Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 7,690 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
/-
Copyright (c) 2019 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
Some proofs and docs came from `algebra/commute` (c) Neil Strickland
-/
import algebra.group.units
/-!
# Semiconjugate elements of a semigroup
## Main definitions
We say that `x` is semiconjugate to `y` by `a` (`semiconj_by a x y`), if `a * x = y * a`.
In this file we provide operations on `semiconj_by _ _ _`.
In the names of these operations, we treat `a` as the “left” argument, and both `x` and `y` as
“right” arguments. This way most names in this file agree with the names of the corresponding lemmas
for `commute a b = semiconj_by a b b`. As a side effect, some lemmas have only `_right` version.
Lean does not immediately recognise these terms as equations, so for rewriting we need syntax like
`rw [(h.pow_right 5).eq]` rather than just `rw [h.pow_right 5]`.
This file provides only basic operations (`mul_left`, `mul_right`, `inv_right` etc). Other
operations (`pow_right`, field inverse etc) are in the files that define corresponding notions.
-/
universes u v
variables {G : Type*}
/-- `x` is semiconjugate to `y` by `a`, if `a * x = y * a`. -/
@[to_additive add_semiconj_by "`x` is additive semiconjugate to `y` by `a` if `a + x = y + a`"]
def semiconj_by {M : Type u} [has_mul M] (a x y : M) : Prop := a * x = y * a
namespace semiconj_by
/-- Equality behind `semiconj_by a x y`; useful for rewriting. -/
@[to_additive "Equality behind `add_semiconj_by a x y`; useful for rewriting."]
protected lemma eq {S : Type u} [has_mul S] {a x y : S} (h : semiconj_by a x y) :
a * x = y * a := h
section semigroup
variables {S : Type u} [semigroup S] {a b x y z x' y' : S}
/-- If `a` semiconjugates `x` to `y` and `x'` to `y'`,
then it semiconjugates `x * x'` to `y * y'`. -/
@[simp, to_additive "If `a` semiconjugates `x` to `y` and `x'` to `y'`, then it semiconjugates
`x + x'` to `y + y'`."]
lemma mul_right (h : semiconj_by a x y) (h' : semiconj_by a x' y') :
semiconj_by a (x * x') (y * y') :=
by unfold semiconj_by; assoc_rw [h.eq, h'.eq]
/-- If both `a` and `b` semiconjugate `x` to `y`, then so does `a * b`. -/
@[to_additive "If both `a` and `b` semiconjugate `x` to `y`, then so does `a + b`."]
lemma mul_left (ha : semiconj_by a y z) (hb : semiconj_by b x y) : semiconj_by (a * b) x z :=
by unfold semiconj_by; assoc_rw [hb.eq, ha.eq, mul_assoc]
/-- The relation “there exists an element that semiconjugates `a` to `b`” on a semigroup
is transitive. -/
@[to_additive "The relation “there exists an element that semiconjugates `a` to `b`” on an additive
semigroup is transitive."]
protected lemma transitive : transitive (λ a b : S, ∃ c, semiconj_by c a b) :=
λ a b c ⟨x, hx⟩ ⟨y, hy⟩, ⟨y * x, hy.mul_left hx⟩
end semigroup
section mul_one_class
variables {M : Type u} [mul_one_class M]
/-- Any element semiconjugates `1` to `1`. -/
@[simp, to_additive "Any element additively semiconjugates `0` to `0`."]
lemma one_right (a : M) : semiconj_by a 1 1 := by rw [semiconj_by, mul_one, one_mul]
/-- One semiconjugates any element to itself. -/
@[simp, to_additive "Zero additively semiconjugates any element to itself."]
lemma one_left (x : M) : semiconj_by 1 x x := eq.symm $ one_right x
/-- The relation “there exists an element that semiconjugates `a` to `b`” on a monoid (or, more
generally, on ` mul_one_class` type) is reflexive. -/
@[to_additive "The relation “there exists an element that semiconjugates `a` to `b`” on an additive
monoid (or, more generally, on a `add_zero_class` type) is reflexive."]
protected lemma reflexive : reflexive (λ a b : M, ∃ c, semiconj_by c a b) :=
λ a, ⟨1, one_left a⟩
end mul_one_class
section monoid
variables {M : Type u} [monoid M]
/-- If `a` semiconjugates a unit `x` to a unit `y`, then it semiconjugates `x⁻¹` to `y⁻¹`. -/
@[to_additive "If `a` semiconjugates an additive unit `x` to an additive unit `y`, then it
semiconjugates `-x` to `-y`."]
lemma units_inv_right {a : M} {x y : Mˣ} (h : semiconj_by a x y) : semiconj_by a ↑x⁻¹ ↑y⁻¹ :=
calc a * ↑x⁻¹ = ↑y⁻¹ * (y * a) * ↑x⁻¹ : by rw [units.inv_mul_cancel_left]
... = ↑y⁻¹ * a : by rw [← h.eq, mul_assoc, units.mul_inv_cancel_right]
@[simp, to_additive] lemma units_inv_right_iff {a : M} {x y : Mˣ} :
semiconj_by a ↑x⁻¹ ↑y⁻¹ ↔ semiconj_by a x y :=
⟨units_inv_right, units_inv_right⟩
/-- If a unit `a` semiconjugates `x` to `y`, then `a⁻¹` semiconjugates `y` to `x`. -/
@[to_additive "If an additive unit `a` semiconjugates `x` to `y`, then `-a` semiconjugates `y` to
`x`."]
lemma units_inv_symm_left {a : Mˣ} {x y : M} (h : semiconj_by ↑a x y) :
semiconj_by ↑a⁻¹ y x :=
calc ↑a⁻¹ * y = ↑a⁻¹ * (y * a * ↑a⁻¹) : by rw [units.mul_inv_cancel_right]
... = x * ↑a⁻¹ : by rw [← h.eq, ← mul_assoc, units.inv_mul_cancel_left]
@[simp, to_additive] lemma units_inv_symm_left_iff {a : Mˣ} {x y : M} :
semiconj_by ↑a⁻¹ y x ↔ semiconj_by ↑a x y :=
⟨units_inv_symm_left, units_inv_symm_left⟩
@[to_additive] theorem units_coe {a x y : Mˣ} (h : semiconj_by a x y) :
semiconj_by (a : M) x y :=
congr_arg units.val h
@[to_additive] theorem units_of_coe {a x y : Mˣ} (h : semiconj_by (a : M) x y) :
semiconj_by a x y :=
units.ext h
@[simp, to_additive] theorem units_coe_iff {a x y : Mˣ} :
semiconj_by (a : M) x y ↔ semiconj_by a x y :=
⟨units_of_coe, units_coe⟩
@[simp, to_additive]
lemma pow_right {a x y : M} (h : semiconj_by a x y) (n : ℕ) : semiconj_by a (x^n) (y^n) :=
begin
induction n with n ih,
{ rw [pow_zero, pow_zero], exact semiconj_by.one_right _ },
{ rw [pow_succ, pow_succ],
exact h.mul_right ih }
end
end monoid
section division_monoid
variables [division_monoid G] {a x y : G}
@[simp, to_additive] lemma inv_inv_symm_iff : semiconj_by a⁻¹ x⁻¹ y⁻¹ ↔ semiconj_by a y x :=
inv_involutive.injective.eq_iff.symm.trans $ by simp_rw [mul_inv_rev, inv_inv, eq_comm, semiconj_by]
@[to_additive] lemma inv_inv_symm : semiconj_by a x y → semiconj_by a⁻¹ y⁻¹ x⁻¹ :=
inv_inv_symm_iff.2
end division_monoid
section group
variables [group G] {a x y : G}
@[simp, to_additive] lemma inv_right_iff : semiconj_by a x⁻¹ y⁻¹ ↔ semiconj_by a x y :=
@units_inv_right_iff G _ a ⟨x, x⁻¹, mul_inv_self x, inv_mul_self x⟩
⟨y, y⁻¹, mul_inv_self y, inv_mul_self y⟩
@[to_additive] lemma inv_right : semiconj_by a x y → semiconj_by a x⁻¹ y⁻¹ :=
inv_right_iff.2
@[simp, to_additive] lemma inv_symm_left_iff : semiconj_by a⁻¹ y x ↔ semiconj_by a x y :=
@units_inv_symm_left_iff G _ ⟨a, a⁻¹, mul_inv_self a, inv_mul_self a⟩ _ _
@[to_additive] lemma inv_symm_left : semiconj_by a x y → semiconj_by a⁻¹ y x :=
inv_symm_left_iff.2
/-- `a` semiconjugates `x` to `a * x * a⁻¹`. -/
@[to_additive "`a` semiconjugates `x` to `a + x + -a`."]
lemma conj_mk (a x : G) : semiconj_by a x (a * x * a⁻¹) :=
by unfold semiconj_by; rw [mul_assoc, inv_mul_self, mul_one]
end group
end semiconj_by
@[simp, to_additive add_semiconj_by_iff_eq]
lemma semiconj_by_iff_eq {M : Type u} [cancel_comm_monoid M] {a x y : M} :
semiconj_by a x y ↔ x = y :=
⟨λ h, mul_left_cancel (h.trans (mul_comm _ _)), λ h, by rw [h, semiconj_by, mul_comm] ⟩
/-- `a` semiconjugates `x` to `a * x * a⁻¹`. -/
@[to_additive "`a` semiconjugates `x` to `a + x + -a`."]
lemma units.mk_semiconj_by {M : Type u} [monoid M] (u : Mˣ) (x : M) :
semiconj_by ↑u x (u * x * ↑u⁻¹) :=
by unfold semiconj_by; rw [units.inv_mul_cancel_right]
|