Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 17,220 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot
-/
import algebra.hom.group_instances
import data.pi.algebra
import data.set.function
import data.set.pairwise
import tactic.pi_instances
/-!
# Pi instances for groups and monoids
This file defines instances for group, monoid, semigroup and related structures on Pi types.
-/
universes u v w
variable {I : Type u} -- The indexing type
variable {f : I → Type v} -- The family of types already equipped with instances
variables (x y : Π i, f i) (i : I)
namespace pi
@[to_additive]
instance semigroup [∀ i, semigroup $ f i] : semigroup (Π i : I, f i) :=
by refine_struct { mul := (*), .. }; tactic.pi_instance_derive_field
instance semigroup_with_zero [∀ i, semigroup_with_zero $ f i] :
semigroup_with_zero (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field
@[to_additive]
instance comm_semigroup [∀ i, comm_semigroup $ f i] : comm_semigroup (Π i : I, f i) :=
by refine_struct { mul := (*), .. }; tactic.pi_instance_derive_field
@[to_additive]
instance mul_one_class [∀ i, mul_one_class $ f i] : mul_one_class (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field
@[to_additive]
instance monoid [∀ i, monoid $ f i] : monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := λ n x i, (x i) ^ n };
tactic.pi_instance_derive_field
@[to_additive]
instance comm_monoid [∀ i, comm_monoid $ f i] : comm_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field
@[to_additive pi.sub_neg_monoid]
instance [Π i, div_inv_monoid $ f i] : div_inv_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
npow := monoid.npow, zpow := λ z x i, (x i) ^ z }; tactic.pi_instance_derive_field
@[to_additive]
instance [Π i, has_involutive_inv $ f i] : has_involutive_inv (Π i, f i) :=
by refine_struct { inv := has_inv.inv }; tactic.pi_instance_derive_field
@[to_additive pi.subtraction_monoid]
instance [Π i, division_monoid $ f i] : division_monoid (Π i, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
npow := monoid.npow, zpow := λ z x i, (x i) ^ z }; tactic.pi_instance_derive_field
@[to_additive pi.subtraction_comm_monoid]
instance [Π i, division_comm_monoid $ f i] : division_comm_monoid (Π i, f i) :=
{ ..pi.division_monoid, ..pi.comm_semigroup }
@[to_additive]
instance group [∀ i, group $ f i] : group (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
npow := monoid.npow, zpow := div_inv_monoid.zpow }; tactic.pi_instance_derive_field
@[to_additive]
instance comm_group [∀ i, comm_group $ f i] : comm_group (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
npow := monoid.npow, zpow := div_inv_monoid.zpow }; tactic.pi_instance_derive_field
@[to_additive add_left_cancel_semigroup]
instance left_cancel_semigroup [∀ i, left_cancel_semigroup $ f i] :
left_cancel_semigroup (Π i : I, f i) :=
by refine_struct { mul := (*) }; tactic.pi_instance_derive_field
@[to_additive add_right_cancel_semigroup]
instance right_cancel_semigroup [∀ i, right_cancel_semigroup $ f i] :
right_cancel_semigroup (Π i : I, f i) :=
by refine_struct { mul := (*) }; tactic.pi_instance_derive_field
@[to_additive add_left_cancel_monoid]
instance left_cancel_monoid [∀ i, left_cancel_monoid $ f i] :
left_cancel_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field
@[to_additive add_right_cancel_monoid]
instance right_cancel_monoid [∀ i, right_cancel_monoid $ f i] :
right_cancel_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow, .. };
tactic.pi_instance_derive_field
@[to_additive add_cancel_monoid]
instance cancel_monoid [∀ i, cancel_monoid $ f i] :
cancel_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field
@[to_additive add_cancel_comm_monoid]
instance cancel_comm_monoid [∀ i, cancel_comm_monoid $ f i] :
cancel_comm_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field
instance mul_zero_class [∀ i, mul_zero_class $ f i] :
mul_zero_class (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field
instance mul_zero_one_class [∀ i, mul_zero_one_class $ f i] :
mul_zero_one_class (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*), .. };
tactic.pi_instance_derive_field
instance monoid_with_zero [∀ i, monoid_with_zero $ f i] :
monoid_with_zero (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*),
npow := monoid.npow }; tactic.pi_instance_derive_field
instance comm_monoid_with_zero [∀ i, comm_monoid_with_zero $ f i] :
comm_monoid_with_zero (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*),
npow := monoid.npow }; tactic.pi_instance_derive_field
end pi
namespace mul_hom
@[to_additive] lemma coe_mul {M N} {mM : has_mul M} {mN : comm_semigroup N}
(f g : M →ₙ* N) :
(f * g : M → N) = λ x, f x * g x := rfl
end mul_hom
section mul_hom
variables (f) [Π i, has_mul (f i)]
/-- Evaluation of functions into an indexed collection of semigroups at a point is a semigroup
homomorphism.
This is `function.eval i` as a `mul_hom`. -/
@[to_additive "Evaluation of functions into an indexed collection of additive semigroups at a
point is an additive semigroup homomorphism.
This is `function.eval i` as an `add_hom`.", simps]
def pi.eval_mul_hom (i : I) : (Π i, f i) →ₙ* f i :=
{ to_fun := λ g, g i,
map_mul' := λ x y, pi.mul_apply _ _ i, }
/-- `function.const` as a `mul_hom`. -/
@[to_additive "`function.const` as an `add_hom`.", simps]
def pi.const_mul_hom (α β : Type*) [has_mul β] : β →ₙ* (α → β) :=
{ to_fun := function.const α,
map_mul' := λ _ _, rfl }
/-- Coercion of a `mul_hom` into a function is itself a `mul_hom`.
See also `mul_hom.eval`. -/
@[to_additive "Coercion of an `add_hom` into a function is itself a `add_hom`.
See also `add_hom.eval`. ", simps]
def mul_hom.coe_fn (α β : Type*) [has_mul α] [comm_semigroup β] : (α →ₙ* β) →ₙ* (α → β) :=
{ to_fun := λ g, g,
map_mul' := λ x y, rfl, }
/-- Semigroup homomorphism between the function spaces `I → α` and `I → β`, induced by a semigroup
homomorphism `f` between `α` and `β`. -/
@[to_additive "Additive semigroup homomorphism between the function spaces `I → α` and `I → β`,
induced by an additive semigroup homomorphism `f` between `α` and `β`", simps]
protected def mul_hom.comp_left {α β : Type*} [has_mul α] [has_mul β] (f : α →ₙ* β)
(I : Type*) :
(I → α) →ₙ* (I → β) :=
{ to_fun := λ h, f ∘ h,
map_mul' := λ _ _, by ext; simp }
end mul_hom
section monoid_hom
variables (f) [Π i, mul_one_class (f i)]
/-- Evaluation of functions into an indexed collection of monoids at a point is a monoid
homomorphism.
This is `function.eval i` as a `monoid_hom`. -/
@[to_additive "Evaluation of functions into an indexed collection of additive monoids at a
point is an additive monoid homomorphism.
This is `function.eval i` as an `add_monoid_hom`.", simps]
def pi.eval_monoid_hom (i : I) : (Π i, f i) →* f i :=
{ to_fun := λ g, g i,
map_one' := pi.one_apply i,
map_mul' := λ x y, pi.mul_apply _ _ i, }
/-- `function.const` as a `monoid_hom`. -/
@[to_additive "`function.const` as an `add_monoid_hom`.", simps]
def pi.const_monoid_hom (α β : Type*) [mul_one_class β] : β →* (α → β) :=
{ to_fun := function.const α,
map_one' := rfl,
map_mul' := λ _ _, rfl }
/-- Coercion of a `monoid_hom` into a function is itself a `monoid_hom`.
See also `monoid_hom.eval`. -/
@[to_additive "Coercion of an `add_monoid_hom` into a function is itself a `add_monoid_hom`.
See also `add_monoid_hom.eval`. ", simps]
def monoid_hom.coe_fn (α β : Type*) [mul_one_class α] [comm_monoid β] : (α →* β) →* (α → β) :=
{ to_fun := λ g, g,
map_one' := rfl,
map_mul' := λ x y, rfl, }
/-- Monoid homomorphism between the function spaces `I → α` and `I → β`, induced by a monoid
homomorphism `f` between `α` and `β`. -/
@[to_additive "Additive monoid homomorphism between the function spaces `I → α` and `I → β`,
induced by an additive monoid homomorphism `f` between `α` and `β`", simps]
protected def monoid_hom.comp_left {α β : Type*} [mul_one_class α] [mul_one_class β] (f : α →* β)
(I : Type*) :
(I → α) →* (I → β) :=
{ to_fun := λ h, f ∘ h,
map_one' := by ext; simp,
map_mul' := λ _ _, by ext; simp }
end monoid_hom
section single
variables [decidable_eq I]
open pi
variables (f)
/-- The one-preserving homomorphism including a single value
into a dependent family of values, as functions supported at a point.
This is the `one_hom` version of `pi.mul_single`. -/
@[to_additive zero_hom.single "The zero-preserving homomorphism including a single value
into a dependent family of values, as functions supported at a point.
This is the `zero_hom` version of `pi.single`."]
def one_hom.single [Π i, has_one $ f i] (i : I) : one_hom (f i) (Π i, f i) :=
{ to_fun := mul_single i,
map_one' := mul_single_one i }
@[simp, to_additive]
lemma one_hom.single_apply [Π i, has_one $ f i] (i : I) (x : f i) :
one_hom.single f i x = mul_single i x := rfl
/-- The monoid homomorphism including a single monoid into a dependent family of additive monoids,
as functions supported at a point.
This is the `monoid_hom` version of `pi.mul_single`. -/
@[to_additive "The additive monoid homomorphism including a single additive
monoid into a dependent family of additive monoids, as functions supported at a point.
This is the `add_monoid_hom` version of `pi.single`."]
def monoid_hom.single [Π i, mul_one_class $ f i] (i : I) : f i →* Π i, f i :=
{ map_mul' := mul_single_op₂ (λ _, (*)) (λ _, one_mul _) _,
.. (one_hom.single f i) }
@[simp, to_additive]
lemma monoid_hom.single_apply [Π i, mul_one_class $ f i] (i : I) (x : f i) :
monoid_hom.single f i x = mul_single i x := rfl
/-- The multiplicative homomorphism including a single `mul_zero_class`
into a dependent family of `mul_zero_class`es, as functions supported at a point.
This is the `mul_hom` version of `pi.single`. -/
@[simps] def mul_hom.single [Π i, mul_zero_class $ f i] (i : I) : (f i) →ₙ* (Π i, f i) :=
{ to_fun := single i,
map_mul' := pi.single_op₂ (λ _, (*)) (λ _, zero_mul _) _, }
variables {f}
@[to_additive]
lemma pi.mul_single_mul [Π i, mul_one_class $ f i] (i : I) (x y : f i) :
mul_single i (x * y) = mul_single i x * mul_single i y :=
(monoid_hom.single f i).map_mul x y
@[to_additive]
lemma pi.mul_single_inv [Π i, group $ f i] (i : I) (x : f i) :
mul_single i (x⁻¹) = (mul_single i x)⁻¹ :=
(monoid_hom.single f i).map_inv x
@[to_additive]
lemma pi.single_div [Π i, group $ f i] (i : I) (x y : f i) :
mul_single i (x / y) = mul_single i x / mul_single i y :=
(monoid_hom.single f i).map_div x y
lemma pi.single_mul [Π i, mul_zero_class $ f i] (i : I) (x y : f i) :
single i (x * y) = single i x * single i y :=
(mul_hom.single f i).map_mul x y
/-- The injection into a pi group at different indices commutes.
For injections of commuting elements at the same index, see `commute.map` -/
@[to_additive "The injection into an additive pi group at different indices commutes.
For injections of commuting elements at the same index, see `add_commute.map`"]
lemma pi.mul_single_commute [Π i, mul_one_class $ f i] :
pairwise (λ i j, ∀ (x : f i) (y : f j), commute (mul_single i x) (mul_single j y)) :=
begin
intros i j hij x y, ext k,
by_cases h1 : i = k, { subst h1, simp [hij], },
by_cases h2 : j = k, { subst h2, simp [hij], },
simp [h1, h2],
end
/-- The injection into a pi group with the same values commutes. -/
@[to_additive "The injection into an additive pi group with the same values commutes."]
lemma pi.mul_single_apply_commute [Π i, mul_one_class $ f i] (x : Π i, f i) (i j : I) :
commute (mul_single i (x i)) (mul_single j (x j)) :=
begin
obtain rfl | hij := decidable.eq_or_ne i j,
{ refl },
{ exact pi.mul_single_commute _ _ hij _ _, },
end
@[to_additive update_eq_sub_add_single]
lemma pi.update_eq_div_mul_single [Π i, group $ f i] (g : Π (i : I), f i) (x : f i) :
function.update g i x = g / mul_single i (g i) * mul_single i x :=
begin
ext j,
rcases eq_or_ne i j with rfl|h,
{ simp },
{ simp [function.update_noteq h.symm, h] }
end
@[to_additive pi.single_add_single_eq_single_add_single]
lemma pi.mul_single_mul_mul_single_eq_mul_single_mul_mul_single
{M : Type*} [comm_monoid M] {k l m n : I} {u v : M} (hu : u ≠ 1) (hv : v ≠ 1) :
mul_single k u * mul_single l v = mul_single m u * mul_single n v ↔
(k = m ∧ l = n) ∨ (u = v ∧ k = n ∧ l = m) ∨ (u * v = 1 ∧ k = l ∧ m = n) :=
begin
refine ⟨λ h, _, _⟩,
{ have hk := congr_fun h k,
have hl := congr_fun h l,
have hm := (congr_fun h m).symm,
have hn := (congr_fun h n).symm,
simp only [mul_apply, mul_single_apply, if_pos rfl] at hk hl hm hn,
rcases eq_or_ne k m with rfl | hkm,
{ refine or.inl ⟨rfl, not_ne_iff.mp (λ hln, (hv _).elim)⟩,
rcases eq_or_ne k l with rfl | hkl,
{ rwa [if_neg hln.symm, if_neg hln.symm, one_mul, one_mul] at hn },
{ rwa [if_neg hkl.symm, if_neg hln, one_mul, one_mul] at hl } },
{ rcases eq_or_ne m n with rfl | hmn,
{ rcases eq_or_ne k l with rfl | hkl,
{ rw [if_neg hkm.symm, if_neg hkm.symm, one_mul, if_pos rfl] at hm,
exact or.inr (or.inr ⟨hm, rfl, rfl⟩) },
{ simpa only [if_neg hkm, if_neg hkl, mul_one] using hk } },
{ rw [if_neg hkm.symm, if_neg hmn, one_mul, mul_one] at hm,
obtain rfl := (ite_ne_right_iff.mp (ne_of_eq_of_ne hm.symm hu)).1,
rw [if_neg hkm, if_neg hkm, one_mul, mul_one] at hk,
obtain rfl := (ite_ne_right_iff.mp (ne_of_eq_of_ne hk.symm hu)).1,
exact or.inr (or.inl ⟨hk.trans (if_pos rfl), rfl, rfl⟩) } } },
{ rintros (⟨rfl, rfl⟩ | ⟨rfl, rfl, rfl⟩ | ⟨h, rfl, rfl⟩),
{ refl },
{ apply mul_comm },
{ simp_rw [←pi.mul_single_mul, h, mul_single_one] } },
end
end single
namespace function
@[simp, to_additive]
lemma update_one [Π i, has_one (f i)] [decidable_eq I] (i : I) :
update (1 : Π i, f i) i 1 = 1 :=
update_eq_self i 1
@[to_additive]
lemma update_mul [Π i, has_mul (f i)] [decidable_eq I]
(f₁ f₂ : Π i, f i) (i : I) (x₁ : f i) (x₂ : f i) :
update (f₁ * f₂) i (x₁ * x₂) = update f₁ i x₁ * update f₂ i x₂ :=
funext $ λ j, (apply_update₂ (λ i, (*)) f₁ f₂ i x₁ x₂ j).symm
@[to_additive]
lemma update_inv [Π i, has_inv (f i)] [decidable_eq I]
(f₁ : Π i, f i) (i : I) (x₁ : f i) :
update (f₁⁻¹) i (x₁⁻¹) = (update f₁ i x₁)⁻¹ :=
funext $ λ j, (apply_update (λ i, has_inv.inv) f₁ i x₁ j).symm
@[to_additive]
lemma update_div [Π i, has_div (f i)] [decidable_eq I]
(f₁ f₂ : Π i, f i) (i : I) (x₁ : f i) (x₂ : f i) :
update (f₁ / f₂) i (x₁ / x₂) = update f₁ i x₁ / update f₂ i x₂ :=
funext $ λ j, (apply_update₂ (λ i, (/)) f₁ f₂ i x₁ x₂ j).symm
end function
section piecewise
@[to_additive]
lemma set.piecewise_mul [Π i, has_mul (f i)] (s : set I) [Π i, decidable (i ∈ s)]
(f₁ f₂ g₁ g₂ : Π i, f i) :
s.piecewise (f₁ * f₂) (g₁ * g₂) = s.piecewise f₁ g₁ * s.piecewise f₂ g₂ :=
s.piecewise_op₂ _ _ _ _ (λ _, (*))
@[to_additive]
lemma set.piecewise_inv [Π i, has_inv (f i)] (s : set I) [Π i, decidable (i ∈ s)]
(f₁ g₁ : Π i, f i) :
s.piecewise (f₁⁻¹) (g₁⁻¹) = (s.piecewise f₁ g₁)⁻¹ :=
s.piecewise_op f₁ g₁ (λ _ x, x⁻¹)
@[to_additive]
lemma set.piecewise_div [Π i, has_div (f i)] (s : set I) [Π i, decidable (i ∈ s)]
(f₁ f₂ g₁ g₂ : Π i, f i) :
s.piecewise (f₁ / f₂) (g₁ / g₂) = s.piecewise f₁ g₁ / s.piecewise f₂ g₂ :=
s.piecewise_op₂ _ _ _ _ (λ _, (/))
end piecewise
section extend
variables {ι : Type u} {η : Type v} (R : Type w) (s : ι → η)
/-- `function.extend s f 1` as a bundled hom. -/
@[to_additive function.extend_by_zero.hom "`function.extend s f 0` as a bundled hom.", simps]
noncomputable def function.extend_by_one.hom [mul_one_class R] : (ι → R) →* (η → R) :=
{ to_fun := λ f, function.extend s f 1,
map_one' := function.extend_one s,
map_mul' := λ f g, by { simpa using function.extend_mul s f g 1 1 } }
end extend
|