Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 15,756 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Johan Commelin
-/
import algebra.hom.equiv
import algebra.ring.basic
import logic.equiv.basic
import logic.equiv.option
/-!
# Adjoining a zero/one to semigroups and related algebraic structures
This file contains different results about adjoining an element to an algebraic structure which then
behaves like a zero or a one. An example is adjoining a one to a semigroup to obtain a monoid. That
this provides an example of an adjunction is proved in `algebra.category.Mon.adjunctions`.
Another result says that adjoining to a group an element `zero` gives a `group_with_zero`. For more
information about these structures (which are not that standard in informal mathematics, see
`algebra.group_with_zero.basic`)
-/
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
/-- Add an extra element `1` to a type -/
@[to_additive "Add an extra element `0` to a type"]
def with_one (α) := option α
namespace with_one
instance [has_repr α] : has_repr (with_zero α) :=
⟨λ o, match o with | none := "0" | (some a) := "↑" ++ repr a end⟩
@[to_additive]
instance [has_repr α] : has_repr (with_one α) :=
⟨λ o, match o with | none := "1" | (some a) := "↑" ++ repr a end⟩
@[to_additive]
instance : monad with_one := option.monad
@[to_additive]
instance : has_one (with_one α) := ⟨none⟩
@[to_additive]
instance [has_mul α] : has_mul (with_one α) := ⟨option.lift_or_get (*)⟩
@[to_additive] instance [has_inv α] : has_inv (with_one α) := ⟨λ a, option.map has_inv.inv a⟩
@[to_additive] instance [has_involutive_inv α] : has_involutive_inv (with_one α) :=
{ inv_inv := λ a, (option.map_map _ _ _).trans $ by simp_rw [inv_comp_inv, option.map_id, id],
..with_one.has_inv }
@[to_additive]
instance : inhabited (with_one α) := ⟨1⟩
@[to_additive]
instance [nonempty α] : nontrivial (with_one α) := option.nontrivial
@[to_additive]
instance : has_coe_t α (with_one α) := ⟨some⟩
/-- Recursor for `with_one` using the preferred forms `1` and `↑a`. -/
@[elab_as_eliminator,
to_additive "Recursor for `with_zero` using the preferred forms `0` and `↑a`."]
def rec_one_coe {C : with_one α → Sort*} (h₁ : C 1) (h₂ : Π (a : α), C a) :
Π (n : with_one α), C n :=
option.rec h₁ h₂
/-- Deconstruct a `x : with_one α` to the underlying value in `α`, given a proof that `x ≠ 1`. -/
@[to_additive unzero
"Deconstruct a `x : with_zero α` to the underlying value in `α`, given a proof that `x ≠ 0`."]
def unone {x : with_one α} (hx : x ≠ 1) : α := with_bot.unbot x hx
@[simp, to_additive unzero_coe]
lemma unone_coe {x : α} (hx : (x : with_one α) ≠ 1) : unone hx = x := rfl
@[simp, to_additive coe_unzero]
lemma coe_unone {x : with_one α} (hx : x ≠ 1) : ↑(unone hx) = x := with_bot.coe_unbot x hx
@[to_additive]
lemma some_eq_coe {a : α} : (some a : with_one α) = ↑a := rfl
@[simp, to_additive]
lemma coe_ne_one {a : α} : (a : with_one α) ≠ (1 : with_one α) :=
option.some_ne_none a
@[simp, to_additive]
lemma one_ne_coe {a : α} : (1 : with_one α) ≠ a :=
coe_ne_one.symm
@[to_additive]
lemma ne_one_iff_exists {x : with_one α} : x ≠ 1 ↔ ∃ (a : α), ↑a = x :=
option.ne_none_iff_exists
@[to_additive]
instance : can_lift (with_one α) α :=
{ coe := coe,
cond := λ a, a ≠ 1,
prf := λ a, ne_one_iff_exists.1 }
@[simp, norm_cast, to_additive]
lemma coe_inj {a b : α} : (a : with_one α) = b ↔ a = b :=
option.some_inj
@[elab_as_eliminator, to_additive]
protected lemma cases_on {P : with_one α → Prop} :
∀ (x : with_one α), P 1 → (∀ a : α, P a) → P x :=
option.cases_on
-- the `show` statements in the proofs are important, because otherwise the generated lemmas
-- `with_one.mul_one_class._proof_{1,2}` have an ill-typed statement after `with_one` is made
-- irreducible.
@[to_additive]
instance [has_mul α] : mul_one_class (with_one α) :=
{ mul := (*),
one := (1),
one_mul := show ∀ x : with_one α, 1 * x = x, from (option.lift_or_get_is_left_id _).1,
mul_one := show ∀ x : with_one α, x * 1 = x, from (option.lift_or_get_is_right_id _).1 }
@[to_additive]
instance [semigroup α] : monoid (with_one α) :=
{ mul_assoc := (option.lift_or_get_assoc _).1,
..with_one.mul_one_class }
example [semigroup α] :
@monoid.to_mul_one_class _ (@with_one.monoid α _) = @with_one.mul_one_class α _ := rfl
@[to_additive]
instance [comm_semigroup α] : comm_monoid (with_one α) :=
{ mul_comm := (option.lift_or_get_comm _).1,
..with_one.monoid }
section
-- workaround: we make `with_one`/`with_zero` irreducible for this definition, otherwise `simps`
-- will unfold it in the statement of the lemma it generates.
local attribute [irreducible] with_one with_zero
/-- `coe` as a bundled morphism -/
@[to_additive "`coe` as a bundled morphism", simps apply]
def coe_mul_hom [has_mul α] : α →ₙ* (with_one α) :=
{ to_fun := coe, map_mul' := λ x y, rfl }
end
section lift
variables [has_mul α] [mul_one_class β]
/-- Lift a semigroup homomorphism `f` to a bundled monoid homorphism. -/
@[to_additive "Lift an add_semigroup homomorphism `f` to a bundled add_monoid homorphism."]
def lift : (α →ₙ* β) ≃ (with_one α →* β) :=
{ to_fun := λ f,
{ to_fun := λ x, option.cases_on x 1 f,
map_one' := rfl,
map_mul' := λ x y,
with_one.cases_on x (by { rw one_mul, exact (one_mul _).symm }) $ λ x,
with_one.cases_on y (by { rw mul_one, exact (mul_one _).symm }) $ λ y,
f.map_mul x y },
inv_fun := λ F, F.to_mul_hom.comp coe_mul_hom,
left_inv := λ f, mul_hom.ext $ λ x, rfl,
right_inv := λ F, monoid_hom.ext $ λ x, with_one.cases_on x F.map_one.symm $ λ x, rfl }
variables (f : α →ₙ* β)
@[simp, to_additive]
lemma lift_coe (x : α) : lift f x = f x := rfl
@[simp, to_additive]
lemma lift_one : lift f 1 = 1 := rfl
@[to_additive]
theorem lift_unique (f : with_one α →* β) : f = lift (f.to_mul_hom.comp coe_mul_hom) :=
(lift.apply_symm_apply f).symm
end lift
attribute [irreducible] with_one
section map
variables [has_mul α] [has_mul β] [has_mul γ]
/-- Given a multiplicative map from `α → β` returns a monoid homomorphism
from `with_one α` to `with_one β` -/
@[to_additive "Given an additive map from `α → β` returns an add_monoid homomorphism
from `with_zero α` to `with_zero β`"]
def map (f : α →ₙ* β) : with_one α →* with_one β :=
lift (coe_mul_hom.comp f)
@[simp, to_additive] lemma map_coe (f : α →ₙ* β) (a : α) : map f (a : with_one α) = f a :=
lift_coe _ _
@[simp, to_additive]
lemma map_id : map (mul_hom.id α) = monoid_hom.id (with_one α) :=
by { ext, induction x using with_one.cases_on; refl }
@[to_additive]
lemma map_map (f : α →ₙ* β) (g : β →ₙ* γ) (x) :
map g (map f x) = map (g.comp f) x :=
by { induction x using with_one.cases_on; refl }
@[simp, to_additive]
lemma map_comp (f : α →ₙ* β) (g : β →ₙ* γ) :
map (g.comp f) = (map g).comp (map f) :=
monoid_hom.ext $ λ x, (map_map f g x).symm
/-- A version of `equiv.option_congr` for `with_one`. -/
@[to_additive "A version of `equiv.option_congr` for `with_zero`.", simps apply]
def _root_.mul_equiv.with_one_congr (e : α ≃* β) : with_one α ≃* with_one β :=
{ to_fun := map e.to_mul_hom,
inv_fun := map e.symm.to_mul_hom,
left_inv := λ x, (map_map _ _ _).trans $ by induction x using with_one.cases_on; { simp },
right_inv := λ x, (map_map _ _ _).trans $ by induction x using with_one.cases_on; { simp },
.. map e.to_mul_hom }
@[simp]
lemma _root_.mul_equiv.with_one_congr_refl : (mul_equiv.refl α).with_one_congr = mul_equiv.refl _ :=
mul_equiv.to_monoid_hom_injective map_id
@[simp]
lemma _root_.mul_equiv.with_one_congr_symm (e : α ≃* β) :
e.with_one_congr.symm = e.symm.with_one_congr := rfl
@[simp]
lemma _root_.mul_equiv.with_one_congr_trans (e₁ : α ≃* β) (e₂ : β ≃* γ) :
e₁.with_one_congr.trans e₂.with_one_congr = (e₁.trans e₂).with_one_congr :=
mul_equiv.to_monoid_hom_injective (map_comp _ _).symm
end map
@[simp, norm_cast, to_additive]
lemma coe_mul [has_mul α] (a b : α) : ((a * b : α) : with_one α) = a * b := rfl
@[simp, norm_cast, to_additive]
lemma coe_inv [has_inv α] (a : α) : ((a⁻¹ : α) : with_one α) = a⁻¹ := rfl
end with_one
namespace with_zero
instance [one : has_one α] : has_one (with_zero α) :=
{ ..one }
@[simp, norm_cast] lemma coe_one [has_one α] : ((1 : α) : with_zero α) = 1 := rfl
instance [has_mul α] : mul_zero_class (with_zero α) :=
{ mul := λ o₁ o₂, o₁.bind (λ a, option.map (λ b, a * b) o₂),
zero_mul := λ a, rfl,
mul_zero := λ a, by cases a; refl,
..with_zero.has_zero }
@[simp, norm_cast] lemma coe_mul {α : Type u} [has_mul α]
{a b : α} : ((a * b : α) : with_zero α) = a * b := rfl
@[simp] lemma zero_mul {α : Type u} [has_mul α]
(a : with_zero α) : 0 * a = 0 := rfl
@[simp] lemma mul_zero {α : Type u} [has_mul α]
(a : with_zero α) : a * 0 = 0 := by cases a; refl
instance [has_mul α] : no_zero_divisors (with_zero α) :=
⟨by { rintro (a|a) (b|b) h, exacts [or.inl rfl, or.inl rfl, or.inr rfl, option.no_confusion h] }⟩
instance [semigroup α] : semigroup_with_zero (with_zero α) :=
{ mul_assoc := λ a b c, match a, b, c with
| none, _, _ := rfl
| some a, none, _ := rfl
| some a, some b, none := rfl
| some a, some b, some c := congr_arg some (mul_assoc _ _ _)
end,
..with_zero.mul_zero_class }
instance [comm_semigroup α] : comm_semigroup (with_zero α) :=
{ mul_comm := λ a b, match a, b with
| none, _ := (mul_zero _).symm
| some a, none := rfl
| some a, some b := congr_arg some (mul_comm _ _)
end,
..with_zero.semigroup_with_zero }
instance [mul_one_class α] : mul_zero_one_class (with_zero α) :=
{ one_mul := λ a, match a with
| none := rfl
| some a := congr_arg some $ one_mul _
end,
mul_one := λ a, match a with
| none := rfl
| some a := congr_arg some $ mul_one _
end,
..with_zero.mul_zero_class,
..with_zero.has_one }
instance [has_one α] [has_pow α ℕ] : has_pow (with_zero α) ℕ :=
⟨λ x n, match x, n with
| none, 0 := 1
| none, n + 1 := 0
| some x, n := ↑(x ^ n)
end⟩
@[simp, norm_cast] lemma coe_pow [has_one α] [has_pow α ℕ] {a : α} (n : ℕ) :
↑(a ^ n : α) = (↑a ^ n : with_zero α) := rfl
instance [monoid α] : monoid_with_zero (with_zero α) :=
{ npow := λ n x, x ^ n,
npow_zero' := λ x, match x with
| none := rfl
| some x := congr_arg some $ pow_zero _
end,
npow_succ' := λ n x, match x with
| none := rfl
| some x := congr_arg some $ pow_succ _ _
end,
.. with_zero.mul_zero_one_class,
.. with_zero.semigroup_with_zero }
instance [comm_monoid α] : comm_monoid_with_zero (with_zero α) :=
{ ..with_zero.monoid_with_zero, ..with_zero.comm_semigroup }
/-- Given an inverse operation on `α` there is an inverse operation
on `with_zero α` sending `0` to `0`-/
instance [has_inv α] : has_inv (with_zero α) := ⟨λ a, option.map has_inv.inv a⟩
@[simp, norm_cast] lemma coe_inv [has_inv α] (a : α) : ((a⁻¹ : α) : with_zero α) = a⁻¹ := rfl
@[simp] lemma inv_zero [has_inv α] : (0 : with_zero α)⁻¹ = 0 := rfl
instance [has_involutive_inv α] : has_involutive_inv (with_zero α) :=
{ inv_inv := λ a, (option.map_map _ _ _).trans $ by simp_rw [inv_comp_inv, option.map_id, id],
..with_zero.has_inv }
instance [has_div α] : has_div (with_zero α) :=
⟨λ o₁ o₂, o₁.bind (λ a, option.map (λ b, a / b) o₂)⟩
@[norm_cast] lemma coe_div [has_div α] (a b : α) : ↑(a / b : α) = (a / b : with_zero α) := rfl
instance [has_one α] [has_pow α ℤ] : has_pow (with_zero α) ℤ :=
⟨λ x n, match x, n with
| none, int.of_nat 0 := 1
| none, int.of_nat (nat.succ n) := 0
| none, int.neg_succ_of_nat n := 0
| some x, n := ↑(x ^ n)
end⟩
@[simp, norm_cast] lemma coe_zpow [div_inv_monoid α] {a : α} (n : ℤ) :
↑(a ^ n : α) = (↑a ^ n : with_zero α) := rfl
instance [div_inv_monoid α] : div_inv_monoid (with_zero α) :=
{ div_eq_mul_inv := λ a b, match a, b with
| none, _ := rfl
| some a, none := rfl
| some a, some b := congr_arg some (div_eq_mul_inv _ _)
end,
zpow := λ n x, x ^ n,
zpow_zero' := λ x, match x with
| none := rfl
| some x := congr_arg some $ zpow_zero _
end,
zpow_succ' := λ n x, match x with
| none := rfl
| some x := congr_arg some $ div_inv_monoid.zpow_succ' _ _
end,
zpow_neg' := λ n x, match x with
| none := rfl
| some x := congr_arg some $ div_inv_monoid.zpow_neg' _ _
end,
.. with_zero.has_div,
.. with_zero.has_inv,
.. with_zero.monoid_with_zero, }
instance [division_monoid α] : division_monoid (with_zero α) :=
{ mul_inv_rev := λ a b, match a, b with
| none, none := rfl
| none, some b := rfl
| some a, none := rfl
| some a, some b := congr_arg some $ mul_inv_rev _ _
end,
inv_eq_of_mul := λ a b, match a, b with
| none, none := λ _, rfl
| none, some b := by contradiction
| some a, none := by contradiction
| some a, some b := λ h, congr_arg some $ inv_eq_of_mul_eq_one_right $ option.some_injective _ h
end,
.. with_zero.div_inv_monoid, .. with_zero.has_involutive_inv }
instance [division_comm_monoid α] : division_comm_monoid (with_zero α) :=
{ .. with_zero.division_monoid, .. with_zero.comm_semigroup }
section group
variables [group α]
@[simp] lemma inv_one : (1 : with_zero α)⁻¹ = 1 :=
show ((1⁻¹ : α) : with_zero α) = 1, by simp
/-- if `G` is a group then `with_zero G` is a group with zero. -/
instance : group_with_zero (with_zero α) :=
{ inv_zero := inv_zero,
mul_inv_cancel := λ a ha, by { lift a to α using ha, norm_cast, apply mul_right_inv },
.. with_zero.monoid_with_zero,
.. with_zero.div_inv_monoid,
.. with_zero.nontrivial }
end group
instance [comm_group α] : comm_group_with_zero (with_zero α) :=
{ .. with_zero.group_with_zero, .. with_zero.comm_monoid_with_zero }
instance [add_monoid_with_one α] : add_monoid_with_one (with_zero α) :=
{ nat_cast := λ n, if n = 0 then 0 else (n.cast : α),
nat_cast_zero := rfl,
nat_cast_succ := λ n, begin
cases n,
show (((1 : ℕ) : α) : with_zero α) = 0 + 1, by rw [nat.cast_one, coe_one, zero_add],
show (((n + 2 : ℕ) : α) : with_zero α) = ((n + 1 : ℕ) : α) + 1,
by rw [nat.cast_succ, coe_add, coe_one],
end,
.. with_zero.add_monoid, ..with_zero.has_one }
instance [semiring α] : semiring (with_zero α) :=
{ left_distrib := λ a b c, begin
cases a with a, {refl},
cases b with b; cases c with c; try {refl},
exact congr_arg some (left_distrib _ _ _)
end,
right_distrib := λ a b c, begin
cases c with c,
{ change (a + b) * 0 = a * 0 + b * 0, simp },
cases a with a; cases b with b; try {refl},
exact congr_arg some (right_distrib _ _ _)
end,
..with_zero.add_monoid_with_one,
..with_zero.add_comm_monoid,
..with_zero.mul_zero_class,
..with_zero.monoid_with_zero }
/-- Any group is isomorphic to the units of itself adjoined with `0`. -/
def units_with_zero_equiv [group α] : (with_zero α)ˣ ≃* α :=
{ to_fun := λ a, unzero a.ne_zero,
inv_fun := λ a, units.mk0 a coe_ne_zero,
left_inv := λ _, units.ext $ by simpa only [coe_unzero],
right_inv := λ _, rfl,
map_mul' := λ _ _, coe_inj.mp $ by simpa only [coe_unzero, coe_mul] }
attribute [irreducible] with_zero
end with_zero
|