Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Yury Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury Kudryashov | |
Some proofs and docs came from `algebra/commute` (c) Neil Strickland | |
-/ | |
import algebra.group.units | |
/-! | |
# Semiconjugate elements of a semigroup | |
## Main definitions | |
We say that `x` is semiconjugate to `y` by `a` (`semiconj_by a x y`), if `a * x = y * a`. | |
In this file we provide operations on `semiconj_by _ _ _`. | |
In the names of these operations, we treat `a` as the “left” argument, and both `x` and `y` as | |
“right” arguments. This way most names in this file agree with the names of the corresponding lemmas | |
for `commute a b = semiconj_by a b b`. As a side effect, some lemmas have only `_right` version. | |
Lean does not immediately recognise these terms as equations, so for rewriting we need syntax like | |
`rw [(h.pow_right 5).eq]` rather than just `rw [h.pow_right 5]`. | |
This file provides only basic operations (`mul_left`, `mul_right`, `inv_right` etc). Other | |
operations (`pow_right`, field inverse etc) are in the files that define corresponding notions. | |
-/ | |
universes u v | |
variables {G : Type*} | |
/-- `x` is semiconjugate to `y` by `a`, if `a * x = y * a`. -/ | |
@[to_additive add_semiconj_by "`x` is additive semiconjugate to `y` by `a` if `a + x = y + a`"] | |
def semiconj_by {M : Type u} [has_mul M] (a x y : M) : Prop := a * x = y * a | |
namespace semiconj_by | |
/-- Equality behind `semiconj_by a x y`; useful for rewriting. -/ | |
@[to_additive "Equality behind `add_semiconj_by a x y`; useful for rewriting."] | |
protected lemma eq {S : Type u} [has_mul S] {a x y : S} (h : semiconj_by a x y) : | |
a * x = y * a := h | |
section semigroup | |
variables {S : Type u} [semigroup S] {a b x y z x' y' : S} | |
/-- If `a` semiconjugates `x` to `y` and `x'` to `y'`, | |
then it semiconjugates `x * x'` to `y * y'`. -/ | |
@[simp, to_additive "If `a` semiconjugates `x` to `y` and `x'` to `y'`, then it semiconjugates | |
`x + x'` to `y + y'`."] | |
lemma mul_right (h : semiconj_by a x y) (h' : semiconj_by a x' y') : | |
semiconj_by a (x * x') (y * y') := | |
by unfold semiconj_by; assoc_rw [h.eq, h'.eq] | |
/-- If both `a` and `b` semiconjugate `x` to `y`, then so does `a * b`. -/ | |
@[to_additive "If both `a` and `b` semiconjugate `x` to `y`, then so does `a + b`."] | |
lemma mul_left (ha : semiconj_by a y z) (hb : semiconj_by b x y) : semiconj_by (a * b) x z := | |
by unfold semiconj_by; assoc_rw [hb.eq, ha.eq, mul_assoc] | |
/-- The relation “there exists an element that semiconjugates `a` to `b`” on a semigroup | |
is transitive. -/ | |
@[to_additive "The relation “there exists an element that semiconjugates `a` to `b`” on an additive | |
semigroup is transitive."] | |
protected lemma transitive : transitive (λ a b : S, ∃ c, semiconj_by c a b) := | |
λ a b c ⟨x, hx⟩ ⟨y, hy⟩, ⟨y * x, hy.mul_left hx⟩ | |
end semigroup | |
section mul_one_class | |
variables {M : Type u} [mul_one_class M] | |
/-- Any element semiconjugates `1` to `1`. -/ | |
@[simp, to_additive "Any element additively semiconjugates `0` to `0`."] | |
lemma one_right (a : M) : semiconj_by a 1 1 := by rw [semiconj_by, mul_one, one_mul] | |
/-- One semiconjugates any element to itself. -/ | |
@[simp, to_additive "Zero additively semiconjugates any element to itself."] | |
lemma one_left (x : M) : semiconj_by 1 x x := eq.symm $ one_right x | |
/-- The relation “there exists an element that semiconjugates `a` to `b`” on a monoid (or, more | |
generally, on ` mul_one_class` type) is reflexive. -/ | |
@[to_additive "The relation “there exists an element that semiconjugates `a` to `b`” on an additive | |
monoid (or, more generally, on a `add_zero_class` type) is reflexive."] | |
protected lemma reflexive : reflexive (λ a b : M, ∃ c, semiconj_by c a b) := | |
λ a, ⟨1, one_left a⟩ | |
end mul_one_class | |
section monoid | |
variables {M : Type u} [monoid M] | |
/-- If `a` semiconjugates a unit `x` to a unit `y`, then it semiconjugates `x⁻¹` to `y⁻¹`. -/ | |
@[to_additive "If `a` semiconjugates an additive unit `x` to an additive unit `y`, then it | |
semiconjugates `-x` to `-y`."] | |
lemma units_inv_right {a : M} {x y : Mˣ} (h : semiconj_by a x y) : semiconj_by a ↑x⁻¹ ↑y⁻¹ := | |
calc a * ↑x⁻¹ = ↑y⁻¹ * (y * a) * ↑x⁻¹ : by rw [units.inv_mul_cancel_left] | |
... = ↑y⁻¹ * a : by rw [← h.eq, mul_assoc, units.mul_inv_cancel_right] | |
@[simp, to_additive] lemma units_inv_right_iff {a : M} {x y : Mˣ} : | |
semiconj_by a ↑x⁻¹ ↑y⁻¹ ↔ semiconj_by a x y := | |
⟨units_inv_right, units_inv_right⟩ | |
/-- If a unit `a` semiconjugates `x` to `y`, then `a⁻¹` semiconjugates `y` to `x`. -/ | |
@[to_additive "If an additive unit `a` semiconjugates `x` to `y`, then `-a` semiconjugates `y` to | |
`x`."] | |
lemma units_inv_symm_left {a : Mˣ} {x y : M} (h : semiconj_by ↑a x y) : | |
semiconj_by ↑a⁻¹ y x := | |
calc ↑a⁻¹ * y = ↑a⁻¹ * (y * a * ↑a⁻¹) : by rw [units.mul_inv_cancel_right] | |
... = x * ↑a⁻¹ : by rw [← h.eq, ← mul_assoc, units.inv_mul_cancel_left] | |
@[simp, to_additive] lemma units_inv_symm_left_iff {a : Mˣ} {x y : M} : | |
semiconj_by ↑a⁻¹ y x ↔ semiconj_by ↑a x y := | |
⟨units_inv_symm_left, units_inv_symm_left⟩ | |
@[to_additive] theorem units_coe {a x y : Mˣ} (h : semiconj_by a x y) : | |
semiconj_by (a : M) x y := | |
congr_arg units.val h | |
@[to_additive] theorem units_of_coe {a x y : Mˣ} (h : semiconj_by (a : M) x y) : | |
semiconj_by a x y := | |
units.ext h | |
@[simp, to_additive] theorem units_coe_iff {a x y : Mˣ} : | |
semiconj_by (a : M) x y ↔ semiconj_by a x y := | |
⟨units_of_coe, units_coe⟩ | |
@[simp, to_additive] | |
lemma pow_right {a x y : M} (h : semiconj_by a x y) (n : ℕ) : semiconj_by a (x^n) (y^n) := | |
begin | |
induction n with n ih, | |
{ rw [pow_zero, pow_zero], exact semiconj_by.one_right _ }, | |
{ rw [pow_succ, pow_succ], | |
exact h.mul_right ih } | |
end | |
end monoid | |
section division_monoid | |
variables [division_monoid G] {a x y : G} | |
@[simp, to_additive] lemma inv_inv_symm_iff : semiconj_by a⁻¹ x⁻¹ y⁻¹ ↔ semiconj_by a y x := | |
inv_involutive.injective.eq_iff.symm.trans $ by simp_rw [mul_inv_rev, inv_inv, eq_comm, semiconj_by] | |
@[to_additive] lemma inv_inv_symm : semiconj_by a x y → semiconj_by a⁻¹ y⁻¹ x⁻¹ := | |
inv_inv_symm_iff.2 | |
end division_monoid | |
section group | |
variables [group G] {a x y : G} | |
@[simp, to_additive] lemma inv_right_iff : semiconj_by a x⁻¹ y⁻¹ ↔ semiconj_by a x y := | |
G _ a ⟨x, x⁻¹, mul_inv_self x, inv_mul_self x⟩ | |
⟨y, y⁻¹, mul_inv_self y, inv_mul_self y⟩ | |
@[to_additive] lemma inv_right : semiconj_by a x y → semiconj_by a x⁻¹ y⁻¹ := | |
inv_right_iff.2 | |
@[simp, to_additive] lemma inv_symm_left_iff : semiconj_by a⁻¹ y x ↔ semiconj_by a x y := | |
G _ ⟨a, a⁻¹, mul_inv_self a, inv_mul_self a⟩ _ _ | |
@[to_additive] lemma inv_symm_left : semiconj_by a x y → semiconj_by a⁻¹ y x := | |
inv_symm_left_iff.2 | |
/-- `a` semiconjugates `x` to `a * x * a⁻¹`. -/ | |
@[to_additive "`a` semiconjugates `x` to `a + x + -a`."] | |
lemma conj_mk (a x : G) : semiconj_by a x (a * x * a⁻¹) := | |
by unfold semiconj_by; rw [mul_assoc, inv_mul_self, mul_one] | |
end group | |
end semiconj_by | |
@[simp, to_additive add_semiconj_by_iff_eq] | |
lemma semiconj_by_iff_eq {M : Type u} [cancel_comm_monoid M] {a x y : M} : | |
semiconj_by a x y ↔ x = y := | |
⟨λ h, mul_left_cancel (h.trans (mul_comm _ _)), λ h, by rw [h, semiconj_by, mul_comm] ⟩ | |
/-- `a` semiconjugates `x` to `a * x * a⁻¹`. -/ | |
@[to_additive "`a` semiconjugates `x` to `a + x + -a`."] | |
lemma units.mk_semiconj_by {M : Type u} [monoid M] (u : Mˣ) (x : M) : | |
semiconj_by ↑u x (u * x * ↑u⁻¹) := | |
by unfold semiconj_by; rw [units.inv_mul_cancel_right] | |