Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 14,873 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import algebra.direct_sum.basic
import linear_algebra.dfinsupp

/-!
# Direct sum of modules

The first part of the file provides constructors for direct sums of modules. It provides a
construction of the direct sum using the universal property and proves its uniqueness
(`direct_sum.to_module.unique`).

The second part of the file covers the special case of direct sums of submodules of a fixed module
`M`.  There is a canonical linear map from this direct sum to `M` (`direct_sum.coe_linear_map`), and
the construction is of particular importance when this linear map is an equivalence; that is, when
the submodules provide an internal decomposition of `M`.  The property is defined more generally
elsewhere as `direct_sum.is_internal`, but its basic consequences on `submodule`s are established
in this file.

-/

universes u v w u₁

namespace direct_sum
open_locale direct_sum

section general
variables {R : Type u} [semiring R]
variables {ι : Type v} [dec_ι : decidable_eq ι]
include R
variables {M : ι → Type w} [Π i, add_comm_monoid (M i)] [Π i, module R (M i)]

instance : module R (⨁ i, M i) := dfinsupp.module
instance {S : Type*} [semiring S] [Π i, module S (M i)] [Π i, smul_comm_class R S (M i)] :
  smul_comm_class R S (⨁ i, M i) := dfinsupp.smul_comm_class
instance {S : Type*} [semiring S] [has_smul R S] [Π i, module S (M i)]
  [Π i, is_scalar_tower R S (M i)] :
  is_scalar_tower R S (⨁ i, M i) := dfinsupp.is_scalar_tower
instance [Π i, module Rᵐᵒᵖ (M i)] [Π i, is_central_scalar R (M i)] :
  is_central_scalar R (⨁ i, M i) := dfinsupp.is_central_scalar

lemma smul_apply (b : R) (v : ⨁ i, M i) (i : ι) :
  (b • v) i = b • (v i) := dfinsupp.smul_apply _ _ _

include dec_ι

variables R ι M
/-- Create the direct sum given a family `M` of `R` modules indexed over `ι`. -/
def lmk : Π s : finset ι, (Π i : (↑s : set ι), M i.val) →ₗ[R] (⨁ i, M i) :=
dfinsupp.lmk

/-- Inclusion of each component into the direct sum. -/
def lof : Π i : ι, M i →ₗ[R] (⨁ i, M i) :=
dfinsupp.lsingle

lemma lof_eq_of (i : ι) (b : M i) : lof R ι M i b = of M i b := rfl

variables {ι M}

lemma single_eq_lof (i : ι) (b : M i) :
  dfinsupp.single i b = lof R ι M i b := rfl

/-- Scalar multiplication commutes with direct sums. -/
theorem mk_smul (s : finset ι) (c : R) (x) : mk M s (c • x) = c • mk M s x :=
(lmk R ι M s).map_smul c x

/-- Scalar multiplication commutes with the inclusion of each component into the direct sum. -/
theorem of_smul (i : ι) (c : R) (x) : of M i (c • x) = c • of M i x :=
(lof R ι M i).map_smul c x

variables {R}
lemma support_smul [Π (i : ι) (x : M i), decidable (x ≠ 0)]
  (c : R) (v : ⨁ i, M i) : (c • v).support ⊆ v.support := dfinsupp.support_smul _ _

variables {N : Type u₁} [add_comm_monoid N] [module R N]
variables (φ : Π i, M i →ₗ[R] N)

variables (R ι N φ)
/-- The linear map constructed using the universal property of the coproduct. -/
def to_module : (⨁ i, M i) →ₗ[R] N :=
dfinsupp.lsum ℕ φ

/-- Coproducts in the categories of modules and additive monoids commute with the forgetful functor
from modules to additive monoids. -/
lemma coe_to_module_eq_coe_to_add_monoid :
  (to_module R ι N φ : (⨁ i, M i) → N) = to_add_monoid (λ i, (φ i).to_add_monoid_hom) :=
rfl

variables {ι N φ}

/-- The map constructed using the universal property gives back the original maps when
restricted to each component. -/
@[simp] lemma to_module_lof (i) (x : M i) : to_module R ι N φ (lof R ι M i x) = φ i x :=
to_add_monoid_of (λ i, (φ i).to_add_monoid_hom) i x

variables (ψ : (⨁ i, M i) →ₗ[R] N)

/-- Every linear map from a direct sum agrees with the one obtained by applying
the universal property to each of its components. -/
theorem to_module.unique (f : ⨁ i, M i) : ψ f = to_module R ι N (λ i, ψ.comp $ lof R ι M i) f :=
to_add_monoid.unique ψ.to_add_monoid_hom f

variables {ψ} {ψ' : (⨁ i, M i) →ₗ[R] N}

/-- Two `linear_map`s out of a direct sum are equal if they agree on the generators.

See note [partially-applied ext lemmas]. -/
@[ext]
theorem linear_map_ext ⦃ψ ψ' : (⨁ i, M i) →ₗ[R] N⦄
  (H : ∀ i, ψ.comp (lof R ι M i) = ψ'.comp (lof R ι M i)) : ψ = ψ' :=
dfinsupp.lhom_ext' H

/--
The inclusion of a subset of the direct summands
into a larger subset of the direct summands, as a linear map.
-/
def lset_to_set (S T : set ι) (H : S ⊆ T) :
  (⨁ (i : S), M i) →ₗ[R] (⨁ (i : T), M i) :=
to_module R _ _ $ λ i, lof R T (λ (i : subtype T), M i) ⟨i, H i.prop⟩

omit dec_ι

variables (ι M)
/-- Given `fintype α`, `linear_equiv_fun_on_fintype R` is the natural `R`-linear equivalence
between `⨁ i, M i` and `Π i, M i`. -/
@[simps apply] def linear_equiv_fun_on_fintype [fintype ι] :
  (⨁ i, M i) ≃ₗ[R] (Π i, M i) :=
{ to_fun := coe_fn,
  map_add' := λ f g, by { ext, simp only [add_apply, pi.add_apply] },
  map_smul' := λ c f, by { ext, simp only [dfinsupp.coe_smul, ring_hom.id_apply] },
  .. dfinsupp.equiv_fun_on_fintype }

variables {ι M}
@[simp] lemma linear_equiv_fun_on_fintype_lof [fintype ι] [decidable_eq ι] (i : ι) (m : M i) :
  (linear_equiv_fun_on_fintype R ι M) (lof R ι M i m) = pi.single i m :=
begin
  ext a,
  change (dfinsupp.equiv_fun_on_fintype (lof R ι M i m)) a = _,
  convert _root_.congr_fun (dfinsupp.equiv_fun_on_fintype_single i m) a,
end

@[simp] lemma linear_equiv_fun_on_fintype_symm_single [fintype ι] [decidable_eq ι]
  (i : ι) (m : M i) :
  (linear_equiv_fun_on_fintype R ι M).symm (pi.single i m) = lof R ι M i m :=
begin
  ext a,
  change (dfinsupp.equiv_fun_on_fintype.symm (pi.single i m)) a = _,
  rw (dfinsupp.equiv_fun_on_fintype_symm_single i m),
  refl
end

@[simp] lemma linear_equiv_fun_on_fintype_symm_coe [fintype ι] (f : ⨁ i, M i) :
  (linear_equiv_fun_on_fintype R ι M).symm f = f :=
by { ext, simp [linear_equiv_fun_on_fintype], }

/-- The natural linear equivalence between `⨁ _ : ι, M` and `M` when `unique ι`. -/
protected def lid (M : Type v) (ι : Type* := punit) [add_comm_monoid M] [module R M]
  [unique ι] :
  (⨁ (_ : ι), M) ≃ₗ[R] M :=
{ .. direct_sum.id M ι,
  .. to_module R ι M (λ i, linear_map.id) }

variables (ι M)
/-- The projection map onto one component, as a linear map. -/
def component (i : ι) : (⨁ i, M i) →ₗ[R] M i :=
dfinsupp.lapply i

variables {ι M}

lemma apply_eq_component (f : ⨁ i, M i) (i : ι) :
  f i = component R ι M i f := rfl

@[ext] lemma ext {f g : ⨁ i, M i}
  (h : ∀ i, component R ι M i f = component R ι M i g) : f = g :=
dfinsupp.ext h

lemma ext_iff {f g : ⨁ i, M i} : f = g ↔
  ∀ i, component R ι M i f = component R ι M i g :=
⟨λ h _, by rw h, ext R⟩

include dec_ι

@[simp] lemma lof_apply (i : ι) (b : M i) : ((lof R ι M i) b) i = b :=
dfinsupp.single_eq_same

@[simp] lemma component.lof_self (i : ι) (b : M i) :
  component R ι M i ((lof R ι M i) b) = b :=
lof_apply R i b

lemma component.of (i j : ι) (b : M j) :
  component R ι M i ((lof R ι M j) b) =
  if h : j = i then eq.rec_on h b else 0 :=
dfinsupp.single_apply

omit dec_ι
section congr_left
variables {κ : Type*}

/--Reindexing terms of a direct sum is linear.-/
def lequiv_congr_left (h : ι ≃ κ) : (⨁ i, M i) ≃ₗ[R] ⨁ k, M (h.symm k) :=
{ map_smul' := dfinsupp.comap_domain'_smul _ _,
  ..equiv_congr_left h }

@[simp] lemma lequiv_congr_left_apply (h : ι ≃ κ) (f : ⨁ i, M i) (k : κ) :
lequiv_congr_left R h f k = f (h.symm k) := equiv_congr_left_apply _ _ _

end congr_left

section sigma
variables {α : ι → Type*} {δ : Π i, α i → Type w}
variables [Π i j, add_comm_monoid (δ i j)] [Π i j, module R (δ i j)]

/--`curry` as a linear map.-/
noncomputable def sigma_lcurry : (⨁ (i : Σ i, _), δ i.1 i.2) →ₗ[R] ⨁ i j, δ i j :=
{ map_smul' := λ r, by convert (@dfinsupp.sigma_curry_smul _ _ _ δ _ _ _ r),
  ..sigma_curry }

@[simp] lemma sigma_lcurry_apply (f : ⨁ (i : Σ i, _), δ i.1 i.2) (i : ι) (j : α i) :
  sigma_lcurry R f i j = f ⟨i, j⟩ := sigma_curry_apply f i j

/--`uncurry` as a linear map.-/
noncomputable def sigma_luncurry : (⨁ i j, δ i j) →ₗ[R] ⨁ (i : Σ i, _), δ i.1 i.2 :=
{ map_smul' := dfinsupp.sigma_uncurry_smul,
  ..sigma_uncurry }

@[simp] lemma sigma_luncurry_apply (f : ⨁ i j, δ i j) (i : ι) (j : α i) :
  sigma_luncurry R f ⟨i, j⟩ = f i j := sigma_uncurry_apply f i j

/--`curry_equiv` as a linear equiv.-/
noncomputable def sigma_lcurry_equiv : (⨁ (i : Σ i, _), δ i.1 i.2) ≃ₗ[R] ⨁ i j, δ i j :=
{ ..sigma_curry_equiv, ..sigma_lcurry R }

end sigma

section option
variables {α : option ι → Type w} [Π i, add_comm_monoid (α i)] [Π i, module R (α i)]
include dec_ι

/--Linear isomorphism obtained by separating the term of index `none` of a direct sum over
`option ι`.-/
@[simps] noncomputable def lequiv_prod_direct_sum : (⨁ i, α i) ≃ₗ[R] α none × ⨁ i, α (some i) :=
{ map_smul' := dfinsupp.equiv_prod_dfinsupp_smul,
  ..add_equiv_prod_direct_sum }

end option

end general

section submodule

section semiring
variables {R : Type u} [semiring R]
variables {ι : Type v} [dec_ι : decidable_eq ι]
include dec_ι
variables {M : Type*} [add_comm_monoid M] [module R M]
variables (A : ι → submodule R M)

/-- The canonical embedding from `⨁ i, A i` to `M`  where `A` is a collection of `submodule R M`
indexed by `ι`. This is `direct_sum.coe_add_monoid_hom` as a `linear_map`. -/
def coe_linear_map : (⨁ i, A i) →ₗ[R] M := to_module R ι M (λ i, (A i).subtype)

@[simp] lemma coe_linear_map_of (i : ι) (x : A i) :
  direct_sum.coe_linear_map A (of (λ i, A i) i x) = x :=
to_add_monoid_of _ _ _

variables {A}

/-- If a direct sum of submodules is internal then the submodules span the module. -/
lemma is_internal.submodule_supr_eq_top (h : is_internal A) : supr A = ⊤ :=
begin
  rw [submodule.supr_eq_range_dfinsupp_lsum, linear_map.range_eq_top],
  exact function.bijective.surjective h,
end

/-- If a direct sum of submodules is internal then the submodules are independent. -/
lemma is_internal.submodule_independent (h : is_internal A) :
  complete_lattice.independent A :=
complete_lattice.independent_of_dfinsupp_lsum_injective _ h.injective

/-- Given an internal direct sum decomposition of a module `M`, and a basis for each of the
components of the direct sum, the disjoint union of these bases is a basis for `M`. -/
noncomputable def is_internal.collected_basis
  (h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) :
  basis (Σ i, α i) R M :=
{ repr :=
    (linear_equiv.of_bijective (direct_sum.coe_linear_map A) h.injective h.surjective).symm ≪≫ₗ
      (dfinsupp.map_range.linear_equiv (λ i, (v i).repr)) ≪≫ₗ
      (sigma_finsupp_lequiv_dfinsupp R).symm }

@[simp] lemma is_internal.collected_basis_coe
  (h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) :
  ⇑(h.collected_basis v) = λ a : Σ i, (α i), ↑(v a.1 a.2) :=
begin
  funext a,
  simp only [is_internal.collected_basis, to_module, coe_linear_map,
    add_equiv.to_fun_eq_coe, basis.coe_of_repr, basis.repr_symm_apply, dfinsupp.lsum_apply_apply,
    dfinsupp.map_range.linear_equiv_apply, dfinsupp.map_range.linear_equiv_symm,
    dfinsupp.map_range_single, finsupp.total_single, linear_equiv.of_bijective_apply,
    linear_equiv.symm_symm, linear_equiv.symm_trans_apply, one_smul,
    sigma_finsupp_add_equiv_dfinsupp_apply, sigma_finsupp_equiv_dfinsupp_single,
    sigma_finsupp_lequiv_dfinsupp_apply],
  convert dfinsupp.sum_add_hom_single (λ i, (A i).subtype.to_add_monoid_hom) a.1 (v a.1 a.2),
end

lemma is_internal.collected_basis_mem
  (h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) (a : Σ i, α i) :
  h.collected_basis v a ∈ A a.1 :=
by simp

/-- When indexed by only two distinct elements, `direct_sum.is_internal` implies
the two submodules are complementary. Over a `ring R`, this is true as an iff, as
`direct_sum.is_internal_iff_is_compl`. --/
lemma is_internal.is_compl {A : ι → submodule R M} {i j : ι} (hij : i ≠ j)
  (h : (set.univ : set ι) = {i, j}) (hi : is_internal A) : is_compl (A i) (A j) :=
⟨hi.submodule_independent.pairwise_disjoint _ _ hij, eq.le $ hi.submodule_supr_eq_top.symm.trans $
  by rw [←Sup_pair, supr, ←set.image_univ, h, set.image_insert_eq, set.image_singleton]⟩

end semiring

section ring
variables {R : Type u} [ring R]
variables {ι : Type v} [dec_ι : decidable_eq ι]
include dec_ι
variables {M : Type*} [add_comm_group M] [module R M]

/-- Note that this is not generally true for `[semiring R]`; see
`complete_lattice.independent.dfinsupp_lsum_injective` for details. -/
lemma is_internal_submodule_of_independent_of_supr_eq_top {A : ι → submodule R M}
  (hi : complete_lattice.independent A) (hs : supr A = ⊤) : is_internal A :=
⟨hi.dfinsupp_lsum_injective, linear_map.range_eq_top.1 $
  (submodule.supr_eq_range_dfinsupp_lsum _).symm.trans hs⟩

/-- `iff` version of `direct_sum.is_internal_submodule_of_independent_of_supr_eq_top`,
`direct_sum.is_internal.independent`, and `direct_sum.is_internal.supr_eq_top`.
-/
lemma is_internal_submodule_iff_independent_and_supr_eq_top (A : ι → submodule R M) :
    is_internal A ↔ complete_lattice.independent A ∧ supr A = ⊤ :=
⟨λ i, ⟨i.submodule_independent, i.submodule_supr_eq_top⟩,
 and.rec is_internal_submodule_of_independent_of_supr_eq_top⟩

/-- If a collection of submodules has just two indices, `i` and `j`, then
`direct_sum.is_internal` is equivalent to `is_compl`. -/
lemma is_internal_submodule_iff_is_compl (A : ι → submodule R M) {i j : ι} (hij : i ≠ j)
  (h : (set.univ : set ι) = {i, j}) :
  is_internal A ↔ is_compl (A i) (A j) :=
begin
  have : ∀ k, k = i ∨ k = j := λ k, by simpa using set.ext_iff.mp h k,
  rw [is_internal_submodule_iff_independent_and_supr_eq_top,
    supr, ←set.image_univ, h, set.image_insert_eq, set.image_singleton, Sup_pair,
    complete_lattice.independent_pair hij this],
  exact ⟨λ ⟨hd, ht⟩, ⟨hd, ht.ge⟩, λ ⟨hd, ht⟩, ⟨hd, eq_top_iff.mpr ht⟩⟩,
end

/-! Now copy the lemmas for subgroup and submonoids. -/

lemma is_internal.add_submonoid_independent {M : Type*} [add_comm_monoid M]
  {A : ι → add_submonoid M} (h : is_internal A) :
  complete_lattice.independent A :=
complete_lattice.independent_of_dfinsupp_sum_add_hom_injective _ h.injective

lemma is_internal.add_subgroup_independent {M : Type*} [add_comm_group M]
  {A : ι → add_subgroup M} (h : is_internal A) :
  complete_lattice.independent A :=
complete_lattice.independent_of_dfinsupp_sum_add_hom_injective' _ h.injective

end ring

end submodule

end direct_sum