_rw [inv_comp_inv, option.map_id, id], ..with_zero.has_inv } instance [has_div α] : has_div (with_zero α) := ⟨λ o₁ o₂, o₁.bind (λ a, option.map (λ b, a / b) o₂)⟩ @[norm_cast] lemma coe_div [has_div α] (a b : α) : ↑(a / b : α) = (a / b : with_zero α) := rfl instance [has_one α] [has_pow α ℤ] : has_pow (with_zero α) ℤ := ⟨λ x n, match x, n with | none, int.of_nat 0 := 1 | none, int.of_nat (nat.succ n) := 0 | none, int.neg_succ_of_nat n := 0 | some x, n := ↑(x ^ n) end⟩ @[simp, norm_cast] lemma coe_zpow [div_inv_monoid α] {a : α} (n : ℤ) : ↑(a ^ n : α) = (↑a ^ n : with_zero α) := rfl instance [div_inv_monoid α] : div_inv_monoid (with_zero α) := { div_eq_mul_inv := λ a b, match a, b with | none, _ := rfl | some a, none := rfl | some a, some b := congr_arg some (div_eq_mul_inv _ _) end, zpow := λ n x, x ^ n, zpow_zero' := λ x, match x with | none := rfl | some x := congr_arg some $ zpow_zero _ end, zpow_succ' := λ n x, match x with | none := rfl | some x := congr_arg some $ div_inv_monoid.zpow_succ' _ _ end, zpow_neg' := λ n x, match x with | none := rfl | some x := congr_arg some $ div_inv_monoid.zpow_neg' _ _ end, .. with_zero.has_div, .. with_zero.has_inv, .. with_zero.monoid_with_zero, } instance [division_monoid α] : division_monoid (with_zero α) := { mul_inv_rev := λ a b, match a, b with | none, none := rfl | none, some b := rfl | some a, none := rfl | some a, some b := congr_arg some $ mul_inv_rev _ _ end, inv_eq_of_mul := λ a b, match a, b with | none, none := λ _, rfl | none, some b := by contradiction | some a, none := by contradiction | some a, some b := λ h, congr_arg some $ inv_eq_of_mul_eq_one_right $ option.some_injective _ h end, .. with_zero.div_inv_monoid, .. with_zero.has_involutive_inv } instance [division_comm_monoid α] : division_comm_monoid (with_zero α) := { .. with_zero.division_monoid, .. with_zero.comm_semigroup } section group variables [group α] @[simp] lemma inv_one : (1 : with_zero α)⁻¹ = 1 := show ((1⁻¹ : α) : with_zero α) = 1, by simp /-- if `G` is a group then `with_zero G` is a group with zero. -/ instance : group_with_zero (with_zero α) := { inv_zero := inv_zero, mul_inv_cancel := λ a ha, by { lift a to α using ha, norm_cast, apply mul_right_inv }, .. with_zero.monoid_with_zero, .. with_zero.div_inv_monoid, .. with_zero.nontrivial } end group instance [comm_group α] : comm_group_with_zero (with_zero α) := { .. with_zero.group_with_zero, .. with_zero.comm_monoid_with_zero } instance [add_monoid_with_one α] : add_monoid_with_one (with_zero α) := { nat_cast := λ n, if n = 0 then 0 else (n.cast : α), nat_cast_zero := rfl, nat_cast_succ := λ n, begin cases n, show (((1 : ℕ) : α) : with_zero α) = 0 + 1, by rw [nat.cast_one, coe_one, zero_add], show (((n + 2 : ℕ) : α) : with_zero α) = ((n + 1 : ℕ) : α) + 1, by rw [nat.cast_succ, coe_add, coe_one], end, .. with_zero.add_monoid, ..with_zero.has_one } instance [semiring α] : semiring (with_zero α) := { left_distrib := λ a b c, begin cases a with a, {refl}, cases b with b; cases c with c; try {refl}, exact congr_arg some (left_distrib _ _ _) end, right_distrib := λ a b c, begin cases c with c, { change (a + b) * 0 = a * 0 + b * 0, simp }, cases a with a; cases b with b; try {refl}, exact congr_arg some (right_distrib _ _ _) end, ..with_zero.add_monoid_with_one, ..with_zero.add_comm_monoid, ..with_zero.mul_zero_class, ..with_zero.monoid_with_zero } /-- Any group is isomorphic to the units of itself adjoined with `0`. -/ def units_with_zero_equiv [group α] : (with_zero α)ˣ ≃* α := { to_fun := λ a, unzero a.ne_zero, inv_fun := λ a, units.mk0 a coe_ne_zero, left_inv := λ _, units.ext $ by simpa only [coe_unzero], right_inv := λ _, rfl, map_mul' := λ _ _, coe_inj.mp $ by simpa only [coe_unzero, coe_mul] } attribute [irreducible] with_zero end with_zero