Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Yury Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Simon Hudon, Patrick Massot, Yury Kudryashov | |
-/ | |
import algebra.group.opposite | |
/-! | |
# Monoid, group etc structures on `M × N` | |
In this file we define one-binop (`monoid`, `group` etc) structures on `M × N`. We also prove | |
trivial `simp` lemmas, and define the following operations on `monoid_hom`s: | |
* `fst M N : M × N →* M`, `snd M N : M × N →* N`: projections `prod.fst` and `prod.snd` | |
as `monoid_hom`s; | |
* `inl M N : M →* M × N`, `inr M N : N →* M × N`: inclusions of first/second monoid | |
into the product; | |
* `f.prod g : `M →* N × P`: sends `x` to `(f x, g x)`; | |
* `f.coprod g : M × N →* P`: sends `(x, y)` to `f x * g y`; | |
* `f.prod_map g : M × N → M' × N'`: `prod.map f g` as a `monoid_hom`, | |
sends `(x, y)` to `(f x, g y)`. | |
## Main declarations | |
* `mul_mul_hom`/`mul_monoid_hom`/`mul_monoid_with_zero_hom`: Multiplication bundled as a | |
multiplicative/monoid/monoid with zero homomorphism. | |
* `div_monoid_hom`/`div_monoid_with_zero_hom`: Division bundled as a monoid/monoid with zero | |
homomorphism. | |
-/ | |
variables {A : Type*} {B : Type*} {G : Type*} {H : Type*} {M : Type*} {N : Type*} {P : Type*} | |
namespace prod | |
@[to_additive] | |
instance [has_mul M] [has_mul N] : has_mul (M × N) := ⟨λ p q, ⟨p.1 * q.1, p.2 * q.2⟩⟩ | |
@[simp, to_additive] | |
lemma fst_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).1 = p.1 * q.1 := rfl | |
@[simp, to_additive] | |
lemma snd_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).2 = p.2 * q.2 := rfl | |
@[simp, to_additive] | |
lemma mk_mul_mk [has_mul M] [has_mul N] (a₁ a₂ : M) (b₁ b₂ : N) : | |
(a₁, b₁) * (a₂, b₂) = (a₁ * a₂, b₁ * b₂) := rfl | |
@[simp, to_additive] | |
lemma swap_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).swap = p.swap * q.swap := rfl | |
@[to_additive] | |
lemma mul_def [has_mul M] [has_mul N] (p q : M × N) : p * q = (p.1 * q.1, p.2 * q.2) := rfl | |
@[to_additive] | |
instance [has_one M] [has_one N] : has_one (M × N) := ⟨(1, 1)⟩ | |
@[simp, to_additive] | |
lemma fst_one [has_one M] [has_one N] : (1 : M × N).1 = 1 := rfl | |
@[simp, to_additive] | |
lemma snd_one [has_one M] [has_one N] : (1 : M × N).2 = 1 := rfl | |
@[to_additive] | |
lemma one_eq_mk [has_one M] [has_one N] : (1 : M × N) = (1, 1) := rfl | |
@[simp, to_additive] | |
lemma mk_eq_one [has_one M] [has_one N] {x : M} {y : N} : (x, y) = 1 ↔ x = 1 ∧ y = 1 := | |
mk.inj_iff | |
@[simp, to_additive] | |
lemma swap_one [has_one M] [has_one N] : (1 : M × N).swap = 1 := rfl | |
@[to_additive] | |
lemma fst_mul_snd [mul_one_class M] [mul_one_class N] (p : M × N) : | |
(p.fst, 1) * (1, p.snd) = p := | |
ext (mul_one p.1) (one_mul p.2) | |
@[to_additive] | |
instance [has_inv M] [has_inv N] : has_inv (M × N) := ⟨λp, (p.1⁻¹, p.2⁻¹)⟩ | |
@[simp, to_additive] | |
lemma fst_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).1 = (p.1)⁻¹ := rfl | |
@[simp, to_additive] | |
lemma snd_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).2 = (p.2)⁻¹ := rfl | |
@[simp, to_additive] | |
lemma inv_mk [has_inv G] [has_inv H] (a : G) (b : H) : (a, b)⁻¹ = (a⁻¹, b⁻¹) := rfl | |
@[simp, to_additive] | |
lemma swap_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).swap = p.swap⁻¹ := rfl | |
@[to_additive] | |
instance [has_involutive_inv M] [has_involutive_inv N] : has_involutive_inv (M × N) := | |
{ inv_inv := λ a, ext (inv_inv _) (inv_inv _), | |
..prod.has_inv } | |
@[to_additive] | |
instance [has_div M] [has_div N] : has_div (M × N) := ⟨λ p q, ⟨p.1 / q.1, p.2 / q.2⟩⟩ | |
@[simp, to_additive] lemma fst_div [has_div G] [has_div H] (a b : G × H) : (a / b).1 = a.1 / b.1 := | |
rfl | |
@[simp, to_additive] lemma snd_div [has_div G] [has_div H] (a b : G × H) : (a / b).2 = a.2 / b.2 := | |
rfl | |
@[simp, to_additive] lemma mk_div_mk [has_div G] [has_div H] (x₁ x₂ : G) (y₁ y₂ : H) : | |
(x₁, y₁) / (x₂, y₂) = (x₁ / x₂, y₁ / y₂) := rfl | |
@[simp, to_additive] lemma swap_div [has_div G] [has_div H] (a b : G × H) : | |
(a / b).swap = a.swap / b.swap := rfl | |
instance [mul_zero_class M] [mul_zero_class N] : mul_zero_class (M × N) := | |
{ zero_mul := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨zero_mul _, zero_mul _⟩, | |
mul_zero := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨mul_zero _, mul_zero _⟩, | |
.. prod.has_zero, .. prod.has_mul } | |
@[to_additive] | |
instance [semigroup M] [semigroup N] : semigroup (M × N) := | |
{ mul_assoc := assume a b c, mk.inj_iff.mpr ⟨mul_assoc _ _ _, mul_assoc _ _ _⟩, | |
.. prod.has_mul } | |
@[to_additive] | |
instance [comm_semigroup G] [comm_semigroup H] : comm_semigroup (G × H) := | |
{ mul_comm := assume a b, mk.inj_iff.mpr ⟨mul_comm _ _, mul_comm _ _⟩, | |
.. prod.semigroup } | |
instance [semigroup_with_zero M] [semigroup_with_zero N] : semigroup_with_zero (M × N) := | |
{ .. prod.mul_zero_class, .. prod.semigroup } | |
@[to_additive] | |
instance [mul_one_class M] [mul_one_class N] : mul_one_class (M × N) := | |
{ one_mul := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨one_mul _, one_mul _⟩, | |
mul_one := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨mul_one _, mul_one _⟩, | |
.. prod.has_mul, .. prod.has_one } | |
@[to_additive] | |
instance [monoid M] [monoid N] : monoid (M × N) := | |
{ npow := λ z a, ⟨monoid.npow z a.1, monoid.npow z a.2⟩, | |
npow_zero' := λ z, ext (monoid.npow_zero' _) (monoid.npow_zero' _), | |
npow_succ' := λ z a, ext (monoid.npow_succ' _ _) (monoid.npow_succ' _ _), | |
.. prod.semigroup, .. prod.mul_one_class } | |
@[to_additive prod.sub_neg_monoid] | |
instance [div_inv_monoid G] [div_inv_monoid H] : div_inv_monoid (G × H) := | |
{ div_eq_mul_inv := λ a b, mk.inj_iff.mpr ⟨div_eq_mul_inv _ _, div_eq_mul_inv _ _⟩, | |
zpow := λ z a, ⟨div_inv_monoid.zpow z a.1, div_inv_monoid.zpow z a.2⟩, | |
zpow_zero' := λ z, ext (div_inv_monoid.zpow_zero' _) (div_inv_monoid.zpow_zero' _), | |
zpow_succ' := λ z a, ext (div_inv_monoid.zpow_succ' _ _) (div_inv_monoid.zpow_succ' _ _), | |
zpow_neg' := λ z a, ext (div_inv_monoid.zpow_neg' _ _) (div_inv_monoid.zpow_neg' _ _), | |
.. prod.monoid, .. prod.has_inv, .. prod.has_div } | |
@[to_additive subtraction_monoid] | |
instance [division_monoid G] [division_monoid H] : division_monoid (G × H) := | |
{ mul_inv_rev := λ a b, ext (mul_inv_rev _ _) (mul_inv_rev _ _), | |
inv_eq_of_mul := λ a b h, ext (inv_eq_of_mul_eq_one_right $ congr_arg fst h) | |
(inv_eq_of_mul_eq_one_right $ congr_arg snd h), | |
.. prod.div_inv_monoid, .. prod.has_involutive_inv } | |
@[to_additive subtraction_comm_monoid] | |
instance [division_comm_monoid G] [division_comm_monoid H] : division_comm_monoid (G × H) := | |
{ .. prod.division_monoid, .. prod.comm_semigroup } | |
@[to_additive] | |
instance [group G] [group H] : group (G × H) := | |
{ mul_left_inv := assume a, mk.inj_iff.mpr ⟨mul_left_inv _, mul_left_inv _⟩, | |
.. prod.div_inv_monoid } | |
@[to_additive] | |
instance [left_cancel_semigroup G] [left_cancel_semigroup H] : | |
left_cancel_semigroup (G × H) := | |
{ mul_left_cancel := λ a b c h, prod.ext (mul_left_cancel (prod.ext_iff.1 h).1) | |
(mul_left_cancel (prod.ext_iff.1 h).2), | |
.. prod.semigroup } | |
@[to_additive] | |
instance [right_cancel_semigroup G] [right_cancel_semigroup H] : | |
right_cancel_semigroup (G × H) := | |
{ mul_right_cancel := λ a b c h, prod.ext (mul_right_cancel (prod.ext_iff.1 h).1) | |
(mul_right_cancel (prod.ext_iff.1 h).2), | |
.. prod.semigroup } | |
@[to_additive] | |
instance [left_cancel_monoid M] [left_cancel_monoid N] : left_cancel_monoid (M × N) := | |
{ .. prod.left_cancel_semigroup, .. prod.monoid } | |
@[to_additive] | |
instance [right_cancel_monoid M] [right_cancel_monoid N] : right_cancel_monoid (M × N) := | |
{ .. prod.right_cancel_semigroup, .. prod.monoid } | |
@[to_additive] | |
instance [cancel_monoid M] [cancel_monoid N] : cancel_monoid (M × N) := | |
{ .. prod.right_cancel_monoid, .. prod.left_cancel_monoid } | |
@[to_additive] | |
instance [comm_monoid M] [comm_monoid N] : comm_monoid (M × N) := | |
{ .. prod.comm_semigroup, .. prod.monoid } | |
@[to_additive] | |
instance [cancel_comm_monoid M] [cancel_comm_monoid N] : cancel_comm_monoid (M × N) := | |
{ .. prod.left_cancel_monoid, .. prod.comm_monoid } | |
instance [mul_zero_one_class M] [mul_zero_one_class N] : mul_zero_one_class (M × N) := | |
{ .. prod.mul_zero_class, .. prod.mul_one_class } | |
instance [monoid_with_zero M] [monoid_with_zero N] : monoid_with_zero (M × N) := | |
{ .. prod.monoid, .. prod.mul_zero_one_class } | |
instance [comm_monoid_with_zero M] [comm_monoid_with_zero N] : comm_monoid_with_zero (M × N) := | |
{ .. prod.comm_monoid, .. prod.monoid_with_zero } | |
@[to_additive] | |
instance [comm_group G] [comm_group H] : comm_group (G × H) := | |
{ .. prod.comm_semigroup, .. prod.group } | |
end prod | |
namespace mul_hom | |
section prod | |
variables (M N) [has_mul M] [has_mul N] [has_mul P] | |
/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/ | |
@[to_additive "Given additive magmas `A`, `B`, the natural projection homomorphism | |
from `A × B` to `A`"] | |
def fst : (M × N) →ₙ* M := ⟨prod.fst, λ _ _, rfl⟩ | |
/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/ | |
@[to_additive "Given additive magmas `A`, `B`, the natural projection homomorphism | |
from `A × B` to `B`"] | |
def snd : (M × N) →ₙ* N := ⟨prod.snd, λ _ _, rfl⟩ | |
variables {M N} | |
@[simp, to_additive] lemma coe_fst : ⇑(fst M N) = prod.fst := rfl | |
@[simp, to_additive] lemma coe_snd : ⇑(snd M N) = prod.snd := rfl | |
/-- Combine two `monoid_hom`s `f : M →ₙ* N`, `g : M →ₙ* P` into | |
`f.prod g : M →ₙ* (N × P)` given by `(f.prod g) x = (f x, g x)`. -/ | |
@[to_additive prod "Combine two `add_monoid_hom`s `f : add_hom M N`, `g : add_hom M P` into | |
`f.prod g : add_hom M (N × P)` given by `(f.prod g) x = (f x, g x)`"] | |
protected def prod (f : M →ₙ* N) (g : M →ₙ* P) : M →ₙ* (N × P) := | |
{ to_fun := pi.prod f g, | |
map_mul' := λ x y, prod.ext (f.map_mul x y) (g.map_mul x y) } | |
@[to_additive coe_prod] | |
lemma coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.prod g) = pi.prod f g := rfl | |
@[simp, to_additive prod_apply] | |
lemma prod_apply (f : M →ₙ* N) (g : M →ₙ* P) (x) : f.prod g x = (f x, g x) := rfl | |
@[simp, to_additive fst_comp_prod] | |
lemma fst_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (fst N P).comp (f.prod g) = f := | |
ext $ λ x, rfl | |
@[simp, to_additive snd_comp_prod] | |
lemma snd_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (snd N P).comp (f.prod g) = g := | |
ext $ λ x, rfl | |
@[simp, to_additive prod_unique] | |
lemma prod_unique (f : M →ₙ* (N × P)) : | |
((fst N P).comp f).prod ((snd N P).comp f) = f := | |
ext $ λ x, by simp only [prod_apply, coe_fst, coe_snd, comp_apply, prod.mk.eta] | |
end prod | |
section prod_map | |
variables {M' : Type*} {N' : Type*} [has_mul M] [has_mul N] [has_mul M'] [has_mul N'] [has_mul P] | |
(f : M →ₙ* M') (g : N →ₙ* N') | |
/-- `prod.map` as a `monoid_hom`. -/ | |
@[to_additive prod_map "`prod.map` as an `add_monoid_hom`"] | |
def prod_map : (M × N) →ₙ* (M' × N') := (f.comp (fst M N)).prod (g.comp (snd M N)) | |
@[to_additive prod_map_def] | |
lemma prod_map_def : prod_map f g = (f.comp (fst M N)).prod (g.comp (snd M N)) := rfl | |
@[simp, to_additive coe_prod_map] | |
lemma coe_prod_map : ⇑(prod_map f g) = prod.map f g := rfl | |
@[to_additive prod_comp_prod_map] | |
lemma prod_comp_prod_map (f : P →ₙ* M) (g : P →ₙ* N) | |
(f' : M →ₙ* M') (g' : N →ₙ* N') : | |
(f'.prod_map g').comp (f.prod g) = (f'.comp f).prod (g'.comp g) := | |
rfl | |
end prod_map | |
section coprod | |
variables [has_mul M] [has_mul N] [comm_semigroup P] (f : M →ₙ* P) (g : N →ₙ* P) | |
/-- Coproduct of two `mul_hom`s with the same codomain: | |
`f.coprod g (p : M × N) = f p.1 * g p.2`. -/ | |
@[to_additive "Coproduct of two `add_hom`s with the same codomain: | |
`f.coprod g (p : M × N) = f p.1 + g p.2`."] | |
def coprod : (M × N) →ₙ* P := f.comp (fst M N) * g.comp (snd M N) | |
@[simp, to_additive] | |
lemma coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 := rfl | |
@[to_additive] | |
lemma comp_coprod {Q : Type*} [comm_semigroup Q] | |
(h : P →ₙ* Q) (f : M →ₙ* P) (g : N →ₙ* P) : | |
h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) := | |
ext $ λ x, by simp | |
end coprod | |
end mul_hom | |
namespace monoid_hom | |
variables (M N) [mul_one_class M] [mul_one_class N] | |
/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/ | |
@[to_additive "Given additive monoids `A`, `B`, the natural projection homomorphism | |
from `A × B` to `A`"] | |
def fst : M × N →* M := ⟨prod.fst, rfl, λ _ _, rfl⟩ | |
/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/ | |
@[to_additive "Given additive monoids `A`, `B`, the natural projection homomorphism | |
from `A × B` to `B`"] | |
def snd : M × N →* N := ⟨prod.snd, rfl, λ _ _, rfl⟩ | |
/-- Given monoids `M`, `N`, the natural inclusion homomorphism from `M` to `M × N`. -/ | |
@[to_additive "Given additive monoids `A`, `B`, the natural inclusion homomorphism | |
from `A` to `A × B`."] | |
def inl : M →* M × N := | |
⟨λ x, (x, 1), rfl, λ _ _, prod.ext rfl (one_mul 1).symm⟩ | |
/-- Given monoids `M`, `N`, the natural inclusion homomorphism from `N` to `M × N`. -/ | |
@[to_additive "Given additive monoids `A`, `B`, the natural inclusion homomorphism | |
from `B` to `A × B`."] | |
def inr : N →* M × N := | |
⟨λ y, (1, y), rfl, λ _ _, prod.ext (one_mul 1).symm rfl⟩ | |
variables {M N} | |
@[simp, to_additive] lemma coe_fst : ⇑(fst M N) = prod.fst := rfl | |
@[simp, to_additive] lemma coe_snd : ⇑(snd M N) = prod.snd := rfl | |
@[simp, to_additive] lemma inl_apply (x) : inl M N x = (x, 1) := rfl | |
@[simp, to_additive] lemma inr_apply (y) : inr M N y = (1, y) := rfl | |
@[simp, to_additive] lemma fst_comp_inl : (fst M N).comp (inl M N) = id M := rfl | |
@[simp, to_additive] lemma snd_comp_inl : (snd M N).comp (inl M N) = 1 := rfl | |
@[simp, to_additive] lemma fst_comp_inr : (fst M N).comp (inr M N) = 1 := rfl | |
@[simp, to_additive] lemma snd_comp_inr : (snd M N).comp (inr M N) = id N := rfl | |
section prod | |
variable [mul_one_class P] | |
/-- Combine two `monoid_hom`s `f : M →* N`, `g : M →* P` into `f.prod g : M →* N × P` | |
given by `(f.prod g) x = (f x, g x)`. -/ | |
@[to_additive prod "Combine two `add_monoid_hom`s `f : M →+ N`, `g : M →+ P` into | |
`f.prod g : M →+ N × P` given by `(f.prod g) x = (f x, g x)`"] | |
protected def prod (f : M →* N) (g : M →* P) : M →* N × P := | |
{ to_fun := pi.prod f g, | |
map_one' := prod.ext f.map_one g.map_one, | |
map_mul' := λ x y, prod.ext (f.map_mul x y) (g.map_mul x y) } | |
@[to_additive coe_prod] | |
lemma coe_prod (f : M →* N) (g : M →* P) : ⇑(f.prod g) = pi.prod f g := rfl | |
@[simp, to_additive prod_apply] | |
lemma prod_apply (f : M →* N) (g : M →* P) (x) : f.prod g x = (f x, g x) := rfl | |
@[simp, to_additive fst_comp_prod] | |
lemma fst_comp_prod (f : M →* N) (g : M →* P) : (fst N P).comp (f.prod g) = f := | |
ext $ λ x, rfl | |
@[simp, to_additive snd_comp_prod] | |
lemma snd_comp_prod (f : M →* N) (g : M →* P) : (snd N P).comp (f.prod g) = g := | |
ext $ λ x, rfl | |
@[simp, to_additive prod_unique] | |
lemma prod_unique (f : M →* N × P) : | |
((fst N P).comp f).prod ((snd N P).comp f) = f := | |
ext $ λ x, by simp only [prod_apply, coe_fst, coe_snd, comp_apply, prod.mk.eta] | |
end prod | |
section prod_map | |
variables {M' : Type*} {N' : Type*} [mul_one_class M'] [mul_one_class N'] [mul_one_class P] | |
(f : M →* M') (g : N →* N') | |
/-- `prod.map` as a `monoid_hom`. -/ | |
@[to_additive prod_map "`prod.map` as an `add_monoid_hom`"] | |
def prod_map : M × N →* M' × N' := (f.comp (fst M N)).prod (g.comp (snd M N)) | |
@[to_additive prod_map_def] | |
lemma prod_map_def : prod_map f g = (f.comp (fst M N)).prod (g.comp (snd M N)) := rfl | |
@[simp, to_additive coe_prod_map] | |
lemma coe_prod_map : ⇑(prod_map f g) = prod.map f g := rfl | |
@[to_additive prod_comp_prod_map] | |
lemma prod_comp_prod_map (f : P →* M) (g : P →* N) (f' : M →* M') (g' : N →* N') : | |
(f'.prod_map g').comp (f.prod g) = (f'.comp f).prod (g'.comp g) := | |
rfl | |
end prod_map | |
section coprod | |
variables [comm_monoid P] (f : M →* P) (g : N →* P) | |
/-- Coproduct of two `monoid_hom`s with the same codomain: | |
`f.coprod g (p : M × N) = f p.1 * g p.2`. -/ | |
@[to_additive "Coproduct of two `add_monoid_hom`s with the same codomain: | |
`f.coprod g (p : M × N) = f p.1 + g p.2`."] | |
def coprod : M × N →* P := f.comp (fst M N) * g.comp (snd M N) | |
@[simp, to_additive] | |
lemma coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 := rfl | |
@[simp, to_additive] | |
lemma coprod_comp_inl : (f.coprod g).comp (inl M N) = f := | |
ext $ λ x, by simp [coprod_apply] | |
@[simp, to_additive] | |
lemma coprod_comp_inr : (f.coprod g).comp (inr M N) = g := | |
ext $ λ x, by simp [coprod_apply] | |
@[simp, to_additive] lemma coprod_unique (f : M × N →* P) : | |
(f.comp (inl M N)).coprod (f.comp (inr M N)) = f := | |
ext $ λ x, by simp [coprod_apply, inl_apply, inr_apply, ← map_mul] | |
@[simp, to_additive] lemma coprod_inl_inr {M N : Type*} [comm_monoid M] [comm_monoid N] : | |
(inl M N).coprod (inr M N) = id (M × N) := | |
coprod_unique (id $ M × N) | |
@[to_additive] | |
lemma comp_coprod {Q : Type*} [comm_monoid Q] (h : P →* Q) (f : M →* P) (g : N →* P) : | |
h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) := | |
ext $ λ x, by simp | |
end coprod | |
end monoid_hom | |
namespace mul_equiv | |
section | |
variables {M N} [mul_one_class M] [mul_one_class N] | |
/-- The equivalence between `M × N` and `N × M` given by swapping the components | |
is multiplicative. -/ | |
@[to_additive prod_comm "The equivalence between `M × N` and `N × M` given by swapping the | |
components is additive."] | |
def prod_comm : M × N ≃* N × M := | |
{ map_mul' := λ ⟨x₁, y₁⟩ ⟨x₂, y₂⟩, rfl, ..equiv.prod_comm M N } | |
@[simp, to_additive coe_prod_comm] lemma coe_prod_comm : | |
⇑(prod_comm : M × N ≃* N × M) = prod.swap := rfl | |
@[simp, to_additive coe_prod_comm_symm] lemma coe_prod_comm_symm : | |
⇑((prod_comm : M × N ≃* N × M).symm) = prod.swap := rfl | |
variables {M' N' : Type*} [mul_one_class M'] [mul_one_class N'] | |
/--Product of multiplicative isomorphisms; the maps come from `equiv.prod_congr`.-/ | |
@[to_additive prod_congr "Product of additive isomorphisms; the maps come from `equiv.prod_congr`."] | |
def prod_congr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' := | |
{ map_mul' := λ x y, prod.ext (f.map_mul _ _) (g.map_mul _ _), | |
..f.to_equiv.prod_congr g.to_equiv } | |
/--Multiplying by the trivial monoid doesn't change the structure.-/ | |
@[to_additive unique_prod "Multiplying by the trivial monoid doesn't change the structure."] | |
def unique_prod [unique N] : N × M ≃* M := | |
{ map_mul' := λ x y, rfl, | |
..equiv.unique_prod M N } | |
/--Multiplying by the trivial monoid doesn't change the structure.-/ | |
@[to_additive prod_unique "Multiplying by the trivial monoid doesn't change the structure."] | |
def prod_unique [unique N] : M × N ≃* M := | |
{ map_mul' := λ x y, rfl, | |
..equiv.prod_unique M N } | |
end | |
section | |
variables {M N} [monoid M] [monoid N] | |
/-- The monoid equivalence between units of a product of two monoids, and the product of the | |
units of each monoid. -/ | |
@[to_additive prod_add_units "The additive monoid equivalence between additive units of a product | |
of two additive monoids, and the product of the additive units of each additive monoid."] | |
def prod_units : (M × N)ˣ ≃* Mˣ × Nˣ := | |
{ to_fun := (units.map (monoid_hom.fst M N)).prod (units.map (monoid_hom.snd M N)), | |
inv_fun := λ u, ⟨(u.1, u.2), (↑u.1⁻¹, ↑u.2⁻¹), by simp, by simp⟩, | |
left_inv := λ u, by simp, | |
right_inv := λ ⟨u₁, u₂⟩, by simp [units.map], | |
map_mul' := monoid_hom.map_mul _ } | |
end | |
end mul_equiv | |
namespace units | |
open mul_opposite | |
/-- Canonical homomorphism of monoids from `αˣ` into `α × αᵐᵒᵖ`. | |
Used mainly to define the natural topology of `αˣ`. -/ | |
@[to_additive "Canonical homomorphism of additive monoids from `add_units α` into `α × αᵃᵒᵖ`. | |
Used mainly to define the natural topology of `add_units α`.", simps] | |
def embed_product (α : Type*) [monoid α] : αˣ →* α × αᵐᵒᵖ := | |
{ to_fun := λ x, ⟨x, op ↑x⁻¹⟩, | |
map_one' := by simp only [inv_one, eq_self_iff_true, units.coe_one, op_one, prod.mk_eq_one, | |
and_self], | |
map_mul' := λ x y, by simp only [mul_inv_rev, op_mul, units.coe_mul, prod.mk_mul_mk] } | |
@[to_additive] | |
lemma embed_product_injective (α : Type*) [monoid α] : function.injective (embed_product α) := | |
λ a₁ a₂ h, units.ext $ (congr_arg prod.fst h : _) | |
end units | |
/-! ### Multiplication and division as homomorphisms -/ | |
section bundled_mul_div | |
variables {α : Type*} | |
/-- Multiplication as a multiplicative homomorphism. -/ | |
@[to_additive "Addition as an additive homomorphism.", simps] | |
def mul_mul_hom [comm_semigroup α] : (α × α) →ₙ* α := | |
{ to_fun := λ a, a.1 * a.2, | |
map_mul' := λ a b, mul_mul_mul_comm _ _ _ _ } | |
/-- Multiplication as a monoid homomorphism. -/ | |
@[to_additive "Addition as an additive monoid homomorphism.", simps] | |
def mul_monoid_hom [comm_monoid α] : α × α →* α := | |
{ map_one' := mul_one _, | |
.. mul_mul_hom } | |
/-- Multiplication as a multiplicative homomorphism with zero. -/ | |
@[simps] | |
def mul_monoid_with_zero_hom [comm_monoid_with_zero α] : α × α →*₀ α := | |
{ map_zero' := mul_zero _, | |
.. mul_monoid_hom } | |
/-- Division as a monoid homomorphism. -/ | |
@[to_additive "Subtraction as an additive monoid homomorphism.", simps] | |
def div_monoid_hom [division_comm_monoid α] : α × α →* α := | |
{ to_fun := λ a, a.1 / a.2, | |
map_one' := div_one _, | |
map_mul' := λ a b, mul_div_mul_comm _ _ _ _ } | |
/-- Division as a multiplicative homomorphism with zero. -/ | |
@[simps] | |
def div_monoid_with_zero_hom [comm_group_with_zero α] : α × α →*₀ α := | |
{ to_fun := λ a, a.1 / a.2, | |
map_zero' := zero_div _, | |
map_one' := div_one _, | |
map_mul' := λ a b, mul_div_mul_comm _ _ _ _ } | |
end bundled_mul_div | |