Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
14.9 kB
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import algebra.direct_sum.basic
import linear_algebra.dfinsupp
/-!
# Direct sum of modules
The first part of the file provides constructors for direct sums of modules. It provides a
construction of the direct sum using the universal property and proves its uniqueness
(`direct_sum.to_module.unique`).
The second part of the file covers the special case of direct sums of submodules of a fixed module
`M`. There is a canonical linear map from this direct sum to `M` (`direct_sum.coe_linear_map`), and
the construction is of particular importance when this linear map is an equivalence; that is, when
the submodules provide an internal decomposition of `M`. The property is defined more generally
elsewhere as `direct_sum.is_internal`, but its basic consequences on `submodule`s are established
in this file.
-/
universes u v w u₁
namespace direct_sum
open_locale direct_sum
section general
variables {R : Type u} [semiring R]
variables {ι : Type v} [dec_ι : decidable_eq ι]
include R
variables {M : ι → Type w} [Π i, add_comm_monoid (M i)] [Π i, module R (M i)]
instance : module R (⨁ i, M i) := dfinsupp.module
instance {S : Type*} [semiring S] [Π i, module S (M i)] [Π i, smul_comm_class R S (M i)] :
smul_comm_class R S (⨁ i, M i) := dfinsupp.smul_comm_class
instance {S : Type*} [semiring S] [has_smul R S] [Π i, module S (M i)]
[Π i, is_scalar_tower R S (M i)] :
is_scalar_tower R S (⨁ i, M i) := dfinsupp.is_scalar_tower
instance [Π i, module Rᵐᵒᵖ (M i)] [Π i, is_central_scalar R (M i)] :
is_central_scalar R (⨁ i, M i) := dfinsupp.is_central_scalar
lemma smul_apply (b : R) (v : ⨁ i, M i) (i : ι) :
(b • v) i = b • (v i) := dfinsupp.smul_apply _ _ _
include dec_ι
variables R ι M
/-- Create the direct sum given a family `M` of `R` modules indexed over `ι`. -/
def lmk : Π s : finset ι, (Π i : (↑s : set ι), M i.val) →ₗ[R] (⨁ i, M i) :=
dfinsupp.lmk
/-- Inclusion of each component into the direct sum. -/
def lof : Π i : ι, M i →ₗ[R] (⨁ i, M i) :=
dfinsupp.lsingle
lemma lof_eq_of (i : ι) (b : M i) : lof R ι M i b = of M i b := rfl
variables {ι M}
lemma single_eq_lof (i : ι) (b : M i) :
dfinsupp.single i b = lof R ι M i b := rfl
/-- Scalar multiplication commutes with direct sums. -/
theorem mk_smul (s : finset ι) (c : R) (x) : mk M s (c • x) = c • mk M s x :=
(lmk R ι M s).map_smul c x
/-- Scalar multiplication commutes with the inclusion of each component into the direct sum. -/
theorem of_smul (i : ι) (c : R) (x) : of M i (c • x) = c • of M i x :=
(lof R ι M i).map_smul c x
variables {R}
lemma support_smul [Π (i : ι) (x : M i), decidable (x ≠ 0)]
(c : R) (v : ⨁ i, M i) : (c • v).support ⊆ v.support := dfinsupp.support_smul _ _
variables {N : Type u₁} [add_comm_monoid N] [module R N]
variables (φ : Π i, M i →ₗ[R] N)
variables (R ι N φ)
/-- The linear map constructed using the universal property of the coproduct. -/
def to_module : (⨁ i, M i) →ₗ[R] N :=
dfinsupp.lsum ℕ φ
/-- Coproducts in the categories of modules and additive monoids commute with the forgetful functor
from modules to additive monoids. -/
lemma coe_to_module_eq_coe_to_add_monoid :
(to_module R ι N φ : (⨁ i, M i) → N) = to_add_monoid (λ i, (φ i).to_add_monoid_hom) :=
rfl
variables {ι N φ}
/-- The map constructed using the universal property gives back the original maps when
restricted to each component. -/
@[simp] lemma to_module_lof (i) (x : M i) : to_module R ι N φ (lof R ι M i x) = φ i x :=
to_add_monoid_of (λ i, (φ i).to_add_monoid_hom) i x
variables (ψ : (⨁ i, M i) →ₗ[R] N)
/-- Every linear map from a direct sum agrees with the one obtained by applying
the universal property to each of its components. -/
theorem to_module.unique (f : ⨁ i, M i) : ψ f = to_module R ι N (λ i, ψ.comp $ lof R ι M i) f :=
to_add_monoid.unique ψ.to_add_monoid_hom f
variables {ψ} {ψ' : (⨁ i, M i) →ₗ[R] N}
/-- Two `linear_map`s out of a direct sum are equal if they agree on the generators.
See note [partially-applied ext lemmas]. -/
@[ext]
theorem linear_map_ext ⦃ψ ψ' : (⨁ i, M i) →ₗ[R] N⦄
(H : ∀ i, ψ.comp (lof R ι M i) = ψ'.comp (lof R ι M i)) : ψ = ψ' :=
dfinsupp.lhom_ext' H
/--
The inclusion of a subset of the direct summands
into a larger subset of the direct summands, as a linear map.
-/
def lset_to_set (S T : set ι) (H : S ⊆ T) :
(⨁ (i : S), M i) →ₗ[R] (⨁ (i : T), M i) :=
to_module R _ _ $ λ i, lof R T (λ (i : subtype T), M i) ⟨i, H i.prop⟩
omit dec_ι
variables (ι M)
/-- Given `fintype α`, `linear_equiv_fun_on_fintype R` is the natural `R`-linear equivalence
between `⨁ i, M i` and `Π i, M i`. -/
@[simps apply] def linear_equiv_fun_on_fintype [fintype ι] :
(⨁ i, M i) ≃ₗ[R] (Π i, M i) :=
{ to_fun := coe_fn,
map_add' := λ f g, by { ext, simp only [add_apply, pi.add_apply] },
map_smul' := λ c f, by { ext, simp only [dfinsupp.coe_smul, ring_hom.id_apply] },
.. dfinsupp.equiv_fun_on_fintype }
variables {ι M}
@[simp] lemma linear_equiv_fun_on_fintype_lof [fintype ι] [decidable_eq ι] (i : ι) (m : M i) :
(linear_equiv_fun_on_fintype R ι M) (lof R ι M i m) = pi.single i m :=
begin
ext a,
change (dfinsupp.equiv_fun_on_fintype (lof R ι M i m)) a = _,
convert _root_.congr_fun (dfinsupp.equiv_fun_on_fintype_single i m) a,
end
@[simp] lemma linear_equiv_fun_on_fintype_symm_single [fintype ι] [decidable_eq ι]
(i : ι) (m : M i) :
(linear_equiv_fun_on_fintype R ι M).symm (pi.single i m) = lof R ι M i m :=
begin
ext a,
change (dfinsupp.equiv_fun_on_fintype.symm (pi.single i m)) a = _,
rw (dfinsupp.equiv_fun_on_fintype_symm_single i m),
refl
end
@[simp] lemma linear_equiv_fun_on_fintype_symm_coe [fintype ι] (f : ⨁ i, M i) :
(linear_equiv_fun_on_fintype R ι M).symm f = f :=
by { ext, simp [linear_equiv_fun_on_fintype], }
/-- The natural linear equivalence between `⨁ _ : ι, M` and `M` when `unique ι`. -/
protected def lid (M : Type v) (ι : Type* := punit) [add_comm_monoid M] [module R M]
[unique ι] :
(⨁ (_ : ι), M) ≃ₗ[R] M :=
{ .. direct_sum.id M ι,
.. to_module R ι M (λ i, linear_map.id) }
variables (ι M)
/-- The projection map onto one component, as a linear map. -/
def component (i : ι) : (⨁ i, M i) →ₗ[R] M i :=
dfinsupp.lapply i
variables {ι M}
lemma apply_eq_component (f : ⨁ i, M i) (i : ι) :
f i = component R ι M i f := rfl
@[ext] lemma ext {f g : ⨁ i, M i}
(h : ∀ i, component R ι M i f = component R ι M i g) : f = g :=
dfinsupp.ext h
lemma ext_iff {f g : ⨁ i, M i} : f = g ↔
∀ i, component R ι M i f = component R ι M i g :=
⟨λ h _, by rw h, ext R⟩
include dec_ι
@[simp] lemma lof_apply (i : ι) (b : M i) : ((lof R ι M i) b) i = b :=
dfinsupp.single_eq_same
@[simp] lemma component.lof_self (i : ι) (b : M i) :
component R ι M i ((lof R ι M i) b) = b :=
lof_apply R i b
lemma component.of (i j : ι) (b : M j) :
component R ι M i ((lof R ι M j) b) =
if h : j = i then eq.rec_on h b else 0 :=
dfinsupp.single_apply
omit dec_ι
section congr_left
variables {κ : Type*}
/--Reindexing terms of a direct sum is linear.-/
def lequiv_congr_left (h : ι ≃ κ) : (⨁ i, M i) ≃ₗ[R] ⨁ k, M (h.symm k) :=
{ map_smul' := dfinsupp.comap_domain'_smul _ _,
..equiv_congr_left h }
@[simp] lemma lequiv_congr_left_apply (h : ι ≃ κ) (f : ⨁ i, M i) (k : κ) :
lequiv_congr_left R h f k = f (h.symm k) := equiv_congr_left_apply _ _ _
end congr_left
section sigma
variables {α : ι → Type*} {δ : Π i, α i → Type w}
variables [Π i j, add_comm_monoid (δ i j)] [Π i j, module R (δ i j)]
/--`curry` as a linear map.-/
noncomputable def sigma_lcurry : (⨁ (i : Σ i, _), δ i.1 i.2) →ₗ[R] ⨁ i j, δ i j :=
{ map_smul' := λ r, by convert (@dfinsupp.sigma_curry_smul _ _ _ δ _ _ _ r),
..sigma_curry }
@[simp] lemma sigma_lcurry_apply (f : ⨁ (i : Σ i, _), δ i.1 i.2) (i : ι) (j : α i) :
sigma_lcurry R f i j = f ⟨i, j⟩ := sigma_curry_apply f i j
/--`uncurry` as a linear map.-/
noncomputable def sigma_luncurry : (⨁ i j, δ i j) →ₗ[R] ⨁ (i : Σ i, _), δ i.1 i.2 :=
{ map_smul' := dfinsupp.sigma_uncurry_smul,
..sigma_uncurry }
@[simp] lemma sigma_luncurry_apply (f : ⨁ i j, δ i j) (i : ι) (j : α i) :
sigma_luncurry R f ⟨i, j⟩ = f i j := sigma_uncurry_apply f i j
/--`curry_equiv` as a linear equiv.-/
noncomputable def sigma_lcurry_equiv : (⨁ (i : Σ i, _), δ i.1 i.2) ≃ₗ[R] ⨁ i j, δ i j :=
{ ..sigma_curry_equiv, ..sigma_lcurry R }
end sigma
section option
variables {α : option ι → Type w} [Π i, add_comm_monoid (α i)] [Π i, module R (α i)]
include dec_ι
/--Linear isomorphism obtained by separating the term of index `none` of a direct sum over
`option ι`.-/
@[simps] noncomputable def lequiv_prod_direct_sum : (⨁ i, α i) ≃ₗ[R] α none × ⨁ i, α (some i) :=
{ map_smul' := dfinsupp.equiv_prod_dfinsupp_smul,
..add_equiv_prod_direct_sum }
end option
end general
section submodule
section semiring
variables {R : Type u} [semiring R]
variables {ι : Type v} [dec_ι : decidable_eq ι]
include dec_ι
variables {M : Type*} [add_comm_monoid M] [module R M]
variables (A : ι → submodule R M)
/-- The canonical embedding from `⨁ i, A i` to `M` where `A` is a collection of `submodule R M`
indexed by `ι`. This is `direct_sum.coe_add_monoid_hom` as a `linear_map`. -/
def coe_linear_map : (⨁ i, A i) →ₗ[R] M := to_module R ι M (λ i, (A i).subtype)
@[simp] lemma coe_linear_map_of (i : ι) (x : A i) :
direct_sum.coe_linear_map A (of (λ i, A i) i x) = x :=
to_add_monoid_of _ _ _
variables {A}
/-- If a direct sum of submodules is internal then the submodules span the module. -/
lemma is_internal.submodule_supr_eq_top (h : is_internal A) : supr A = ⊤ :=
begin
rw [submodule.supr_eq_range_dfinsupp_lsum, linear_map.range_eq_top],
exact function.bijective.surjective h,
end
/-- If a direct sum of submodules is internal then the submodules are independent. -/
lemma is_internal.submodule_independent (h : is_internal A) :
complete_lattice.independent A :=
complete_lattice.independent_of_dfinsupp_lsum_injective _ h.injective
/-- Given an internal direct sum decomposition of a module `M`, and a basis for each of the
components of the direct sum, the disjoint union of these bases is a basis for `M`. -/
noncomputable def is_internal.collected_basis
(h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) :
basis (Σ i, α i) R M :=
{ repr :=
(linear_equiv.of_bijective (direct_sum.coe_linear_map A) h.injective h.surjective).symm ≪≫ₗ
(dfinsupp.map_range.linear_equiv (λ i, (v i).repr)) ≪≫ₗ
(sigma_finsupp_lequiv_dfinsupp R).symm }
@[simp] lemma is_internal.collected_basis_coe
(h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) :
⇑(h.collected_basis v) = λ a : Σ i, (α i), ↑(v a.1 a.2) :=
begin
funext a,
simp only [is_internal.collected_basis, to_module, coe_linear_map,
add_equiv.to_fun_eq_coe, basis.coe_of_repr, basis.repr_symm_apply, dfinsupp.lsum_apply_apply,
dfinsupp.map_range.linear_equiv_apply, dfinsupp.map_range.linear_equiv_symm,
dfinsupp.map_range_single, finsupp.total_single, linear_equiv.of_bijective_apply,
linear_equiv.symm_symm, linear_equiv.symm_trans_apply, one_smul,
sigma_finsupp_add_equiv_dfinsupp_apply, sigma_finsupp_equiv_dfinsupp_single,
sigma_finsupp_lequiv_dfinsupp_apply],
convert dfinsupp.sum_add_hom_single (λ i, (A i).subtype.to_add_monoid_hom) a.1 (v a.1 a.2),
end
lemma is_internal.collected_basis_mem
(h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) (a : Σ i, α i) :
h.collected_basis v a ∈ A a.1 :=
by simp
/-- When indexed by only two distinct elements, `direct_sum.is_internal` implies
the two submodules are complementary. Over a `ring R`, this is true as an iff, as
`direct_sum.is_internal_iff_is_compl`. --/
lemma is_internal.is_compl {A : ι → submodule R M} {i j : ι} (hij : i ≠ j)
(h : (set.univ : set ι) = {i, j}) (hi : is_internal A) : is_compl (A i) (A j) :=
⟨hi.submodule_independent.pairwise_disjoint _ _ hij, eq.le $ hi.submodule_supr_eq_top.symm.trans $
by rw [←Sup_pair, supr, ←set.image_univ, h, set.image_insert_eq, set.image_singleton]⟩
end semiring
section ring
variables {R : Type u} [ring R]
variables {ι : Type v} [dec_ι : decidable_eq ι]
include dec_ι
variables {M : Type*} [add_comm_group M] [module R M]
/-- Note that this is not generally true for `[semiring R]`; see
`complete_lattice.independent.dfinsupp_lsum_injective` for details. -/
lemma is_internal_submodule_of_independent_of_supr_eq_top {A : ι → submodule R M}
(hi : complete_lattice.independent A) (hs : supr A = ⊤) : is_internal A :=
⟨hi.dfinsupp_lsum_injective, linear_map.range_eq_top.1 $
(submodule.supr_eq_range_dfinsupp_lsum _).symm.trans hs⟩
/-- `iff` version of `direct_sum.is_internal_submodule_of_independent_of_supr_eq_top`,
`direct_sum.is_internal.independent`, and `direct_sum.is_internal.supr_eq_top`.
-/
lemma is_internal_submodule_iff_independent_and_supr_eq_top (A : ι → submodule R M) :
is_internal A ↔ complete_lattice.independent A ∧ supr A = ⊤ :=
⟨λ i, ⟨i.submodule_independent, i.submodule_supr_eq_top⟩,
and.rec is_internal_submodule_of_independent_of_supr_eq_top⟩
/-- If a collection of submodules has just two indices, `i` and `j`, then
`direct_sum.is_internal` is equivalent to `is_compl`. -/
lemma is_internal_submodule_iff_is_compl (A : ι → submodule R M) {i j : ι} (hij : i ≠ j)
(h : (set.univ : set ι) = {i, j}) :
is_internal A ↔ is_compl (A i) (A j) :=
begin
have : ∀ k, k = i ∨ k = j := λ k, by simpa using set.ext_iff.mp h k,
rw [is_internal_submodule_iff_independent_and_supr_eq_top,
supr, ←set.image_univ, h, set.image_insert_eq, set.image_singleton, Sup_pair,
complete_lattice.independent_pair hij this],
exact ⟨λ ⟨hd, ht⟩, ⟨hd, ht.ge⟩, λ ⟨hd, ht⟩, ⟨hd, eq_top_iff.mpr ht⟩⟩,
end
/-! Now copy the lemmas for subgroup and submonoids. -/
lemma is_internal.add_submonoid_independent {M : Type*} [add_comm_monoid M]
{A : ι → add_submonoid M} (h : is_internal A) :
complete_lattice.independent A :=
complete_lattice.independent_of_dfinsupp_sum_add_hom_injective _ h.injective
lemma is_internal.add_subgroup_independent {M : Type*} [add_comm_group M]
{A : ι → add_subgroup M} (h : is_internal A) :
complete_lattice.independent A :=
complete_lattice.independent_of_dfinsupp_sum_add_hom_injective' _ h.injective
end ring
end submodule
end direct_sum