Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 15,756 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Johan Commelin
-/
import algebra.hom.equiv
import algebra.ring.basic
import logic.equiv.basic
import logic.equiv.option

/-!
# Adjoining a zero/one to semigroups and related algebraic structures

This file contains different results about adjoining an element to an algebraic structure which then
behaves like a zero or a one. An example is adjoining a one to a semigroup to obtain a monoid. That
this provides an example of an adjunction is proved in `algebra.category.Mon.adjunctions`.

Another result says that adjoining to a group an element `zero` gives a `group_with_zero`. For more
information about these structures (which are not that standard in informal mathematics, see
`algebra.group_with_zero.basic`)
-/

universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}

/-- Add an extra element `1` to a type -/
@[to_additive "Add an extra element `0` to a type"]
def with_one (α) := option α

namespace with_one

instance [has_repr α] : has_repr (with_zero α) :=
⟨λ o, match o with | none := "0" | (some a) := "↑" ++ repr a end⟩

@[to_additive]
instance [has_repr α] : has_repr (with_one α) :=
⟨λ o, match o with | none := "1" | (some a) := "↑" ++ repr a end⟩

@[to_additive]
instance : monad with_one := option.monad

@[to_additive]
instance : has_one (with_one α) := ⟨none⟩

@[to_additive]
instance [has_mul α] : has_mul (with_one α) := ⟨option.lift_or_get (*)⟩

@[to_additive] instance [has_inv α] : has_inv (with_one α) := ⟨λ a, option.map has_inv.inv a⟩

@[to_additive] instance [has_involutive_inv α] : has_involutive_inv (with_one α) :=
{ inv_inv := λ a, (option.map_map _ _ _).trans $ by simp_rw [inv_comp_inv, option.map_id, id],
  ..with_one.has_inv }

@[to_additive]
instance : inhabited (with_one α) := ⟨1⟩

@[to_additive]
instance [nonempty α] : nontrivial (with_one α) := option.nontrivial

@[to_additive]
instance : has_coe_t α (with_one α) := ⟨some⟩

/-- Recursor for `with_one` using the preferred forms `1` and `↑a`. -/
@[elab_as_eliminator,
  to_additive "Recursor for `with_zero` using the preferred forms `0` and `↑a`."]
def rec_one_coe {C : with_one α → Sort*} (h₁ : C 1) (h₂ : Π (a : α), C a) :
  Π (n : with_one α), C n :=
option.rec h₁ h₂

/-- Deconstruct a `x : with_one α` to the underlying value in `α`, given a proof that `x ≠ 1`. -/
@[to_additive unzero
  "Deconstruct a `x : with_zero α` to the underlying value in `α`, given a proof that `x ≠ 0`."]
def unone {x : with_one α} (hx : x ≠ 1) : α := with_bot.unbot x hx

@[simp, to_additive unzero_coe]
lemma unone_coe {x : α} (hx : (x : with_one α) ≠ 1) : unone hx = x := rfl

@[simp, to_additive coe_unzero]
lemma coe_unone {x : with_one α} (hx : x ≠ 1) : ↑(unone hx) = x := with_bot.coe_unbot x hx

@[to_additive]
lemma some_eq_coe {a : α} : (some a : with_one α) = ↑a := rfl

@[simp, to_additive]
lemma coe_ne_one {a : α} : (a : with_one α) ≠ (1 : with_one α) :=
option.some_ne_none a

@[simp, to_additive]
lemma one_ne_coe {a : α} : (1 : with_one α) ≠ a :=
coe_ne_one.symm

@[to_additive]
lemma ne_one_iff_exists {x : with_one α} : x ≠ 1 ↔ ∃ (a : α), ↑a = x :=
option.ne_none_iff_exists

@[to_additive]
instance : can_lift (with_one α) α :=
{ coe := coe,
  cond := λ a, a ≠ 1,
  prf := λ a, ne_one_iff_exists.1 }

@[simp, norm_cast, to_additive]
lemma coe_inj {a b : α} : (a : with_one α) = b ↔ a = b :=
option.some_inj

@[elab_as_eliminator, to_additive]
protected lemma cases_on {P : with_one α → Prop} :
  ∀ (x : with_one α), P 1 → (∀ a : α, P a) → P x :=
option.cases_on

-- the `show` statements in the proofs are important, because otherwise the generated lemmas
-- `with_one.mul_one_class._proof_{1,2}` have an ill-typed statement after `with_one` is made
-- irreducible.
@[to_additive]
instance [has_mul α] : mul_one_class (with_one α) :=
{ mul := (*),
  one := (1),
  one_mul   := show ∀ x : with_one α, 1 * x = x, from (option.lift_or_get_is_left_id _).1,
  mul_one   := show ∀ x : with_one α, x * 1 = x, from (option.lift_or_get_is_right_id _).1 }

@[to_additive]
instance [semigroup α] : monoid (with_one α) :=
{ mul_assoc := (option.lift_or_get_assoc _).1,
  ..with_one.mul_one_class }

example [semigroup α] :
  @monoid.to_mul_one_class _ (@with_one.monoid α _) = @with_one.mul_one_class α _ := rfl

@[to_additive]
instance [comm_semigroup α] : comm_monoid (with_one α) :=
{ mul_comm := (option.lift_or_get_comm _).1,
  ..with_one.monoid }

section
-- workaround: we make `with_one`/`with_zero` irreducible for this definition, otherwise `simps`
-- will unfold it in the statement of the lemma it generates.
local attribute [irreducible] with_one with_zero
/-- `coe` as a bundled morphism -/
@[to_additive "`coe` as a bundled morphism", simps apply]
def coe_mul_hom [has_mul α] : α →ₙ* (with_one α) :=
{ to_fun := coe, map_mul' := λ x y, rfl }

end

section lift

variables [has_mul α] [mul_one_class β]

/-- Lift a semigroup homomorphism `f` to a bundled monoid homorphism. -/
@[to_additive "Lift an add_semigroup homomorphism `f` to a bundled add_monoid homorphism."]
def lift : (α →ₙ* β) ≃ (with_one α →* β) :=
{ to_fun := λ f,
  { to_fun := λ x, option.cases_on x 1 f,
    map_one' := rfl,
    map_mul' := λ x y,
      with_one.cases_on x (by { rw one_mul, exact (one_mul _).symm }) $ λ x,
      with_one.cases_on y (by { rw mul_one, exact (mul_one _).symm }) $ λ y,
      f.map_mul x y },
  inv_fun := λ F, F.to_mul_hom.comp coe_mul_hom,
  left_inv := λ f, mul_hom.ext $ λ x, rfl,
  right_inv := λ F, monoid_hom.ext $ λ x, with_one.cases_on x F.map_one.symm $ λ x, rfl }

variables (f : α →ₙ* β)

@[simp, to_additive]
lemma lift_coe (x : α) : lift f x = f x := rfl

@[simp, to_additive]
lemma lift_one : lift f 1 = 1 := rfl

@[to_additive]
theorem lift_unique (f : with_one α →* β) : f = lift (f.to_mul_hom.comp coe_mul_hom) :=
(lift.apply_symm_apply f).symm

end lift

attribute [irreducible] with_one

section map

variables [has_mul α] [has_mul β] [has_mul γ]

/-- Given a multiplicative map from `α → β` returns a monoid homomorphism
  from `with_one α` to `with_one β` -/
@[to_additive "Given an additive map from `α → β` returns an add_monoid homomorphism
  from `with_zero α` to `with_zero β`"]
def map (f : α →ₙ* β) : with_one α →* with_one β :=
lift (coe_mul_hom.comp f)

@[simp, to_additive] lemma map_coe (f : α →ₙ* β) (a : α) : map f (a : with_one α) = f a :=
lift_coe _ _

@[simp, to_additive]
lemma map_id : map (mul_hom.id α) = monoid_hom.id (with_one α) :=
by { ext, induction x using with_one.cases_on; refl }

@[to_additive]
lemma map_map (f : α →ₙ* β) (g : β →ₙ* γ) (x) :
  map g (map f x) = map (g.comp f) x :=
by { induction x using with_one.cases_on; refl }

@[simp, to_additive]
lemma map_comp (f : α →ₙ* β) (g : β →ₙ* γ) :
  map (g.comp f) = (map g).comp (map f) :=
monoid_hom.ext $ λ x, (map_map f g x).symm

/-- A version of `equiv.option_congr` for `with_one`. -/
@[to_additive "A version of `equiv.option_congr` for `with_zero`.", simps apply]
def _root_.mul_equiv.with_one_congr (e : α ≃* β) : with_one α ≃* with_one β :=
{ to_fun := map e.to_mul_hom,
  inv_fun := map e.symm.to_mul_hom,
  left_inv := λ x, (map_map _ _ _).trans $ by induction x using with_one.cases_on; { simp },
  right_inv := λ x, (map_map _ _ _).trans $ by induction x using with_one.cases_on; { simp },
  .. map e.to_mul_hom }

@[simp]
lemma _root_.mul_equiv.with_one_congr_refl : (mul_equiv.refl α).with_one_congr = mul_equiv.refl _ :=
mul_equiv.to_monoid_hom_injective map_id

@[simp]
lemma _root_.mul_equiv.with_one_congr_symm (e : α ≃* β) :
  e.with_one_congr.symm = e.symm.with_one_congr := rfl

@[simp]
lemma _root_.mul_equiv.with_one_congr_trans (e₁ : α ≃* β) (e₂ : β ≃* γ) :
  e₁.with_one_congr.trans e₂.with_one_congr = (e₁.trans e₂).with_one_congr :=
mul_equiv.to_monoid_hom_injective (map_comp _ _).symm

end map

@[simp, norm_cast, to_additive]
lemma coe_mul [has_mul α] (a b : α) : ((a * b : α) : with_one α) = a * b := rfl

@[simp, norm_cast, to_additive]
lemma coe_inv [has_inv α] (a : α) : ((a⁻¹ : α) : with_one α) = a⁻¹ := rfl

end with_one

namespace with_zero

instance [one : has_one α] : has_one (with_zero α) :=
{ ..one }

@[simp, norm_cast] lemma coe_one [has_one α] : ((1 : α) : with_zero α) = 1 := rfl

instance [has_mul α] : mul_zero_class (with_zero α) :=
{ mul       := λ o₁ o₂, o₁.bind (λ a, option.map (λ b, a * b) o₂),
  zero_mul  := λ a, rfl,
  mul_zero  := λ a, by cases a; refl,
  ..with_zero.has_zero }

@[simp, norm_cast] lemma coe_mul {α : Type u} [has_mul α]
  {a b : α} : ((a * b : α) : with_zero α) = a * b := rfl

@[simp] lemma zero_mul {α : Type u} [has_mul α]
  (a : with_zero α) : 0 * a = 0 := rfl

@[simp] lemma mul_zero {α : Type u} [has_mul α]
  (a : with_zero α) : a * 0 = 0 := by cases a; refl

instance [has_mul α] : no_zero_divisors (with_zero α) :=
⟨by { rintro (a|a) (b|b) h, exacts [or.inl rfl, or.inl rfl, or.inr rfl, option.no_confusion h] }⟩

instance [semigroup α] : semigroup_with_zero (with_zero α) :=
{ mul_assoc := λ a b c, match a, b, c with
    | none,   _,      _      := rfl
    | some a, none,   _      := rfl
    | some a, some b, none   := rfl
    | some a, some b, some c := congr_arg some (mul_assoc _ _ _)
    end,
  ..with_zero.mul_zero_class }

instance [comm_semigroup α] : comm_semigroup (with_zero α) :=
{ mul_comm := λ a b, match a, b with
    | none,   _      := (mul_zero _).symm
    | some a, none   := rfl
    | some a, some b := congr_arg some (mul_comm _ _)
    end,
  ..with_zero.semigroup_with_zero }

instance [mul_one_class α] : mul_zero_one_class (with_zero α) :=
{ one_mul := λ a, match a with
    | none   := rfl
    | some a := congr_arg some $ one_mul _
    end,
  mul_one := λ a, match a with
    | none   := rfl
    | some a := congr_arg some $ mul_one _
    end,
  ..with_zero.mul_zero_class,
  ..with_zero.has_one }

instance [has_one α] [has_pow α ℕ] : has_pow (with_zero α) ℕ :=
⟨λ x n, match x, n with
  | none, 0 := 1
  | none, n + 1 := 0
  | some x, n := ↑(x ^ n)
  end⟩

@[simp, norm_cast] lemma coe_pow [has_one α] [has_pow α ℕ] {a : α} (n : ℕ) :
  ↑(a ^ n : α) = (↑a ^ n : with_zero α) := rfl

instance [monoid α] : monoid_with_zero (with_zero α) :=
{ npow := λ n x, x ^ n,
  npow_zero' := λ x, match x with
    | none   := rfl
    | some x := congr_arg some $ pow_zero _
    end,
  npow_succ' := λ n x, match x with
    | none   := rfl
    | some x := congr_arg some $ pow_succ _ _
    end,
  .. with_zero.mul_zero_one_class,
  .. with_zero.semigroup_with_zero }

instance [comm_monoid α] : comm_monoid_with_zero (with_zero α) :=
{ ..with_zero.monoid_with_zero, ..with_zero.comm_semigroup }

/-- Given an inverse operation on `α` there is an inverse operation
  on `with_zero α` sending `0` to `0`-/
instance [has_inv α] : has_inv (with_zero α) := ⟨λ a, option.map has_inv.inv a⟩

@[simp, norm_cast] lemma coe_inv [has_inv α] (a : α) : ((a⁻¹ : α) : with_zero α) = a⁻¹ := rfl

@[simp] lemma inv_zero [has_inv α] : (0 : with_zero α)⁻¹ = 0 := rfl

instance [has_involutive_inv α] : has_involutive_inv (with_zero α) :=
{ inv_inv := λ a, (option.map_map _ _ _).trans $ by simp_rw [inv_comp_inv, option.map_id, id],
  ..with_zero.has_inv }

instance [has_div α] : has_div (with_zero α) :=
⟨λ o₁ o₂, o₁.bind (λ a, option.map (λ b, a / b) o₂)⟩

@[norm_cast] lemma coe_div [has_div α] (a b : α) : ↑(a / b : α) = (a / b : with_zero α) := rfl

instance [has_one α] [has_pow α ℤ] : has_pow (with_zero α) ℤ :=
⟨λ x n, match x, n with
  | none, int.of_nat 0            := 1
  | none, int.of_nat (nat.succ n) := 0
  | none, int.neg_succ_of_nat n   := 0
  | some x, n                     := ↑(x ^ n)
  end⟩

@[simp, norm_cast] lemma coe_zpow [div_inv_monoid α] {a : α} (n : ℤ) :
  ↑(a ^ n : α) = (↑a ^ n : with_zero α) := rfl

instance [div_inv_monoid α] : div_inv_monoid (with_zero α) :=
{ div_eq_mul_inv := λ a b, match a, b with
    | none,   _      := rfl
    | some a, none   := rfl
    | some a, some b := congr_arg some (div_eq_mul_inv _ _)
    end,
  zpow := λ n x, x ^ n,
  zpow_zero' := λ x, match x with
    | none   := rfl
    | some x := congr_arg some $ zpow_zero _
    end,
  zpow_succ' := λ n x, match x with
    | none   := rfl
    | some x := congr_arg some $ div_inv_monoid.zpow_succ' _ _
    end,
  zpow_neg' := λ n x, match x with
    | none   := rfl
    | some x := congr_arg some $ div_inv_monoid.zpow_neg' _ _
    end,
  .. with_zero.has_div,
  .. with_zero.has_inv,
  .. with_zero.monoid_with_zero, }

instance [division_monoid α] : division_monoid (with_zero α) :=
{ mul_inv_rev := λ a b, match a, b with
    | none,   none   := rfl
    | none,   some b := rfl
    | some a, none   := rfl
    | some a, some b := congr_arg some $ mul_inv_rev _ _
    end,
  inv_eq_of_mul := λ a b, match a, b with
    | none,   none   := λ _, rfl
    | none,   some b := by contradiction
    | some a, none   := by contradiction
    | some a, some b := λ h, congr_arg some $ inv_eq_of_mul_eq_one_right $ option.some_injective _ h
    end,
  .. with_zero.div_inv_monoid, .. with_zero.has_involutive_inv }

instance [division_comm_monoid α] : division_comm_monoid (with_zero α) :=
{ .. with_zero.division_monoid, .. with_zero.comm_semigroup }

section group
variables [group α]

@[simp] lemma inv_one : (1 : with_zero α)⁻¹ = 1 :=
show ((1⁻¹ : α) : with_zero α) = 1, by simp

/-- if `G` is a group then `with_zero G` is a group with zero. -/
instance : group_with_zero (with_zero α) :=
{ inv_zero := inv_zero,
  mul_inv_cancel := λ a ha, by { lift a to α using ha, norm_cast, apply mul_right_inv },
  .. with_zero.monoid_with_zero,
  .. with_zero.div_inv_monoid,
  .. with_zero.nontrivial }

end group

instance [comm_group α] : comm_group_with_zero (with_zero α) :=
{ .. with_zero.group_with_zero, .. with_zero.comm_monoid_with_zero }

instance [add_monoid_with_one α] : add_monoid_with_one (with_zero α) :=
{ nat_cast := λ n, if n = 0 then 0 else (n.cast : α),
  nat_cast_zero := rfl,
  nat_cast_succ := λ n, begin
    cases n,
    show (((1 : ℕ) : α) : with_zero α) = 0 + 1, by rw [nat.cast_one, coe_one, zero_add],
    show (((n + 2 : ℕ) : α) : with_zero α) = ((n + 1 : ℕ) : α) + 1,
    by rw [nat.cast_succ, coe_add, coe_one],
  end,
  .. with_zero.add_monoid, ..with_zero.has_one }

instance [semiring α] : semiring (with_zero α) :=
{ left_distrib := λ a b c, begin
    cases a with a, {refl},
    cases b with b; cases c with c; try {refl},
    exact congr_arg some (left_distrib _ _ _)
  end,
  right_distrib := λ a b c, begin
    cases c with c,
    { change (a + b) * 0 = a * 0 + b * 0, simp },
    cases a with a; cases b with b; try {refl},
    exact congr_arg some (right_distrib _ _ _)
  end,
  ..with_zero.add_monoid_with_one,
  ..with_zero.add_comm_monoid,
  ..with_zero.mul_zero_class,
  ..with_zero.monoid_with_zero }

/-- Any group is isomorphic to the units of itself adjoined with `0`. -/
def units_with_zero_equiv [group α] : (with_zero α)ˣ ≃* α :=
{ to_fun    := λ a, unzero a.ne_zero,
  inv_fun   := λ a, units.mk0 a coe_ne_zero,
  left_inv  := λ _, units.ext $ by simpa only [coe_unzero],
  right_inv := λ _, rfl,
  map_mul'  := λ _ _, coe_inj.mp $ by simpa only [coe_unzero, coe_mul] }

attribute [irreducible] with_zero

end with_zero