/- Copyright (c) 2019 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov Some proofs and docs came from `algebra/commute` (c) Neil Strickland -/ import algebra.group.units /-! # Semiconjugate elements of a semigroup ## Main definitions We say that `x` is semiconjugate to `y` by `a` (`semiconj_by a x y`), if `a * x = y * a`. In this file we provide operations on `semiconj_by _ _ _`. In the names of these operations, we treat `a` as the “left” argument, and both `x` and `y` as “right” arguments. This way most names in this file agree with the names of the corresponding lemmas for `commute a b = semiconj_by a b b`. As a side effect, some lemmas have only `_right` version. Lean does not immediately recognise these terms as equations, so for rewriting we need syntax like `rw [(h.pow_right 5).eq]` rather than just `rw [h.pow_right 5]`. This file provides only basic operations (`mul_left`, `mul_right`, `inv_right` etc). Other operations (`pow_right`, field inverse etc) are in the files that define corresponding notions. -/ universes u v variables {G : Type*} /-- `x` is semiconjugate to `y` by `a`, if `a * x = y * a`. -/ @[to_additive add_semiconj_by "`x` is additive semiconjugate to `y` by `a` if `a + x = y + a`"] def semiconj_by {M : Type u} [has_mul M] (a x y : M) : Prop := a * x = y * a namespace semiconj_by /-- Equality behind `semiconj_by a x y`; useful for rewriting. -/ @[to_additive "Equality behind `add_semiconj_by a x y`; useful for rewriting."] protected lemma eq {S : Type u} [has_mul S] {a x y : S} (h : semiconj_by a x y) : a * x = y * a := h section semigroup variables {S : Type u} [semigroup S] {a b x y z x' y' : S} /-- If `a` semiconjugates `x` to `y` and `x'` to `y'`, then it semiconjugates `x * x'` to `y * y'`. -/ @[simp, to_additive "If `a` semiconjugates `x` to `y` and `x'` to `y'`, then it semiconjugates `x + x'` to `y + y'`."] lemma mul_right (h : semiconj_by a x y) (h' : semiconj_by a x' y') : semiconj_by a (x * x') (y * y') := by unfold semiconj_by; assoc_rw [h.eq, h'.eq] /-- If both `a` and `b` semiconjugate `x` to `y`, then so does `a * b`. -/ @[to_additive "If both `a` and `b` semiconjugate `x` to `y`, then so does `a + b`."] lemma mul_left (ha : semiconj_by a y z) (hb : semiconj_by b x y) : semiconj_by (a * b) x z := by unfold semiconj_by; assoc_rw [hb.eq, ha.eq, mul_assoc] /-- The relation “there exists an element that semiconjugates `a` to `b`” on a semigroup is transitive. -/ @[to_additive "The relation “there exists an element that semiconjugates `a` to `b`” on an additive semigroup is transitive."] protected lemma transitive : transitive (λ a b : S, ∃ c, semiconj_by c a b) := λ a b c ⟨x, hx⟩ ⟨y, hy⟩, ⟨y * x, hy.mul_left hx⟩ end semigroup section mul_one_class variables {M : Type u} [mul_one_class M] /-- Any element semiconjugates `1` to `1`. -/ @[simp, to_additive "Any element additively semiconjugates `0` to `0`."] lemma one_right (a : M) : semiconj_by a 1 1 := by rw [semiconj_by, mul_one, one_mul] /-- One semiconjugates any element to itself. -/ @[simp, to_additive "Zero additively semiconjugates any element to itself."] lemma one_left (x : M) : semiconj_by 1 x x := eq.symm $ one_right x /-- The relation “there exists an element that semiconjugates `a` to `b`” on a monoid (or, more generally, on ` mul_one_class` type) is reflexive. -/ @[to_additive "The relation “there exists an element that semiconjugates `a` to `b`” on an additive monoid (or, more generally, on a `add_zero_class` type) is reflexive."] protected lemma reflexive : reflexive (λ a b : M, ∃ c, semiconj_by c a b) := λ a, ⟨1, one_left a⟩ end mul_one_class section monoid variables {M : Type u} [monoid M] /-- If `a` semiconjugates a unit `x` to a unit `y`, then it semiconjugates `x⁻¹` to `y⁻¹`. -/ @[to_additive "If `a` semiconjugates an additive unit `x` to an additive unit `y`, then it semiconjugates `-x` to `-y`."] lemma units_inv_right {a : M} {x y : Mˣ} (h : semiconj_by a x y) : semiconj_by a ↑x⁻¹ ↑y⁻¹ := calc a * ↑x⁻¹ = ↑y⁻¹ * (y * a) * ↑x⁻¹ : by rw [units.inv_mul_cancel_left] ... = ↑y⁻¹ * a : by rw [← h.eq, mul_assoc, units.mul_inv_cancel_right] @[simp, to_additive] lemma units_inv_right_iff {a : M} {x y : Mˣ} : semiconj_by a ↑x⁻¹ ↑y⁻¹ ↔ semiconj_by a x y := ⟨units_inv_right, units_inv_right⟩ /-- If a unit `a` semiconjugates `x` to `y`, then `a⁻¹` semiconjugates `y` to `x`. -/ @[to_additive "If an additive unit `a` semiconjugates `x` to `y`, then `-a` semiconjugates `y` to `x`."] lemma units_inv_symm_left {a : Mˣ} {x y : M} (h : semiconj_by ↑a x y) : semiconj_by ↑a⁻¹ y x := calc ↑a⁻¹ * y = ↑a⁻¹ * (y * a * ↑a⁻¹) : by rw [units.mul_inv_cancel_right] ... = x * ↑a⁻¹ : by rw [← h.eq, ← mul_assoc, units.inv_mul_cancel_left] @[simp, to_additive] lemma units_inv_symm_left_iff {a : Mˣ} {x y : M} : semiconj_by ↑a⁻¹ y x ↔ semiconj_by ↑a x y := ⟨units_inv_symm_left, units_inv_symm_left⟩ @[to_additive] theorem units_coe {a x y : Mˣ} (h : semiconj_by a x y) : semiconj_by (a : M) x y := congr_arg units.val h @[to_additive] theorem units_of_coe {a x y : Mˣ} (h : semiconj_by (a : M) x y) : semiconj_by a x y := units.ext h @[simp, to_additive] theorem units_coe_iff {a x y : Mˣ} : semiconj_by (a : M) x y ↔ semiconj_by a x y := ⟨units_of_coe, units_coe⟩ @[simp, to_additive] lemma pow_right {a x y : M} (h : semiconj_by a x y) (n : ℕ) : semiconj_by a (x^n) (y^n) := begin induction n with n ih, { rw [pow_zero, pow_zero], exact semiconj_by.one_right _ }, { rw [pow_succ, pow_succ], exact h.mul_right ih } end end monoid section division_monoid variables [division_monoid G] {a x y : G} @[simp, to_additive] lemma inv_inv_symm_iff : semiconj_by a⁻¹ x⁻¹ y⁻¹ ↔ semiconj_by a y x := inv_involutive.injective.eq_iff.symm.trans $ by simp_rw [mul_inv_rev, inv_inv, eq_comm, semiconj_by] @[to_additive] lemma inv_inv_symm : semiconj_by a x y → semiconj_by a⁻¹ y⁻¹ x⁻¹ := inv_inv_symm_iff.2 end division_monoid section group variables [group G] {a x y : G} @[simp, to_additive] lemma inv_right_iff : semiconj_by a x⁻¹ y⁻¹ ↔ semiconj_by a x y := @units_inv_right_iff G _ a ⟨x, x⁻¹, mul_inv_self x, inv_mul_self x⟩ ⟨y, y⁻¹, mul_inv_self y, inv_mul_self y⟩ @[to_additive] lemma inv_right : semiconj_by a x y → semiconj_by a x⁻¹ y⁻¹ := inv_right_iff.2 @[simp, to_additive] lemma inv_symm_left_iff : semiconj_by a⁻¹ y x ↔ semiconj_by a x y := @units_inv_symm_left_iff G _ ⟨a, a⁻¹, mul_inv_self a, inv_mul_self a⟩ _ _ @[to_additive] lemma inv_symm_left : semiconj_by a x y → semiconj_by a⁻¹ y x := inv_symm_left_iff.2 /-- `a` semiconjugates `x` to `a * x * a⁻¹`. -/ @[to_additive "`a` semiconjugates `x` to `a + x + -a`."] lemma conj_mk (a x : G) : semiconj_by a x (a * x * a⁻¹) := by unfold semiconj_by; rw [mul_assoc, inv_mul_self, mul_one] end group end semiconj_by @[simp, to_additive add_semiconj_by_iff_eq] lemma semiconj_by_iff_eq {M : Type u} [cancel_comm_monoid M] {a x y : M} : semiconj_by a x y ↔ x = y := ⟨λ h, mul_left_cancel (h.trans (mul_comm _ _)), λ h, by rw [h, semiconj_by, mul_comm] ⟩ /-- `a` semiconjugates `x` to `a * x * a⁻¹`. -/ @[to_additive "`a` semiconjugates `x` to `a + x + -a`."] lemma units.mk_semiconj_by {M : Type u} [monoid M] (u : Mˣ) (x : M) : semiconj_by ↑u x (u * x * ↑u⁻¹) := by unfold semiconj_by; rw [units.inv_mul_cancel_right]