Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,690 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/-
Copyright (c) 2019 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov

Some proofs and docs came from `algebra/commute` (c) Neil Strickland
-/
import algebra.group.units

/-!
# Semiconjugate elements of a semigroup

## Main definitions

We say that `x` is semiconjugate to `y` by `a` (`semiconj_by a x y`), if `a * x = y * a`.
In this file we  provide operations on `semiconj_by _ _ _`.

In the names of these operations, we treat `a` as the “left” argument, and both `x` and `y` as
“right” arguments. This way most names in this file agree with the names of the corresponding lemmas
for `commute a b = semiconj_by a b b`. As a side effect, some lemmas have only `_right` version.

Lean does not immediately recognise these terms as equations, so for rewriting we need syntax like
`rw [(h.pow_right 5).eq]` rather than just `rw [h.pow_right 5]`.

This file provides only basic operations (`mul_left`, `mul_right`, `inv_right` etc). Other
operations (`pow_right`, field inverse etc) are in the files that define corresponding notions.
-/

universes u v
variables {G : Type*}

/-- `x` is semiconjugate to `y` by `a`, if `a * x = y * a`. -/
@[to_additive add_semiconj_by "`x` is additive semiconjugate to `y` by `a` if `a + x = y + a`"]
def semiconj_by {M : Type u} [has_mul M] (a x y : M) : Prop := a * x = y * a

namespace semiconj_by

/-- Equality behind `semiconj_by a x y`; useful for rewriting. -/
@[to_additive "Equality behind `add_semiconj_by a x y`; useful for rewriting."]
protected lemma eq {S : Type u} [has_mul S] {a x y : S} (h : semiconj_by a x y) :
  a * x = y * a := h

section semigroup

variables {S : Type u} [semigroup S] {a b x y z x' y' : S}

/-- If `a` semiconjugates `x` to `y` and `x'` to `y'`,
then it semiconjugates `x * x'` to `y * y'`. -/
@[simp, to_additive "If `a` semiconjugates `x` to `y` and `x'` to `y'`, then it semiconjugates
`x + x'` to `y + y'`."]
lemma mul_right (h : semiconj_by a x y) (h' : semiconj_by a x' y') :
  semiconj_by a (x * x') (y * y') :=
by unfold semiconj_by; assoc_rw [h.eq, h'.eq]

/-- If both `a` and `b` semiconjugate `x` to `y`, then so does `a * b`. -/
@[to_additive "If both `a` and `b` semiconjugate `x` to `y`, then so does `a + b`."]
lemma mul_left (ha : semiconj_by a y z) (hb : semiconj_by b x y) : semiconj_by (a * b) x z :=
by unfold semiconj_by; assoc_rw [hb.eq, ha.eq, mul_assoc]

/-- The relation “there exists an element that semiconjugates `a` to `b`” on a semigroup
is transitive. -/
@[to_additive "The relation “there exists an element that semiconjugates `a` to `b`” on an additive
semigroup is transitive."]
protected lemma transitive : transitive (λ a b : S, ∃ c, semiconj_by c a b) :=
λ a b c ⟨x, hx⟩ ⟨y, hy⟩, ⟨y * x, hy.mul_left hx⟩

end semigroup

section mul_one_class

variables {M : Type u} [mul_one_class M]

/-- Any element semiconjugates `1` to `1`. -/
@[simp, to_additive "Any element additively semiconjugates `0` to `0`."]
lemma one_right (a : M) : semiconj_by a 1 1 := by rw [semiconj_by, mul_one, one_mul]

/-- One semiconjugates any element to itself. -/
@[simp, to_additive "Zero additively semiconjugates any element to itself."]
lemma one_left (x : M) : semiconj_by 1 x x := eq.symm $ one_right x

/-- The relation “there exists an element that semiconjugates `a` to `b`” on a monoid (or, more
generally, on ` mul_one_class` type) is reflexive. -/
@[to_additive "The relation “there exists an element that semiconjugates `a` to `b`” on an additive
monoid (or, more generally, on a `add_zero_class` type) is reflexive."]
protected lemma reflexive : reflexive (λ a b : M, ∃ c, semiconj_by c a b) :=
λ a, ⟨1, one_left a⟩

end mul_one_class

section monoid

variables {M : Type u} [monoid M]

/-- If `a` semiconjugates a unit `x` to a unit `y`, then it semiconjugates `x⁻¹` to `y⁻¹`. -/
@[to_additive "If `a` semiconjugates an additive unit `x` to an additive unit `y`, then it
semiconjugates `-x` to `-y`."]
lemma units_inv_right {a : M} {x y : Mˣ} (h : semiconj_by a x y) : semiconj_by a ↑x⁻¹ ↑y⁻¹ :=
calc a * ↑x⁻¹ = ↑y⁻¹ * (y * a) * ↑x⁻¹ : by rw [units.inv_mul_cancel_left]
          ... = ↑y⁻¹ * a              : by rw [← h.eq, mul_assoc, units.mul_inv_cancel_right]

@[simp, to_additive] lemma units_inv_right_iff {a : M} {x y : Mˣ} :
  semiconj_by a ↑x⁻¹ ↑y⁻¹ ↔ semiconj_by a x y :=
⟨units_inv_right, units_inv_right⟩

/-- If a unit `a` semiconjugates `x` to `y`, then `a⁻¹` semiconjugates `y` to `x`. -/
@[to_additive "If an additive unit `a` semiconjugates `x` to `y`, then `-a` semiconjugates `y` to
`x`."]
lemma units_inv_symm_left {a : Mˣ} {x y : M} (h : semiconj_by ↑a x y) :
  semiconj_by ↑a⁻¹ y x :=
calc ↑a⁻¹ * y = ↑a⁻¹ * (y * a * ↑a⁻¹) : by rw [units.mul_inv_cancel_right]
          ... = x * ↑a⁻¹              : by rw [← h.eq, ← mul_assoc, units.inv_mul_cancel_left]

@[simp, to_additive] lemma units_inv_symm_left_iff {a : Mˣ} {x y : M} :
  semiconj_by ↑a⁻¹ y x ↔ semiconj_by ↑a x y :=
⟨units_inv_symm_left, units_inv_symm_left⟩

@[to_additive] theorem units_coe {a x y : Mˣ} (h : semiconj_by a x y) :
  semiconj_by (a : M) x y :=
congr_arg units.val h

@[to_additive] theorem units_of_coe {a x y : Mˣ} (h : semiconj_by (a : M) x y) :
  semiconj_by a x y :=
units.ext h

@[simp, to_additive] theorem units_coe_iff {a x y : Mˣ} :
  semiconj_by (a : M) x y ↔ semiconj_by a x y :=
⟨units_of_coe, units_coe⟩

@[simp, to_additive]
lemma pow_right {a x y : M} (h : semiconj_by a x y) (n : ℕ) : semiconj_by a (x^n) (y^n) :=
begin
  induction n with n ih,
  { rw [pow_zero, pow_zero], exact semiconj_by.one_right _ },
  { rw [pow_succ, pow_succ],
    exact h.mul_right ih }
end

end monoid

section division_monoid
variables [division_monoid G] {a x y : G}

@[simp, to_additive] lemma inv_inv_symm_iff : semiconj_by a⁻¹ x⁻¹ y⁻¹ ↔ semiconj_by a y x :=
inv_involutive.injective.eq_iff.symm.trans $ by simp_rw [mul_inv_rev, inv_inv, eq_comm, semiconj_by]

@[to_additive] lemma inv_inv_symm : semiconj_by a x y → semiconj_by a⁻¹ y⁻¹ x⁻¹ :=
inv_inv_symm_iff.2

end division_monoid

section group

variables [group G] {a x y : G}

@[simp, to_additive] lemma inv_right_iff : semiconj_by a x⁻¹ y⁻¹ ↔ semiconj_by a x y :=
@units_inv_right_iff G _ a ⟨x, x⁻¹, mul_inv_self x, inv_mul_self x⟩
  ⟨y, y⁻¹, mul_inv_self y, inv_mul_self y⟩

@[to_additive] lemma inv_right : semiconj_by a x y → semiconj_by a x⁻¹ y⁻¹ :=
inv_right_iff.2

@[simp, to_additive] lemma inv_symm_left_iff : semiconj_by a⁻¹ y x ↔ semiconj_by a x y :=
@units_inv_symm_left_iff G _ ⟨a, a⁻¹, mul_inv_self a, inv_mul_self a⟩ _ _

@[to_additive] lemma inv_symm_left : semiconj_by a x y → semiconj_by a⁻¹ y x :=
inv_symm_left_iff.2

/-- `a` semiconjugates `x` to `a * x * a⁻¹`. -/
@[to_additive "`a` semiconjugates `x` to `a + x + -a`."]
lemma conj_mk (a x : G) : semiconj_by a x (a * x * a⁻¹) :=
by unfold semiconj_by; rw [mul_assoc, inv_mul_self, mul_one]

end group

end semiconj_by

@[simp, to_additive add_semiconj_by_iff_eq]
lemma semiconj_by_iff_eq {M : Type u} [cancel_comm_monoid M] {a x y : M} :
  semiconj_by a x y ↔ x = y :=
⟨λ h, mul_left_cancel (h.trans (mul_comm _ _)), λ h, by rw [h, semiconj_by, mul_comm] ⟩

/-- `a` semiconjugates `x` to `a * x * a⁻¹`. -/
@[to_additive "`a` semiconjugates `x` to `a + x + -a`."]
lemma units.mk_semiconj_by {M : Type u} [monoid M] (u : Mˣ) (x : M) :
  semiconj_by ↑u x (u * x * ↑u⁻¹) :=
by unfold semiconj_by; rw [units.inv_mul_cancel_right]