Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
17.2 kB
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot
-/
import algebra.hom.group_instances
import data.pi.algebra
import data.set.function
import data.set.pairwise
import tactic.pi_instances
/-!
# Pi instances for groups and monoids
This file defines instances for group, monoid, semigroup and related structures on Pi types.
-/
universes u v w
variable {I : Type u} -- The indexing type
variable {f : I → Type v} -- The family of types already equipped with instances
variables (x y : Π i, f i) (i : I)
namespace pi
@[to_additive]
instance semigroup [∀ i, semigroup $ f i] : semigroup (Π i : I, f i) :=
by refine_struct { mul := (*), .. }; tactic.pi_instance_derive_field
instance semigroup_with_zero [∀ i, semigroup_with_zero $ f i] :
semigroup_with_zero (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field
@[to_additive]
instance comm_semigroup [∀ i, comm_semigroup $ f i] : comm_semigroup (Π i : I, f i) :=
by refine_struct { mul := (*), .. }; tactic.pi_instance_derive_field
@[to_additive]
instance mul_one_class [∀ i, mul_one_class $ f i] : mul_one_class (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field
@[to_additive]
instance monoid [∀ i, monoid $ f i] : monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := λ n x i, (x i) ^ n };
tactic.pi_instance_derive_field
@[to_additive]
instance comm_monoid [∀ i, comm_monoid $ f i] : comm_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field
@[to_additive pi.sub_neg_monoid]
instance [Π i, div_inv_monoid $ f i] : div_inv_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
npow := monoid.npow, zpow := λ z x i, (x i) ^ z }; tactic.pi_instance_derive_field
@[to_additive]
instance [Π i, has_involutive_inv $ f i] : has_involutive_inv (Π i, f i) :=
by refine_struct { inv := has_inv.inv }; tactic.pi_instance_derive_field
@[to_additive pi.subtraction_monoid]
instance [Π i, division_monoid $ f i] : division_monoid (Π i, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
npow := monoid.npow, zpow := λ z x i, (x i) ^ z }; tactic.pi_instance_derive_field
@[to_additive pi.subtraction_comm_monoid]
instance [Π i, division_comm_monoid $ f i] : division_comm_monoid (Π i, f i) :=
{ ..pi.division_monoid, ..pi.comm_semigroup }
@[to_additive]
instance group [∀ i, group $ f i] : group (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
npow := monoid.npow, zpow := div_inv_monoid.zpow }; tactic.pi_instance_derive_field
@[to_additive]
instance comm_group [∀ i, comm_group $ f i] : comm_group (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
npow := monoid.npow, zpow := div_inv_monoid.zpow }; tactic.pi_instance_derive_field
@[to_additive add_left_cancel_semigroup]
instance left_cancel_semigroup [∀ i, left_cancel_semigroup $ f i] :
left_cancel_semigroup (Π i : I, f i) :=
by refine_struct { mul := (*) }; tactic.pi_instance_derive_field
@[to_additive add_right_cancel_semigroup]
instance right_cancel_semigroup [∀ i, right_cancel_semigroup $ f i] :
right_cancel_semigroup (Π i : I, f i) :=
by refine_struct { mul := (*) }; tactic.pi_instance_derive_field
@[to_additive add_left_cancel_monoid]
instance left_cancel_monoid [∀ i, left_cancel_monoid $ f i] :
left_cancel_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field
@[to_additive add_right_cancel_monoid]
instance right_cancel_monoid [∀ i, right_cancel_monoid $ f i] :
right_cancel_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow, .. };
tactic.pi_instance_derive_field
@[to_additive add_cancel_monoid]
instance cancel_monoid [∀ i, cancel_monoid $ f i] :
cancel_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field
@[to_additive add_cancel_comm_monoid]
instance cancel_comm_monoid [∀ i, cancel_comm_monoid $ f i] :
cancel_comm_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field
instance mul_zero_class [∀ i, mul_zero_class $ f i] :
mul_zero_class (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field
instance mul_zero_one_class [∀ i, mul_zero_one_class $ f i] :
mul_zero_one_class (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*), .. };
tactic.pi_instance_derive_field
instance monoid_with_zero [∀ i, monoid_with_zero $ f i] :
monoid_with_zero (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*),
npow := monoid.npow }; tactic.pi_instance_derive_field
instance comm_monoid_with_zero [∀ i, comm_monoid_with_zero $ f i] :
comm_monoid_with_zero (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*),
npow := monoid.npow }; tactic.pi_instance_derive_field
end pi
namespace mul_hom
@[to_additive] lemma coe_mul {M N} {mM : has_mul M} {mN : comm_semigroup N}
(f g : M →ₙ* N) :
(f * g : M → N) = λ x, f x * g x := rfl
end mul_hom
section mul_hom
variables (f) [Π i, has_mul (f i)]
/-- Evaluation of functions into an indexed collection of semigroups at a point is a semigroup
homomorphism.
This is `function.eval i` as a `mul_hom`. -/
@[to_additive "Evaluation of functions into an indexed collection of additive semigroups at a
point is an additive semigroup homomorphism.
This is `function.eval i` as an `add_hom`.", simps]
def pi.eval_mul_hom (i : I) : (Π i, f i) →ₙ* f i :=
{ to_fun := λ g, g i,
map_mul' := λ x y, pi.mul_apply _ _ i, }
/-- `function.const` as a `mul_hom`. -/
@[to_additive "`function.const` as an `add_hom`.", simps]
def pi.const_mul_hom (α β : Type*) [has_mul β] : β →ₙ* (α → β) :=
{ to_fun := function.const α,
map_mul' := λ _ _, rfl }
/-- Coercion of a `mul_hom` into a function is itself a `mul_hom`.
See also `mul_hom.eval`. -/
@[to_additive "Coercion of an `add_hom` into a function is itself a `add_hom`.
See also `add_hom.eval`. ", simps]
def mul_hom.coe_fn (α β : Type*) [has_mul α] [comm_semigroup β] : (α →ₙ* β) →ₙ* (α → β) :=
{ to_fun := λ g, g,
map_mul' := λ x y, rfl, }
/-- Semigroup homomorphism between the function spaces `I → α` and `I → β`, induced by a semigroup
homomorphism `f` between `α` and `β`. -/
@[to_additive "Additive semigroup homomorphism between the function spaces `I → α` and `I → β`,
induced by an additive semigroup homomorphism `f` between `α` and `β`", simps]
protected def mul_hom.comp_left {α β : Type*} [has_mul α] [has_mul β] (f : α →ₙ* β)
(I : Type*) :
(I → α) →ₙ* (I → β) :=
{ to_fun := λ h, f ∘ h,
map_mul' := λ _ _, by ext; simp }
end mul_hom
section monoid_hom
variables (f) [Π i, mul_one_class (f i)]
/-- Evaluation of functions into an indexed collection of monoids at a point is a monoid
homomorphism.
This is `function.eval i` as a `monoid_hom`. -/
@[to_additive "Evaluation of functions into an indexed collection of additive monoids at a
point is an additive monoid homomorphism.
This is `function.eval i` as an `add_monoid_hom`.", simps]
def pi.eval_monoid_hom (i : I) : (Π i, f i) →* f i :=
{ to_fun := λ g, g i,
map_one' := pi.one_apply i,
map_mul' := λ x y, pi.mul_apply _ _ i, }
/-- `function.const` as a `monoid_hom`. -/
@[to_additive "`function.const` as an `add_monoid_hom`.", simps]
def pi.const_monoid_hom (α β : Type*) [mul_one_class β] : β →* (α → β) :=
{ to_fun := function.const α,
map_one' := rfl,
map_mul' := λ _ _, rfl }
/-- Coercion of a `monoid_hom` into a function is itself a `monoid_hom`.
See also `monoid_hom.eval`. -/
@[to_additive "Coercion of an `add_monoid_hom` into a function is itself a `add_monoid_hom`.
See also `add_monoid_hom.eval`. ", simps]
def monoid_hom.coe_fn (α β : Type*) [mul_one_class α] [comm_monoid β] : (α →* β) →* (α → β) :=
{ to_fun := λ g, g,
map_one' := rfl,
map_mul' := λ x y, rfl, }
/-- Monoid homomorphism between the function spaces `I → α` and `I → β`, induced by a monoid
homomorphism `f` between `α` and `β`. -/
@[to_additive "Additive monoid homomorphism between the function spaces `I → α` and `I → β`,
induced by an additive monoid homomorphism `f` between `α` and `β`", simps]
protected def monoid_hom.comp_left {α β : Type*} [mul_one_class α] [mul_one_class β] (f : α →* β)
(I : Type*) :
(I → α) →* (I → β) :=
{ to_fun := λ h, f ∘ h,
map_one' := by ext; simp,
map_mul' := λ _ _, by ext; simp }
end monoid_hom
section single
variables [decidable_eq I]
open pi
variables (f)
/-- The one-preserving homomorphism including a single value
into a dependent family of values, as functions supported at a point.
This is the `one_hom` version of `pi.mul_single`. -/
@[to_additive zero_hom.single "The zero-preserving homomorphism including a single value
into a dependent family of values, as functions supported at a point.
This is the `zero_hom` version of `pi.single`."]
def one_hom.single [Π i, has_one $ f i] (i : I) : one_hom (f i) (Π i, f i) :=
{ to_fun := mul_single i,
map_one' := mul_single_one i }
@[simp, to_additive]
lemma one_hom.single_apply [Π i, has_one $ f i] (i : I) (x : f i) :
one_hom.single f i x = mul_single i x := rfl
/-- The monoid homomorphism including a single monoid into a dependent family of additive monoids,
as functions supported at a point.
This is the `monoid_hom` version of `pi.mul_single`. -/
@[to_additive "The additive monoid homomorphism including a single additive
monoid into a dependent family of additive monoids, as functions supported at a point.
This is the `add_monoid_hom` version of `pi.single`."]
def monoid_hom.single [Π i, mul_one_class $ f i] (i : I) : f i →* Π i, f i :=
{ map_mul' := mul_single_op₂ (λ _, (*)) (λ _, one_mul _) _,
.. (one_hom.single f i) }
@[simp, to_additive]
lemma monoid_hom.single_apply [Π i, mul_one_class $ f i] (i : I) (x : f i) :
monoid_hom.single f i x = mul_single i x := rfl
/-- The multiplicative homomorphism including a single `mul_zero_class`
into a dependent family of `mul_zero_class`es, as functions supported at a point.
This is the `mul_hom` version of `pi.single`. -/
@[simps] def mul_hom.single [Π i, mul_zero_class $ f i] (i : I) : (f i) →ₙ* (Π i, f i) :=
{ to_fun := single i,
map_mul' := pi.single_op₂ (λ _, (*)) (λ _, zero_mul _) _, }
variables {f}
@[to_additive]
lemma pi.mul_single_mul [Π i, mul_one_class $ f i] (i : I) (x y : f i) :
mul_single i (x * y) = mul_single i x * mul_single i y :=
(monoid_hom.single f i).map_mul x y
@[to_additive]
lemma pi.mul_single_inv [Π i, group $ f i] (i : I) (x : f i) :
mul_single i (x⁻¹) = (mul_single i x)⁻¹ :=
(monoid_hom.single f i).map_inv x
@[to_additive]
lemma pi.single_div [Π i, group $ f i] (i : I) (x y : f i) :
mul_single i (x / y) = mul_single i x / mul_single i y :=
(monoid_hom.single f i).map_div x y
lemma pi.single_mul [Π i, mul_zero_class $ f i] (i : I) (x y : f i) :
single i (x * y) = single i x * single i y :=
(mul_hom.single f i).map_mul x y
/-- The injection into a pi group at different indices commutes.
For injections of commuting elements at the same index, see `commute.map` -/
@[to_additive "The injection into an additive pi group at different indices commutes.
For injections of commuting elements at the same index, see `add_commute.map`"]
lemma pi.mul_single_commute [Π i, mul_one_class $ f i] :
pairwise (λ i j, ∀ (x : f i) (y : f j), commute (mul_single i x) (mul_single j y)) :=
begin
intros i j hij x y, ext k,
by_cases h1 : i = k, { subst h1, simp [hij], },
by_cases h2 : j = k, { subst h2, simp [hij], },
simp [h1, h2],
end
/-- The injection into a pi group with the same values commutes. -/
@[to_additive "The injection into an additive pi group with the same values commutes."]
lemma pi.mul_single_apply_commute [Π i, mul_one_class $ f i] (x : Π i, f i) (i j : I) :
commute (mul_single i (x i)) (mul_single j (x j)) :=
begin
obtain rfl | hij := decidable.eq_or_ne i j,
{ refl },
{ exact pi.mul_single_commute _ _ hij _ _, },
end
@[to_additive update_eq_sub_add_single]
lemma pi.update_eq_div_mul_single [Π i, group $ f i] (g : Π (i : I), f i) (x : f i) :
function.update g i x = g / mul_single i (g i) * mul_single i x :=
begin
ext j,
rcases eq_or_ne i j with rfl|h,
{ simp },
{ simp [function.update_noteq h.symm, h] }
end
@[to_additive pi.single_add_single_eq_single_add_single]
lemma pi.mul_single_mul_mul_single_eq_mul_single_mul_mul_single
{M : Type*} [comm_monoid M] {k l m n : I} {u v : M} (hu : u ≠ 1) (hv : v ≠ 1) :
mul_single k u * mul_single l v = mul_single m u * mul_single n v ↔
(k = m ∧ l = n) ∨ (u = v ∧ k = n ∧ l = m) ∨ (u * v = 1 ∧ k = l ∧ m = n) :=
begin
refine ⟨λ h, _, _⟩,
{ have hk := congr_fun h k,
have hl := congr_fun h l,
have hm := (congr_fun h m).symm,
have hn := (congr_fun h n).symm,
simp only [mul_apply, mul_single_apply, if_pos rfl] at hk hl hm hn,
rcases eq_or_ne k m with rfl | hkm,
{ refine or.inl ⟨rfl, not_ne_iff.mp (λ hln, (hv _).elim)⟩,
rcases eq_or_ne k l with rfl | hkl,
{ rwa [if_neg hln.symm, if_neg hln.symm, one_mul, one_mul] at hn },
{ rwa [if_neg hkl.symm, if_neg hln, one_mul, one_mul] at hl } },
{ rcases eq_or_ne m n with rfl | hmn,
{ rcases eq_or_ne k l with rfl | hkl,
{ rw [if_neg hkm.symm, if_neg hkm.symm, one_mul, if_pos rfl] at hm,
exact or.inr (or.inr ⟨hm, rfl, rfl⟩) },
{ simpa only [if_neg hkm, if_neg hkl, mul_one] using hk } },
{ rw [if_neg hkm.symm, if_neg hmn, one_mul, mul_one] at hm,
obtain rfl := (ite_ne_right_iff.mp (ne_of_eq_of_ne hm.symm hu)).1,
rw [if_neg hkm, if_neg hkm, one_mul, mul_one] at hk,
obtain rfl := (ite_ne_right_iff.mp (ne_of_eq_of_ne hk.symm hu)).1,
exact or.inr (or.inl ⟨hk.trans (if_pos rfl), rfl, rfl⟩) } } },
{ rintros (⟨rfl, rfl⟩ | ⟨rfl, rfl, rfl⟩ | ⟨h, rfl, rfl⟩),
{ refl },
{ apply mul_comm },
{ simp_rw [←pi.mul_single_mul, h, mul_single_one] } },
end
end single
namespace function
@[simp, to_additive]
lemma update_one [Π i, has_one (f i)] [decidable_eq I] (i : I) :
update (1 : Π i, f i) i 1 = 1 :=
update_eq_self i 1
@[to_additive]
lemma update_mul [Π i, has_mul (f i)] [decidable_eq I]
(f₁ f₂ : Π i, f i) (i : I) (x₁ : f i) (x₂ : f i) :
update (f₁ * f₂) i (x₁ * x₂) = update f₁ i x₁ * update f₂ i x₂ :=
funext $ λ j, (apply_update₂ (λ i, (*)) f₁ f₂ i x₁ x₂ j).symm
@[to_additive]
lemma update_inv [Π i, has_inv (f i)] [decidable_eq I]
(f₁ : Π i, f i) (i : I) (x₁ : f i) :
update (f₁⁻¹) i (x₁⁻¹) = (update f₁ i x₁)⁻¹ :=
funext $ λ j, (apply_update (λ i, has_inv.inv) f₁ i x₁ j).symm
@[to_additive]
lemma update_div [Π i, has_div (f i)] [decidable_eq I]
(f₁ f₂ : Π i, f i) (i : I) (x₁ : f i) (x₂ : f i) :
update (f₁ / f₂) i (x₁ / x₂) = update f₁ i x₁ / update f₂ i x₂ :=
funext $ λ j, (apply_update₂ (λ i, (/)) f₁ f₂ i x₁ x₂ j).symm
end function
section piecewise
@[to_additive]
lemma set.piecewise_mul [Π i, has_mul (f i)] (s : set I) [Π i, decidable (i ∈ s)]
(f₁ f₂ g₁ g₂ : Π i, f i) :
s.piecewise (f₁ * f₂) (g₁ * g₂) = s.piecewise f₁ g₁ * s.piecewise f₂ g₂ :=
s.piecewise_op₂ _ _ _ _ (λ _, (*))
@[to_additive]
lemma set.piecewise_inv [Π i, has_inv (f i)] (s : set I) [Π i, decidable (i ∈ s)]
(f₁ g₁ : Π i, f i) :
s.piecewise (f₁⁻¹) (g₁⁻¹) = (s.piecewise f₁ g₁)⁻¹ :=
s.piecewise_op f₁ g₁ (λ _ x, x⁻¹)
@[to_additive]
lemma set.piecewise_div [Π i, has_div (f i)] (s : set I) [Π i, decidable (i ∈ s)]
(f₁ f₂ g₁ g₂ : Π i, f i) :
s.piecewise (f₁ / f₂) (g₁ / g₂) = s.piecewise f₁ g₁ / s.piecewise f₂ g₂ :=
s.piecewise_op₂ _ _ _ _ (λ _, (/))
end piecewise
section extend
variables {ι : Type u} {η : Type v} (R : Type w) (s : ι → η)
/-- `function.extend s f 1` as a bundled hom. -/
@[to_additive function.extend_by_zero.hom "`function.extend s f 0` as a bundled hom.", simps]
noncomputable def function.extend_by_one.hom [mul_one_class R] : (ι → R) →* (η → R) :=
{ to_fun := λ f, function.extend s f 1,
map_one' := function.extend_one s,
map_mul' := λ f g, by { simpa using function.extend_mul s f g 1 1 } }
end extend