Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Kenny Lau. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kenny Lau | |
-/ | |
import algebra.direct_sum.basic | |
import linear_algebra.dfinsupp | |
/-! | |
# Direct sum of modules | |
The first part of the file provides constructors for direct sums of modules. It provides a | |
construction of the direct sum using the universal property and proves its uniqueness | |
(`direct_sum.to_module.unique`). | |
The second part of the file covers the special case of direct sums of submodules of a fixed module | |
`M`. There is a canonical linear map from this direct sum to `M` (`direct_sum.coe_linear_map`), and | |
the construction is of particular importance when this linear map is an equivalence; that is, when | |
the submodules provide an internal decomposition of `M`. The property is defined more generally | |
elsewhere as `direct_sum.is_internal`, but its basic consequences on `submodule`s are established | |
in this file. | |
-/ | |
universes u v w u₁ | |
namespace direct_sum | |
open_locale direct_sum | |
section general | |
variables {R : Type u} [semiring R] | |
variables {ι : Type v} [dec_ι : decidable_eq ι] | |
include R | |
variables {M : ι → Type w} [Π i, add_comm_monoid (M i)] [Π i, module R (M i)] | |
instance : module R (⨁ i, M i) := dfinsupp.module | |
instance {S : Type*} [semiring S] [Π i, module S (M i)] [Π i, smul_comm_class R S (M i)] : | |
smul_comm_class R S (⨁ i, M i) := dfinsupp.smul_comm_class | |
instance {S : Type*} [semiring S] [has_smul R S] [Π i, module S (M i)] | |
[Π i, is_scalar_tower R S (M i)] : | |
is_scalar_tower R S (⨁ i, M i) := dfinsupp.is_scalar_tower | |
instance [Π i, module Rᵐᵒᵖ (M i)] [Π i, is_central_scalar R (M i)] : | |
is_central_scalar R (⨁ i, M i) := dfinsupp.is_central_scalar | |
lemma smul_apply (b : R) (v : ⨁ i, M i) (i : ι) : | |
(b • v) i = b • (v i) := dfinsupp.smul_apply _ _ _ | |
include dec_ι | |
variables R ι M | |
/-- Create the direct sum given a family `M` of `R` modules indexed over `ι`. -/ | |
def lmk : Π s : finset ι, (Π i : (↑s : set ι), M i.val) →ₗ[R] (⨁ i, M i) := | |
dfinsupp.lmk | |
/-- Inclusion of each component into the direct sum. -/ | |
def lof : Π i : ι, M i →ₗ[R] (⨁ i, M i) := | |
dfinsupp.lsingle | |
lemma lof_eq_of (i : ι) (b : M i) : lof R ι M i b = of M i b := rfl | |
variables {ι M} | |
lemma single_eq_lof (i : ι) (b : M i) : | |
dfinsupp.single i b = lof R ι M i b := rfl | |
/-- Scalar multiplication commutes with direct sums. -/ | |
theorem mk_smul (s : finset ι) (c : R) (x) : mk M s (c • x) = c • mk M s x := | |
(lmk R ι M s).map_smul c x | |
/-- Scalar multiplication commutes with the inclusion of each component into the direct sum. -/ | |
theorem of_smul (i : ι) (c : R) (x) : of M i (c • x) = c • of M i x := | |
(lof R ι M i).map_smul c x | |
variables {R} | |
lemma support_smul [Π (i : ι) (x : M i), decidable (x ≠ 0)] | |
(c : R) (v : ⨁ i, M i) : (c • v).support ⊆ v.support := dfinsupp.support_smul _ _ | |
variables {N : Type u₁} [add_comm_monoid N] [module R N] | |
variables (φ : Π i, M i →ₗ[R] N) | |
variables (R ι N φ) | |
/-- The linear map constructed using the universal property of the coproduct. -/ | |
def to_module : (⨁ i, M i) →ₗ[R] N := | |
dfinsupp.lsum ℕ φ | |
/-- Coproducts in the categories of modules and additive monoids commute with the forgetful functor | |
from modules to additive monoids. -/ | |
lemma coe_to_module_eq_coe_to_add_monoid : | |
(to_module R ι N φ : (⨁ i, M i) → N) = to_add_monoid (λ i, (φ i).to_add_monoid_hom) := | |
rfl | |
variables {ι N φ} | |
/-- The map constructed using the universal property gives back the original maps when | |
restricted to each component. -/ | |
@[simp] lemma to_module_lof (i) (x : M i) : to_module R ι N φ (lof R ι M i x) = φ i x := | |
to_add_monoid_of (λ i, (φ i).to_add_monoid_hom) i x | |
variables (ψ : (⨁ i, M i) →ₗ[R] N) | |
/-- Every linear map from a direct sum agrees with the one obtained by applying | |
the universal property to each of its components. -/ | |
theorem to_module.unique (f : ⨁ i, M i) : ψ f = to_module R ι N (λ i, ψ.comp $ lof R ι M i) f := | |
to_add_monoid.unique ψ.to_add_monoid_hom f | |
variables {ψ} {ψ' : (⨁ i, M i) →ₗ[R] N} | |
/-- Two `linear_map`s out of a direct sum are equal if they agree on the generators. | |
See note [partially-applied ext lemmas]. -/ | |
@[ext] | |
theorem linear_map_ext ⦃ψ ψ' : (⨁ i, M i) →ₗ[R] N⦄ | |
(H : ∀ i, ψ.comp (lof R ι M i) = ψ'.comp (lof R ι M i)) : ψ = ψ' := | |
dfinsupp.lhom_ext' H | |
/-- | |
The inclusion of a subset of the direct summands | |
into a larger subset of the direct summands, as a linear map. | |
-/ | |
def lset_to_set (S T : set ι) (H : S ⊆ T) : | |
(⨁ (i : S), M i) →ₗ[R] (⨁ (i : T), M i) := | |
to_module R _ _ $ λ i, lof R T (λ (i : subtype T), M i) ⟨i, H i.prop⟩ | |
omit dec_ι | |
variables (ι M) | |
/-- Given `fintype α`, `linear_equiv_fun_on_fintype R` is the natural `R`-linear equivalence | |
between `⨁ i, M i` and `Π i, M i`. -/ | |
@[simps apply] def linear_equiv_fun_on_fintype [fintype ι] : | |
(⨁ i, M i) ≃ₗ[R] (Π i, M i) := | |
{ to_fun := coe_fn, | |
map_add' := λ f g, by { ext, simp only [add_apply, pi.add_apply] }, | |
map_smul' := λ c f, by { ext, simp only [dfinsupp.coe_smul, ring_hom.id_apply] }, | |
.. dfinsupp.equiv_fun_on_fintype } | |
variables {ι M} | |
@[simp] lemma linear_equiv_fun_on_fintype_lof [fintype ι] [decidable_eq ι] (i : ι) (m : M i) : | |
(linear_equiv_fun_on_fintype R ι M) (lof R ι M i m) = pi.single i m := | |
begin | |
ext a, | |
change (dfinsupp.equiv_fun_on_fintype (lof R ι M i m)) a = _, | |
convert _root_.congr_fun (dfinsupp.equiv_fun_on_fintype_single i m) a, | |
end | |
@[simp] lemma linear_equiv_fun_on_fintype_symm_single [fintype ι] [decidable_eq ι] | |
(i : ι) (m : M i) : | |
(linear_equiv_fun_on_fintype R ι M).symm (pi.single i m) = lof R ι M i m := | |
begin | |
ext a, | |
change (dfinsupp.equiv_fun_on_fintype.symm (pi.single i m)) a = _, | |
rw (dfinsupp.equiv_fun_on_fintype_symm_single i m), | |
refl | |
end | |
@[simp] lemma linear_equiv_fun_on_fintype_symm_coe [fintype ι] (f : ⨁ i, M i) : | |
(linear_equiv_fun_on_fintype R ι M).symm f = f := | |
by { ext, simp [linear_equiv_fun_on_fintype], } | |
/-- The natural linear equivalence between `⨁ _ : ι, M` and `M` when `unique ι`. -/ | |
protected def lid (M : Type v) (ι : Type* := punit) [add_comm_monoid M] [module R M] | |
[unique ι] : | |
(⨁ (_ : ι), M) ≃ₗ[R] M := | |
{ .. direct_sum.id M ι, | |
.. to_module R ι M (λ i, linear_map.id) } | |
variables (ι M) | |
/-- The projection map onto one component, as a linear map. -/ | |
def component (i : ι) : (⨁ i, M i) →ₗ[R] M i := | |
dfinsupp.lapply i | |
variables {ι M} | |
lemma apply_eq_component (f : ⨁ i, M i) (i : ι) : | |
f i = component R ι M i f := rfl | |
@[ext] lemma ext {f g : ⨁ i, M i} | |
(h : ∀ i, component R ι M i f = component R ι M i g) : f = g := | |
dfinsupp.ext h | |
lemma ext_iff {f g : ⨁ i, M i} : f = g ↔ | |
∀ i, component R ι M i f = component R ι M i g := | |
⟨λ h _, by rw h, ext R⟩ | |
include dec_ι | |
@[simp] lemma lof_apply (i : ι) (b : M i) : ((lof R ι M i) b) i = b := | |
dfinsupp.single_eq_same | |
@[simp] lemma component.lof_self (i : ι) (b : M i) : | |
component R ι M i ((lof R ι M i) b) = b := | |
lof_apply R i b | |
lemma component.of (i j : ι) (b : M j) : | |
component R ι M i ((lof R ι M j) b) = | |
if h : j = i then eq.rec_on h b else 0 := | |
dfinsupp.single_apply | |
omit dec_ι | |
section congr_left | |
variables {κ : Type*} | |
/--Reindexing terms of a direct sum is linear.-/ | |
def lequiv_congr_left (h : ι ≃ κ) : (⨁ i, M i) ≃ₗ[R] ⨁ k, M (h.symm k) := | |
{ map_smul' := dfinsupp.comap_domain'_smul _ _, | |
..equiv_congr_left h } | |
@[simp] lemma lequiv_congr_left_apply (h : ι ≃ κ) (f : ⨁ i, M i) (k : κ) : | |
lequiv_congr_left R h f k = f (h.symm k) := equiv_congr_left_apply _ _ _ | |
end congr_left | |
section sigma | |
variables {α : ι → Type*} {δ : Π i, α i → Type w} | |
variables [Π i j, add_comm_monoid (δ i j)] [Π i j, module R (δ i j)] | |
/--`curry` as a linear map.-/ | |
noncomputable def sigma_lcurry : (⨁ (i : Σ i, _), δ i.1 i.2) →ₗ[R] ⨁ i j, δ i j := | |
{ map_smul' := λ r, by convert (@dfinsupp.sigma_curry_smul _ _ _ δ _ _ _ r), | |
..sigma_curry } | |
@[simp] lemma sigma_lcurry_apply (f : ⨁ (i : Σ i, _), δ i.1 i.2) (i : ι) (j : α i) : | |
sigma_lcurry R f i j = f ⟨i, j⟩ := sigma_curry_apply f i j | |
/--`uncurry` as a linear map.-/ | |
noncomputable def sigma_luncurry : (⨁ i j, δ i j) →ₗ[R] ⨁ (i : Σ i, _), δ i.1 i.2 := | |
{ map_smul' := dfinsupp.sigma_uncurry_smul, | |
..sigma_uncurry } | |
@[simp] lemma sigma_luncurry_apply (f : ⨁ i j, δ i j) (i : ι) (j : α i) : | |
sigma_luncurry R f ⟨i, j⟩ = f i j := sigma_uncurry_apply f i j | |
/--`curry_equiv` as a linear equiv.-/ | |
noncomputable def sigma_lcurry_equiv : (⨁ (i : Σ i, _), δ i.1 i.2) ≃ₗ[R] ⨁ i j, δ i j := | |
{ ..sigma_curry_equiv, ..sigma_lcurry R } | |
end sigma | |
section option | |
variables {α : option ι → Type w} [Π i, add_comm_monoid (α i)] [Π i, module R (α i)] | |
include dec_ι | |
/--Linear isomorphism obtained by separating the term of index `none` of a direct sum over | |
`option ι`.-/ | |
@[simps] noncomputable def lequiv_prod_direct_sum : (⨁ i, α i) ≃ₗ[R] α none × ⨁ i, α (some i) := | |
{ map_smul' := dfinsupp.equiv_prod_dfinsupp_smul, | |
..add_equiv_prod_direct_sum } | |
end option | |
end general | |
section submodule | |
section semiring | |
variables {R : Type u} [semiring R] | |
variables {ι : Type v} [dec_ι : decidable_eq ι] | |
include dec_ι | |
variables {M : Type*} [add_comm_monoid M] [module R M] | |
variables (A : ι → submodule R M) | |
/-- The canonical embedding from `⨁ i, A i` to `M` where `A` is a collection of `submodule R M` | |
indexed by `ι`. This is `direct_sum.coe_add_monoid_hom` as a `linear_map`. -/ | |
def coe_linear_map : (⨁ i, A i) →ₗ[R] M := to_module R ι M (λ i, (A i).subtype) | |
@[simp] lemma coe_linear_map_of (i : ι) (x : A i) : | |
direct_sum.coe_linear_map A (of (λ i, A i) i x) = x := | |
to_add_monoid_of _ _ _ | |
variables {A} | |
/-- If a direct sum of submodules is internal then the submodules span the module. -/ | |
lemma is_internal.submodule_supr_eq_top (h : is_internal A) : supr A = ⊤ := | |
begin | |
rw [submodule.supr_eq_range_dfinsupp_lsum, linear_map.range_eq_top], | |
exact function.bijective.surjective h, | |
end | |
/-- If a direct sum of submodules is internal then the submodules are independent. -/ | |
lemma is_internal.submodule_independent (h : is_internal A) : | |
complete_lattice.independent A := | |
complete_lattice.independent_of_dfinsupp_lsum_injective _ h.injective | |
/-- Given an internal direct sum decomposition of a module `M`, and a basis for each of the | |
components of the direct sum, the disjoint union of these bases is a basis for `M`. -/ | |
noncomputable def is_internal.collected_basis | |
(h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) : | |
basis (Σ i, α i) R M := | |
{ repr := | |
(linear_equiv.of_bijective (direct_sum.coe_linear_map A) h.injective h.surjective).symm ≪≫ₗ | |
(dfinsupp.map_range.linear_equiv (λ i, (v i).repr)) ≪≫ₗ | |
(sigma_finsupp_lequiv_dfinsupp R).symm } | |
@[simp] lemma is_internal.collected_basis_coe | |
(h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) : | |
⇑(h.collected_basis v) = λ a : Σ i, (α i), ↑(v a.1 a.2) := | |
begin | |
funext a, | |
simp only [is_internal.collected_basis, to_module, coe_linear_map, | |
add_equiv.to_fun_eq_coe, basis.coe_of_repr, basis.repr_symm_apply, dfinsupp.lsum_apply_apply, | |
dfinsupp.map_range.linear_equiv_apply, dfinsupp.map_range.linear_equiv_symm, | |
dfinsupp.map_range_single, finsupp.total_single, linear_equiv.of_bijective_apply, | |
linear_equiv.symm_symm, linear_equiv.symm_trans_apply, one_smul, | |
sigma_finsupp_add_equiv_dfinsupp_apply, sigma_finsupp_equiv_dfinsupp_single, | |
sigma_finsupp_lequiv_dfinsupp_apply], | |
convert dfinsupp.sum_add_hom_single (λ i, (A i).subtype.to_add_monoid_hom) a.1 (v a.1 a.2), | |
end | |
lemma is_internal.collected_basis_mem | |
(h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) (a : Σ i, α i) : | |
h.collected_basis v a ∈ A a.1 := | |
by simp | |
/-- When indexed by only two distinct elements, `direct_sum.is_internal` implies | |
the two submodules are complementary. Over a `ring R`, this is true as an iff, as | |
`direct_sum.is_internal_iff_is_compl`. --/ | |
lemma is_internal.is_compl {A : ι → submodule R M} {i j : ι} (hij : i ≠ j) | |
(h : (set.univ : set ι) = {i, j}) (hi : is_internal A) : is_compl (A i) (A j) := | |
⟨hi.submodule_independent.pairwise_disjoint _ _ hij, eq.le $ hi.submodule_supr_eq_top.symm.trans $ | |
by rw [←Sup_pair, supr, ←set.image_univ, h, set.image_insert_eq, set.image_singleton]⟩ | |
end semiring | |
section ring | |
variables {R : Type u} [ring R] | |
variables {ι : Type v} [dec_ι : decidable_eq ι] | |
include dec_ι | |
variables {M : Type*} [add_comm_group M] [module R M] | |
/-- Note that this is not generally true for `[semiring R]`; see | |
`complete_lattice.independent.dfinsupp_lsum_injective` for details. -/ | |
lemma is_internal_submodule_of_independent_of_supr_eq_top {A : ι → submodule R M} | |
(hi : complete_lattice.independent A) (hs : supr A = ⊤) : is_internal A := | |
⟨hi.dfinsupp_lsum_injective, linear_map.range_eq_top.1 $ | |
(submodule.supr_eq_range_dfinsupp_lsum _).symm.trans hs⟩ | |
/-- `iff` version of `direct_sum.is_internal_submodule_of_independent_of_supr_eq_top`, | |
`direct_sum.is_internal.independent`, and `direct_sum.is_internal.supr_eq_top`. | |
-/ | |
lemma is_internal_submodule_iff_independent_and_supr_eq_top (A : ι → submodule R M) : | |
is_internal A ↔ complete_lattice.independent A ∧ supr A = ⊤ := | |
⟨λ i, ⟨i.submodule_independent, i.submodule_supr_eq_top⟩, | |
and.rec is_internal_submodule_of_independent_of_supr_eq_top⟩ | |
/-- If a collection of submodules has just two indices, `i` and `j`, then | |
`direct_sum.is_internal` is equivalent to `is_compl`. -/ | |
lemma is_internal_submodule_iff_is_compl (A : ι → submodule R M) {i j : ι} (hij : i ≠ j) | |
(h : (set.univ : set ι) = {i, j}) : | |
is_internal A ↔ is_compl (A i) (A j) := | |
begin | |
have : ∀ k, k = i ∨ k = j := λ k, by simpa using set.ext_iff.mp h k, | |
rw [is_internal_submodule_iff_independent_and_supr_eq_top, | |
supr, ←set.image_univ, h, set.image_insert_eq, set.image_singleton, Sup_pair, | |
complete_lattice.independent_pair hij this], | |
exact ⟨λ ⟨hd, ht⟩, ⟨hd, ht.ge⟩, λ ⟨hd, ht⟩, ⟨hd, eq_top_iff.mpr ht⟩⟩, | |
end | |
/-! Now copy the lemmas for subgroup and submonoids. -/ | |
lemma is_internal.add_submonoid_independent {M : Type*} [add_comm_monoid M] | |
{A : ι → add_submonoid M} (h : is_internal A) : | |
complete_lattice.independent A := | |
complete_lattice.independent_of_dfinsupp_sum_add_hom_injective _ h.injective | |
lemma is_internal.add_subgroup_independent {M : Type*} [add_comm_group M] | |
{A : ι → add_subgroup M} (h : is_internal A) : | |
complete_lattice.independent A := | |
complete_lattice.independent_of_dfinsupp_sum_add_hom_injective' _ h.injective | |
end ring | |
end submodule | |
end direct_sum | |