Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 17,220 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot
-/
import algebra.hom.group_instances
import data.pi.algebra
import data.set.function
import data.set.pairwise
import tactic.pi_instances

/-!
# Pi instances for groups and monoids

This file defines instances for group, monoid, semigroup and related structures on Pi types.
-/

universes u v w
variable {I : Type u}     -- The indexing type
variable {f : I → Type v} -- The family of types already equipped with instances
variables (x y : Π i, f i) (i : I)

namespace pi

@[to_additive]
instance semigroup [∀ i, semigroup $ f i] : semigroup (Π i : I, f i) :=
by refine_struct { mul := (*), .. }; tactic.pi_instance_derive_field

instance semigroup_with_zero [∀ i, semigroup_with_zero $ f i] :
  semigroup_with_zero (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field

@[to_additive]
instance comm_semigroup [∀ i, comm_semigroup $ f i] : comm_semigroup (Π i : I, f i) :=
by refine_struct { mul := (*), .. }; tactic.pi_instance_derive_field

@[to_additive]
instance mul_one_class [∀ i, mul_one_class $ f i] : mul_one_class (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field

@[to_additive]
instance monoid [∀ i, monoid $ f i] : monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := λ n x i, (x i) ^ n };
tactic.pi_instance_derive_field

@[to_additive]
instance comm_monoid [∀ i, comm_monoid $ f i] : comm_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field

@[to_additive pi.sub_neg_monoid]
instance [Π i, div_inv_monoid $ f i] : div_inv_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
  npow := monoid.npow, zpow := λ z x i, (x i) ^ z }; tactic.pi_instance_derive_field

@[to_additive]
instance [Π i, has_involutive_inv $ f i] : has_involutive_inv (Π i, f i) :=
by refine_struct { inv := has_inv.inv }; tactic.pi_instance_derive_field

@[to_additive pi.subtraction_monoid]
instance [Π i, division_monoid $ f i] : division_monoid (Π i, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
  npow := monoid.npow, zpow := λ z x i, (x i) ^ z }; tactic.pi_instance_derive_field

@[to_additive pi.subtraction_comm_monoid]
instance [Π i, division_comm_monoid $ f i] : division_comm_monoid (Π i, f i) :=
{ ..pi.division_monoid, ..pi.comm_semigroup }

@[to_additive]
instance group [∀ i, group $ f i] : group (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
  npow := monoid.npow, zpow := div_inv_monoid.zpow }; tactic.pi_instance_derive_field

@[to_additive]
instance comm_group [∀ i, comm_group $ f i] : comm_group (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div,
  npow := monoid.npow, zpow := div_inv_monoid.zpow }; tactic.pi_instance_derive_field

@[to_additive add_left_cancel_semigroup]
instance left_cancel_semigroup [∀ i, left_cancel_semigroup $ f i] :
  left_cancel_semigroup (Π i : I, f i) :=
by refine_struct { mul := (*) }; tactic.pi_instance_derive_field

@[to_additive add_right_cancel_semigroup]
instance right_cancel_semigroup [∀ i, right_cancel_semigroup $ f i] :
  right_cancel_semigroup (Π i : I, f i) :=
by refine_struct { mul := (*) }; tactic.pi_instance_derive_field

@[to_additive add_left_cancel_monoid]
instance left_cancel_monoid [∀ i, left_cancel_monoid $ f i] :
  left_cancel_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field

@[to_additive add_right_cancel_monoid]
instance right_cancel_monoid [∀ i, right_cancel_monoid $ f i] :
  right_cancel_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow, .. };
tactic.pi_instance_derive_field

@[to_additive add_cancel_monoid]
instance cancel_monoid [∀ i, cancel_monoid $ f i] :
  cancel_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field

@[to_additive add_cancel_comm_monoid]
instance cancel_comm_monoid [∀ i, cancel_comm_monoid $ f i] :
  cancel_comm_monoid (Π i : I, f i) :=
by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow };
tactic.pi_instance_derive_field

instance mul_zero_class [∀ i, mul_zero_class $ f i] :
  mul_zero_class (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field

instance mul_zero_one_class [∀ i, mul_zero_one_class $ f i] :
  mul_zero_one_class (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*), .. };
  tactic.pi_instance_derive_field

instance monoid_with_zero [∀ i, monoid_with_zero $ f i] :
  monoid_with_zero (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*),
  npow := monoid.npow }; tactic.pi_instance_derive_field

instance comm_monoid_with_zero [∀ i, comm_monoid_with_zero $ f i] :
  comm_monoid_with_zero (Π i : I, f i) :=
by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*),
  npow := monoid.npow }; tactic.pi_instance_derive_field

end pi

namespace mul_hom

@[to_additive] lemma coe_mul {M N} {mM : has_mul M} {mN : comm_semigroup N}
  (f g : M →ₙ* N) :
  (f * g : M → N) = λ x, f x * g x := rfl

end mul_hom

section mul_hom

variables (f) [Π i, has_mul (f i)]

/-- Evaluation of functions into an indexed collection of semigroups at a point is a semigroup
homomorphism.
This is `function.eval i` as a `mul_hom`. -/
@[to_additive "Evaluation of functions into an indexed collection of additive semigroups at a
point is an additive semigroup homomorphism.
This is `function.eval i` as an `add_hom`.", simps]
def pi.eval_mul_hom (i : I) : (Π i, f i) →ₙ* f i :=
{ to_fun := λ g, g i,
  map_mul' := λ x y, pi.mul_apply _ _ i, }

/-- `function.const` as a `mul_hom`. -/
@[to_additive "`function.const` as an `add_hom`.", simps]
def pi.const_mul_hom (α β : Type*) [has_mul β] : β →ₙ* (α → β) :=
{ to_fun := function.const α,
  map_mul' := λ _ _, rfl }

/-- Coercion of a `mul_hom` into a function is itself a `mul_hom`.
See also `mul_hom.eval`. -/
@[to_additive "Coercion of an `add_hom` into a function is itself a `add_hom`.
See also `add_hom.eval`. ", simps]
def mul_hom.coe_fn (α β : Type*) [has_mul α] [comm_semigroup β] : (α →ₙ* β) →ₙ* (α → β) :=
{ to_fun := λ g, g,
  map_mul' := λ x y, rfl, }

/-- Semigroup homomorphism between the function spaces `I → α` and `I → β`, induced by a semigroup
homomorphism `f` between `α` and `β`. -/
@[to_additive "Additive semigroup homomorphism between the function spaces `I → α` and `I → β`,
induced by an additive semigroup homomorphism `f` between `α` and `β`", simps]
protected def mul_hom.comp_left {α β : Type*} [has_mul α] [has_mul β] (f : α →ₙ* β)
  (I : Type*) :
  (I → α) →ₙ* (I → β) :=
{ to_fun := λ h, f ∘ h,
  map_mul' := λ _ _, by ext; simp }

end mul_hom

section monoid_hom

variables (f) [Π i, mul_one_class (f i)]

/-- Evaluation of functions into an indexed collection of monoids at a point is a monoid
homomorphism.
This is `function.eval i` as a `monoid_hom`. -/
@[to_additive "Evaluation of functions into an indexed collection of additive monoids at a
point is an additive monoid homomorphism.
This is `function.eval i` as an `add_monoid_hom`.", simps]
def pi.eval_monoid_hom (i : I) : (Π i, f i) →* f i :=
{ to_fun := λ g, g i,
  map_one' := pi.one_apply i,
  map_mul' := λ x y, pi.mul_apply _ _ i, }

/-- `function.const` as a `monoid_hom`. -/
@[to_additive "`function.const` as an `add_monoid_hom`.", simps]
def pi.const_monoid_hom (α β : Type*) [mul_one_class β] : β →* (α → β) :=
{ to_fun := function.const α,
  map_one' := rfl,
  map_mul' := λ _ _, rfl }

/-- Coercion of a `monoid_hom` into a function is itself a `monoid_hom`.

See also `monoid_hom.eval`. -/
@[to_additive "Coercion of an `add_monoid_hom` into a function is itself a `add_monoid_hom`.

See also `add_monoid_hom.eval`. ", simps]
def monoid_hom.coe_fn (α β : Type*) [mul_one_class α] [comm_monoid β] : (α →* β) →* (α → β) :=
{ to_fun := λ g, g,
  map_one' := rfl,
  map_mul' := λ x y, rfl, }

/-- Monoid homomorphism between the function spaces `I → α` and `I → β`, induced by a monoid
homomorphism `f` between `α` and `β`. -/
@[to_additive "Additive monoid homomorphism between the function spaces `I → α` and `I → β`,
induced by an additive monoid homomorphism `f` between `α` and `β`", simps]
protected def monoid_hom.comp_left {α β : Type*} [mul_one_class α] [mul_one_class β] (f : α →* β)
  (I : Type*) :
  (I → α) →* (I → β) :=
{ to_fun := λ h, f ∘ h,
  map_one' := by ext; simp,
  map_mul' := λ _ _, by ext; simp }

end monoid_hom

section single
variables [decidable_eq I]
open pi

variables (f)

/-- The one-preserving homomorphism including a single value
into a dependent family of values, as functions supported at a point.

This is the `one_hom` version of `pi.mul_single`. -/
@[to_additive zero_hom.single "The zero-preserving homomorphism including a single value
into a dependent family of values, as functions supported at a point.

This is the `zero_hom` version of `pi.single`."]
def one_hom.single [Π i, has_one $ f i] (i : I) : one_hom (f i) (Π i, f i) :=
{ to_fun := mul_single i,
  map_one' := mul_single_one i }

@[simp, to_additive]
lemma one_hom.single_apply [Π i, has_one $ f i] (i : I) (x : f i) :
  one_hom.single f i x = mul_single i x := rfl

/-- The monoid homomorphism including a single monoid into a dependent family of additive monoids,
as functions supported at a point.

This is the `monoid_hom` version of `pi.mul_single`. -/
@[to_additive "The additive monoid homomorphism including a single additive
monoid into a dependent family of additive monoids, as functions supported at a point.

This is the `add_monoid_hom` version of `pi.single`."]
def monoid_hom.single [Π i, mul_one_class $ f i] (i : I) : f i →* Π i, f i :=
{ map_mul' := mul_single_op₂ (λ _, (*)) (λ _, one_mul _) _,
  .. (one_hom.single f i) }

@[simp, to_additive]
lemma monoid_hom.single_apply [Π i, mul_one_class $ f i] (i : I) (x : f i) :
  monoid_hom.single f i x = mul_single i x := rfl

/-- The multiplicative homomorphism including a single `mul_zero_class`
into a dependent family of `mul_zero_class`es, as functions supported at a point.

This is the `mul_hom` version of `pi.single`. -/
@[simps] def mul_hom.single [Π i, mul_zero_class $ f i] (i : I) : (f i) →ₙ* (Π i, f i) :=
{ to_fun := single i,
  map_mul' := pi.single_op₂ (λ _, (*)) (λ _, zero_mul _) _, }

variables {f}

@[to_additive]
lemma pi.mul_single_mul [Π i, mul_one_class $ f i] (i : I) (x y : f i) :
  mul_single i (x * y) = mul_single i x * mul_single i y :=
(monoid_hom.single f i).map_mul x y

@[to_additive]
lemma pi.mul_single_inv [Π i, group $ f i] (i : I) (x : f i) :
  mul_single i (x⁻¹) = (mul_single i x)⁻¹ :=
(monoid_hom.single f i).map_inv x

@[to_additive]
lemma pi.single_div [Π i, group $ f i] (i : I) (x y : f i) :
  mul_single i (x / y) = mul_single i x / mul_single i y :=
(monoid_hom.single f i).map_div x y

lemma pi.single_mul [Π i, mul_zero_class $ f i] (i : I) (x y : f i) :
  single i (x * y) = single i x * single i y :=
(mul_hom.single f i).map_mul x y

/-- The injection into a pi group at different indices commutes.

For injections of commuting elements at the same index, see `commute.map` -/
@[to_additive "The injection into an additive pi group at different indices commutes.

For injections of commuting elements at the same index, see `add_commute.map`"]
lemma pi.mul_single_commute [Π i, mul_one_class $ f i] :
  pairwise (λ i j, ∀ (x : f i) (y : f j), commute (mul_single i x) (mul_single j y)) :=
begin
  intros i j hij x y, ext k,
  by_cases h1 : i = k, { subst h1, simp [hij], },
  by_cases h2 : j = k, { subst h2, simp [hij], },
  simp [h1,  h2],
end

/-- The injection into a pi group with the same values commutes. -/
@[to_additive "The injection into an additive pi group with the same values commutes."]
lemma pi.mul_single_apply_commute [Π i, mul_one_class $ f i] (x : Π i, f i) (i j : I) :
  commute (mul_single i (x i)) (mul_single j (x j)) :=
begin
  obtain rfl | hij := decidable.eq_or_ne i j,
  { refl },
  { exact pi.mul_single_commute _ _ hij _ _, },
end

@[to_additive update_eq_sub_add_single]
lemma pi.update_eq_div_mul_single [Π i, group $ f i] (g : Π (i : I), f i) (x : f i) :
  function.update g i x = g / mul_single i (g i) * mul_single i x :=
begin
  ext j,
  rcases eq_or_ne i j with rfl|h,
  { simp },
  { simp [function.update_noteq h.symm, h] }
end

@[to_additive pi.single_add_single_eq_single_add_single]
lemma pi.mul_single_mul_mul_single_eq_mul_single_mul_mul_single
  {M : Type*} [comm_monoid M] {k l m n : I} {u v : M} (hu : u ≠ 1) (hv : v ≠ 1) :
  mul_single k u * mul_single l v = mul_single m u * mul_single n v ↔
  (k = m ∧ l = n) ∨ (u = v ∧ k = n ∧ l = m) ∨ (u * v = 1 ∧ k = l ∧ m = n) :=
begin
  refine ⟨λ h, _, _⟩,
  { have hk := congr_fun h k,
    have hl := congr_fun h l,
    have hm := (congr_fun h m).symm,
    have hn := (congr_fun h n).symm,
    simp only [mul_apply, mul_single_apply, if_pos rfl] at hk hl hm hn,
    rcases eq_or_ne k m with rfl | hkm,
    { refine or.inl ⟨rfl, not_ne_iff.mp (λ hln, (hv _).elim)⟩,
      rcases eq_or_ne k l with rfl | hkl,
      { rwa [if_neg hln.symm, if_neg hln.symm, one_mul, one_mul] at hn },
      { rwa [if_neg hkl.symm, if_neg hln, one_mul, one_mul] at hl } },
    { rcases eq_or_ne m n with rfl | hmn,
      { rcases eq_or_ne k l with rfl | hkl,
        { rw [if_neg hkm.symm, if_neg hkm.symm, one_mul, if_pos rfl] at hm,
          exact or.inr (or.inr ⟨hm, rfl, rfl⟩) },
        { simpa only [if_neg hkm, if_neg hkl, mul_one] using hk } },
      { rw [if_neg hkm.symm, if_neg hmn, one_mul, mul_one] at hm,
        obtain rfl := (ite_ne_right_iff.mp (ne_of_eq_of_ne hm.symm hu)).1,
        rw [if_neg hkm, if_neg hkm, one_mul, mul_one] at hk,
        obtain rfl := (ite_ne_right_iff.mp (ne_of_eq_of_ne hk.symm hu)).1,
        exact or.inr (or.inl ⟨hk.trans (if_pos rfl), rfl, rfl⟩) } } },
  { rintros (⟨rfl, rfl⟩ | ⟨rfl, rfl, rfl⟩ | ⟨h, rfl, rfl⟩),
    { refl },
    { apply mul_comm },
    { simp_rw [←pi.mul_single_mul, h, mul_single_one] } },
end

end single

namespace function

@[simp, to_additive]
lemma update_one [Π i, has_one (f i)] [decidable_eq I] (i : I) :
  update (1 : Π i, f i) i 1 = 1 :=
update_eq_self i 1

@[to_additive]
lemma update_mul [Π i, has_mul (f i)] [decidable_eq I]
  (f₁ f₂ : Π i, f i) (i : I) (x₁ : f i) (x₂ : f i) :
  update (f₁ * f₂) i (x₁ * x₂) = update f₁ i x₁ * update f₂ i x₂ :=
funext $ λ j, (apply_update₂ (λ i, (*)) f₁ f₂ i x₁ x₂ j).symm

@[to_additive]
lemma update_inv [Π i, has_inv (f i)] [decidable_eq I]
  (f₁ : Π i, f i) (i : I) (x₁ : f i) :
  update (f₁⁻¹) i (x₁⁻¹) = (update f₁ i x₁)⁻¹ :=
funext $ λ j, (apply_update (λ i, has_inv.inv) f₁ i x₁ j).symm

@[to_additive]
lemma update_div [Π i, has_div (f i)] [decidable_eq I]
  (f₁ f₂ : Π i, f i) (i : I) (x₁ : f i) (x₂ : f i) :
  update (f₁ / f₂) i (x₁ / x₂) = update f₁ i x₁ / update f₂ i x₂ :=
funext $ λ j, (apply_update₂ (λ i, (/)) f₁ f₂ i x₁ x₂ j).symm

end function

section piecewise

@[to_additive]
lemma set.piecewise_mul [Π i, has_mul (f i)] (s : set I) [Π i, decidable (i ∈ s)]
  (f₁ f₂ g₁ g₂ : Π i, f i) :
  s.piecewise (f₁ * f₂) (g₁ * g₂) = s.piecewise f₁ g₁ * s.piecewise f₂ g₂ :=
s.piecewise_op₂ _ _ _ _ (λ _, (*))

@[to_additive]
lemma set.piecewise_inv [Π i, has_inv (f i)] (s : set I) [Π i, decidable (i ∈ s)]
  (f₁ g₁ : Π i, f i) :
  s.piecewise (f₁⁻¹) (g₁⁻¹) = (s.piecewise f₁ g₁)⁻¹ :=
s.piecewise_op f₁ g₁ (λ _ x, x⁻¹)

@[to_additive]
lemma set.piecewise_div [Π i, has_div (f i)] (s : set I) [Π i, decidable (i ∈ s)]
  (f₁ f₂ g₁ g₂ : Π i, f i) :
  s.piecewise (f₁ / f₂) (g₁ / g₂) = s.piecewise f₁ g₁ / s.piecewise f₂ g₂ :=
s.piecewise_op₂ _ _ _ _ (λ _, (/))

end piecewise

section extend

variables {ι : Type u} {η : Type v} (R : Type w) (s : ι → η)

/-- `function.extend s f 1` as a bundled hom. -/
@[to_additive function.extend_by_zero.hom "`function.extend s f 0` as a bundled hom.", simps]
noncomputable def function.extend_by_one.hom [mul_one_class R] : (ι → R) →* (η → R) :=
{ to_fun := λ f, function.extend s f 1,
  map_one' := function.extend_one s,
  map_mul' := λ f g, by { simpa using function.extend_mul s f g 1 1 } }

end extend