/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Patrick Massot -/ import algebra.hom.group_instances import data.pi.algebra import data.set.function import data.set.pairwise import tactic.pi_instances /-! # Pi instances for groups and monoids This file defines instances for group, monoid, semigroup and related structures on Pi types. -/ universes u v w variable {I : Type u} -- The indexing type variable {f : I → Type v} -- The family of types already equipped with instances variables (x y : Π i, f i) (i : I) namespace pi @[to_additive] instance semigroup [∀ i, semigroup $ f i] : semigroup (Π i : I, f i) := by refine_struct { mul := (*), .. }; tactic.pi_instance_derive_field instance semigroup_with_zero [∀ i, semigroup_with_zero $ f i] : semigroup_with_zero (Π i : I, f i) := by refine_struct { zero := (0 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field @[to_additive] instance comm_semigroup [∀ i, comm_semigroup $ f i] : comm_semigroup (Π i : I, f i) := by refine_struct { mul := (*), .. }; tactic.pi_instance_derive_field @[to_additive] instance mul_one_class [∀ i, mul_one_class $ f i] : mul_one_class (Π i : I, f i) := by refine_struct { one := (1 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field @[to_additive] instance monoid [∀ i, monoid $ f i] : monoid (Π i : I, f i) := by refine_struct { one := (1 : Π i, f i), mul := (*), npow := λ n x i, (x i) ^ n }; tactic.pi_instance_derive_field @[to_additive] instance comm_monoid [∀ i, comm_monoid $ f i] : comm_monoid (Π i : I, f i) := by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow }; tactic.pi_instance_derive_field @[to_additive pi.sub_neg_monoid] instance [Π i, div_inv_monoid $ f i] : div_inv_monoid (Π i : I, f i) := by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div, npow := monoid.npow, zpow := λ z x i, (x i) ^ z }; tactic.pi_instance_derive_field @[to_additive] instance [Π i, has_involutive_inv $ f i] : has_involutive_inv (Π i, f i) := by refine_struct { inv := has_inv.inv }; tactic.pi_instance_derive_field @[to_additive pi.subtraction_monoid] instance [Π i, division_monoid $ f i] : division_monoid (Π i, f i) := by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div, npow := monoid.npow, zpow := λ z x i, (x i) ^ z }; tactic.pi_instance_derive_field @[to_additive pi.subtraction_comm_monoid] instance [Π i, division_comm_monoid $ f i] : division_comm_monoid (Π i, f i) := { ..pi.division_monoid, ..pi.comm_semigroup } @[to_additive] instance group [∀ i, group $ f i] : group (Π i : I, f i) := by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div, npow := monoid.npow, zpow := div_inv_monoid.zpow }; tactic.pi_instance_derive_field @[to_additive] instance comm_group [∀ i, comm_group $ f i] : comm_group (Π i : I, f i) := by refine_struct { one := (1 : Π i, f i), mul := (*), inv := has_inv.inv, div := has_div.div, npow := monoid.npow, zpow := div_inv_monoid.zpow }; tactic.pi_instance_derive_field @[to_additive add_left_cancel_semigroup] instance left_cancel_semigroup [∀ i, left_cancel_semigroup $ f i] : left_cancel_semigroup (Π i : I, f i) := by refine_struct { mul := (*) }; tactic.pi_instance_derive_field @[to_additive add_right_cancel_semigroup] instance right_cancel_semigroup [∀ i, right_cancel_semigroup $ f i] : right_cancel_semigroup (Π i : I, f i) := by refine_struct { mul := (*) }; tactic.pi_instance_derive_field @[to_additive add_left_cancel_monoid] instance left_cancel_monoid [∀ i, left_cancel_monoid $ f i] : left_cancel_monoid (Π i : I, f i) := by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow }; tactic.pi_instance_derive_field @[to_additive add_right_cancel_monoid] instance right_cancel_monoid [∀ i, right_cancel_monoid $ f i] : right_cancel_monoid (Π i : I, f i) := by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow, .. }; tactic.pi_instance_derive_field @[to_additive add_cancel_monoid] instance cancel_monoid [∀ i, cancel_monoid $ f i] : cancel_monoid (Π i : I, f i) := by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow }; tactic.pi_instance_derive_field @[to_additive add_cancel_comm_monoid] instance cancel_comm_monoid [∀ i, cancel_comm_monoid $ f i] : cancel_comm_monoid (Π i : I, f i) := by refine_struct { one := (1 : Π i, f i), mul := (*), npow := monoid.npow }; tactic.pi_instance_derive_field instance mul_zero_class [∀ i, mul_zero_class $ f i] : mul_zero_class (Π i : I, f i) := by refine_struct { zero := (0 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field instance mul_zero_one_class [∀ i, mul_zero_one_class $ f i] : mul_zero_one_class (Π i : I, f i) := by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*), .. }; tactic.pi_instance_derive_field instance monoid_with_zero [∀ i, monoid_with_zero $ f i] : monoid_with_zero (Π i : I, f i) := by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*), npow := monoid.npow }; tactic.pi_instance_derive_field instance comm_monoid_with_zero [∀ i, comm_monoid_with_zero $ f i] : comm_monoid_with_zero (Π i : I, f i) := by refine_struct { zero := (0 : Π i, f i), one := (1 : Π i, f i), mul := (*), npow := monoid.npow }; tactic.pi_instance_derive_field end pi namespace mul_hom @[to_additive] lemma coe_mul {M N} {mM : has_mul M} {mN : comm_semigroup N} (f g : M →ₙ* N) : (f * g : M → N) = λ x, f x * g x := rfl end mul_hom section mul_hom variables (f) [Π i, has_mul (f i)] /-- Evaluation of functions into an indexed collection of semigroups at a point is a semigroup homomorphism. This is `function.eval i` as a `mul_hom`. -/ @[to_additive "Evaluation of functions into an indexed collection of additive semigroups at a point is an additive semigroup homomorphism. This is `function.eval i` as an `add_hom`.", simps] def pi.eval_mul_hom (i : I) : (Π i, f i) →ₙ* f i := { to_fun := λ g, g i, map_mul' := λ x y, pi.mul_apply _ _ i, } /-- `function.const` as a `mul_hom`. -/ @[to_additive "`function.const` as an `add_hom`.", simps] def pi.const_mul_hom (α β : Type*) [has_mul β] : β →ₙ* (α → β) := { to_fun := function.const α, map_mul' := λ _ _, rfl } /-- Coercion of a `mul_hom` into a function is itself a `mul_hom`. See also `mul_hom.eval`. -/ @[to_additive "Coercion of an `add_hom` into a function is itself a `add_hom`. See also `add_hom.eval`. ", simps] def mul_hom.coe_fn (α β : Type*) [has_mul α] [comm_semigroup β] : (α →ₙ* β) →ₙ* (α → β) := { to_fun := λ g, g, map_mul' := λ x y, rfl, } /-- Semigroup homomorphism between the function spaces `I → α` and `I → β`, induced by a semigroup homomorphism `f` between `α` and `β`. -/ @[to_additive "Additive semigroup homomorphism between the function spaces `I → α` and `I → β`, induced by an additive semigroup homomorphism `f` between `α` and `β`", simps] protected def mul_hom.comp_left {α β : Type*} [has_mul α] [has_mul β] (f : α →ₙ* β) (I : Type*) : (I → α) →ₙ* (I → β) := { to_fun := λ h, f ∘ h, map_mul' := λ _ _, by ext; simp } end mul_hom section monoid_hom variables (f) [Π i, mul_one_class (f i)] /-- Evaluation of functions into an indexed collection of monoids at a point is a monoid homomorphism. This is `function.eval i` as a `monoid_hom`. -/ @[to_additive "Evaluation of functions into an indexed collection of additive monoids at a point is an additive monoid homomorphism. This is `function.eval i` as an `add_monoid_hom`.", simps] def pi.eval_monoid_hom (i : I) : (Π i, f i) →* f i := { to_fun := λ g, g i, map_one' := pi.one_apply i, map_mul' := λ x y, pi.mul_apply _ _ i, } /-- `function.const` as a `monoid_hom`. -/ @[to_additive "`function.const` as an `add_monoid_hom`.", simps] def pi.const_monoid_hom (α β : Type*) [mul_one_class β] : β →* (α → β) := { to_fun := function.const α, map_one' := rfl, map_mul' := λ _ _, rfl } /-- Coercion of a `monoid_hom` into a function is itself a `monoid_hom`. See also `monoid_hom.eval`. -/ @[to_additive "Coercion of an `add_monoid_hom` into a function is itself a `add_monoid_hom`. See also `add_monoid_hom.eval`. ", simps] def monoid_hom.coe_fn (α β : Type*) [mul_one_class α] [comm_monoid β] : (α →* β) →* (α → β) := { to_fun := λ g, g, map_one' := rfl, map_mul' := λ x y, rfl, } /-- Monoid homomorphism between the function spaces `I → α` and `I → β`, induced by a monoid homomorphism `f` between `α` and `β`. -/ @[to_additive "Additive monoid homomorphism between the function spaces `I → α` and `I → β`, induced by an additive monoid homomorphism `f` between `α` and `β`", simps] protected def monoid_hom.comp_left {α β : Type*} [mul_one_class α] [mul_one_class β] (f : α →* β) (I : Type*) : (I → α) →* (I → β) := { to_fun := λ h, f ∘ h, map_one' := by ext; simp, map_mul' := λ _ _, by ext; simp } end monoid_hom section single variables [decidable_eq I] open pi variables (f) /-- The one-preserving homomorphism including a single value into a dependent family of values, as functions supported at a point. This is the `one_hom` version of `pi.mul_single`. -/ @[to_additive zero_hom.single "The zero-preserving homomorphism including a single value into a dependent family of values, as functions supported at a point. This is the `zero_hom` version of `pi.single`."] def one_hom.single [Π i, has_one $ f i] (i : I) : one_hom (f i) (Π i, f i) := { to_fun := mul_single i, map_one' := mul_single_one i } @[simp, to_additive] lemma one_hom.single_apply [Π i, has_one $ f i] (i : I) (x : f i) : one_hom.single f i x = mul_single i x := rfl /-- The monoid homomorphism including a single monoid into a dependent family of additive monoids, as functions supported at a point. This is the `monoid_hom` version of `pi.mul_single`. -/ @[to_additive "The additive monoid homomorphism including a single additive monoid into a dependent family of additive monoids, as functions supported at a point. This is the `add_monoid_hom` version of `pi.single`."] def monoid_hom.single [Π i, mul_one_class $ f i] (i : I) : f i →* Π i, f i := { map_mul' := mul_single_op₂ (λ _, (*)) (λ _, one_mul _) _, .. (one_hom.single f i) } @[simp, to_additive] lemma monoid_hom.single_apply [Π i, mul_one_class $ f i] (i : I) (x : f i) : monoid_hom.single f i x = mul_single i x := rfl /-- The multiplicative homomorphism including a single `mul_zero_class` into a dependent family of `mul_zero_class`es, as functions supported at a point. This is the `mul_hom` version of `pi.single`. -/ @[simps] def mul_hom.single [Π i, mul_zero_class $ f i] (i : I) : (f i) →ₙ* (Π i, f i) := { to_fun := single i, map_mul' := pi.single_op₂ (λ _, (*)) (λ _, zero_mul _) _, } variables {f} @[to_additive] lemma pi.mul_single_mul [Π i, mul_one_class $ f i] (i : I) (x y : f i) : mul_single i (x * y) = mul_single i x * mul_single i y := (monoid_hom.single f i).map_mul x y @[to_additive] lemma pi.mul_single_inv [Π i, group $ f i] (i : I) (x : f i) : mul_single i (x⁻¹) = (mul_single i x)⁻¹ := (monoid_hom.single f i).map_inv x @[to_additive] lemma pi.single_div [Π i, group $ f i] (i : I) (x y : f i) : mul_single i (x / y) = mul_single i x / mul_single i y := (monoid_hom.single f i).map_div x y lemma pi.single_mul [Π i, mul_zero_class $ f i] (i : I) (x y : f i) : single i (x * y) = single i x * single i y := (mul_hom.single f i).map_mul x y /-- The injection into a pi group at different indices commutes. For injections of commuting elements at the same index, see `commute.map` -/ @[to_additive "The injection into an additive pi group at different indices commutes. For injections of commuting elements at the same index, see `add_commute.map`"] lemma pi.mul_single_commute [Π i, mul_one_class $ f i] : pairwise (λ i j, ∀ (x : f i) (y : f j), commute (mul_single i x) (mul_single j y)) := begin intros i j hij x y, ext k, by_cases h1 : i = k, { subst h1, simp [hij], }, by_cases h2 : j = k, { subst h2, simp [hij], }, simp [h1, h2], end /-- The injection into a pi group with the same values commutes. -/ @[to_additive "The injection into an additive pi group with the same values commutes."] lemma pi.mul_single_apply_commute [Π i, mul_one_class $ f i] (x : Π i, f i) (i j : I) : commute (mul_single i (x i)) (mul_single j (x j)) := begin obtain rfl | hij := decidable.eq_or_ne i j, { refl }, { exact pi.mul_single_commute _ _ hij _ _, }, end @[to_additive update_eq_sub_add_single] lemma pi.update_eq_div_mul_single [Π i, group $ f i] (g : Π (i : I), f i) (x : f i) : function.update g i x = g / mul_single i (g i) * mul_single i x := begin ext j, rcases eq_or_ne i j with rfl|h, { simp }, { simp [function.update_noteq h.symm, h] } end @[to_additive pi.single_add_single_eq_single_add_single] lemma pi.mul_single_mul_mul_single_eq_mul_single_mul_mul_single {M : Type*} [comm_monoid M] {k l m n : I} {u v : M} (hu : u ≠ 1) (hv : v ≠ 1) : mul_single k u * mul_single l v = mul_single m u * mul_single n v ↔ (k = m ∧ l = n) ∨ (u = v ∧ k = n ∧ l = m) ∨ (u * v = 1 ∧ k = l ∧ m = n) := begin refine ⟨λ h, _, _⟩, { have hk := congr_fun h k, have hl := congr_fun h l, have hm := (congr_fun h m).symm, have hn := (congr_fun h n).symm, simp only [mul_apply, mul_single_apply, if_pos rfl] at hk hl hm hn, rcases eq_or_ne k m with rfl | hkm, { refine or.inl ⟨rfl, not_ne_iff.mp (λ hln, (hv _).elim)⟩, rcases eq_or_ne k l with rfl | hkl, { rwa [if_neg hln.symm, if_neg hln.symm, one_mul, one_mul] at hn }, { rwa [if_neg hkl.symm, if_neg hln, one_mul, one_mul] at hl } }, { rcases eq_or_ne m n with rfl | hmn, { rcases eq_or_ne k l with rfl | hkl, { rw [if_neg hkm.symm, if_neg hkm.symm, one_mul, if_pos rfl] at hm, exact or.inr (or.inr ⟨hm, rfl, rfl⟩) }, { simpa only [if_neg hkm, if_neg hkl, mul_one] using hk } }, { rw [if_neg hkm.symm, if_neg hmn, one_mul, mul_one] at hm, obtain rfl := (ite_ne_right_iff.mp (ne_of_eq_of_ne hm.symm hu)).1, rw [if_neg hkm, if_neg hkm, one_mul, mul_one] at hk, obtain rfl := (ite_ne_right_iff.mp (ne_of_eq_of_ne hk.symm hu)).1, exact or.inr (or.inl ⟨hk.trans (if_pos rfl), rfl, rfl⟩) } } }, { rintros (⟨rfl, rfl⟩ | ⟨rfl, rfl, rfl⟩ | ⟨h, rfl, rfl⟩), { refl }, { apply mul_comm }, { simp_rw [←pi.mul_single_mul, h, mul_single_one] } }, end end single namespace function @[simp, to_additive] lemma update_one [Π i, has_one (f i)] [decidable_eq I] (i : I) : update (1 : Π i, f i) i 1 = 1 := update_eq_self i 1 @[to_additive] lemma update_mul [Π i, has_mul (f i)] [decidable_eq I] (f₁ f₂ : Π i, f i) (i : I) (x₁ : f i) (x₂ : f i) : update (f₁ * f₂) i (x₁ * x₂) = update f₁ i x₁ * update f₂ i x₂ := funext $ λ j, (apply_update₂ (λ i, (*)) f₁ f₂ i x₁ x₂ j).symm @[to_additive] lemma update_inv [Π i, has_inv (f i)] [decidable_eq I] (f₁ : Π i, f i) (i : I) (x₁ : f i) : update (f₁⁻¹) i (x₁⁻¹) = (update f₁ i x₁)⁻¹ := funext $ λ j, (apply_update (λ i, has_inv.inv) f₁ i x₁ j).symm @[to_additive] lemma update_div [Π i, has_div (f i)] [decidable_eq I] (f₁ f₂ : Π i, f i) (i : I) (x₁ : f i) (x₂ : f i) : update (f₁ / f₂) i (x₁ / x₂) = update f₁ i x₁ / update f₂ i x₂ := funext $ λ j, (apply_update₂ (λ i, (/)) f₁ f₂ i x₁ x₂ j).symm end function section piecewise @[to_additive] lemma set.piecewise_mul [Π i, has_mul (f i)] (s : set I) [Π i, decidable (i ∈ s)] (f₁ f₂ g₁ g₂ : Π i, f i) : s.piecewise (f₁ * f₂) (g₁ * g₂) = s.piecewise f₁ g₁ * s.piecewise f₂ g₂ := s.piecewise_op₂ _ _ _ _ (λ _, (*)) @[to_additive] lemma set.piecewise_inv [Π i, has_inv (f i)] (s : set I) [Π i, decidable (i ∈ s)] (f₁ g₁ : Π i, f i) : s.piecewise (f₁⁻¹) (g₁⁻¹) = (s.piecewise f₁ g₁)⁻¹ := s.piecewise_op f₁ g₁ (λ _ x, x⁻¹) @[to_additive] lemma set.piecewise_div [Π i, has_div (f i)] (s : set I) [Π i, decidable (i ∈ s)] (f₁ f₂ g₁ g₂ : Π i, f i) : s.piecewise (f₁ / f₂) (g₁ / g₂) = s.piecewise f₁ g₁ / s.piecewise f₂ g₂ := s.piecewise_op₂ _ _ _ _ (λ _, (/)) end piecewise section extend variables {ι : Type u} {η : Type v} (R : Type w) (s : ι → η) /-- `function.extend s f 1` as a bundled hom. -/ @[to_additive function.extend_by_zero.hom "`function.extend s f 0` as a bundled hom.", simps] noncomputable def function.extend_by_one.hom [mul_one_class R] : (ι → R) →* (η → R) := { to_fun := λ f, function.extend s f 1, map_one' := function.extend_one s, map_mul' := λ f g, by { simpa using function.extend_mul s f g 1 1 } } end extend