Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 14,873 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import algebra.direct_sum.basic
import linear_algebra.dfinsupp
/-!
# Direct sum of modules
The first part of the file provides constructors for direct sums of modules. It provides a
construction of the direct sum using the universal property and proves its uniqueness
(`direct_sum.to_module.unique`).
The second part of the file covers the special case of direct sums of submodules of a fixed module
`M`. There is a canonical linear map from this direct sum to `M` (`direct_sum.coe_linear_map`), and
the construction is of particular importance when this linear map is an equivalence; that is, when
the submodules provide an internal decomposition of `M`. The property is defined more generally
elsewhere as `direct_sum.is_internal`, but its basic consequences on `submodule`s are established
in this file.
-/
universes u v w u₁
namespace direct_sum
open_locale direct_sum
section general
variables {R : Type u} [semiring R]
variables {ι : Type v} [dec_ι : decidable_eq ι]
include R
variables {M : ι → Type w} [Π i, add_comm_monoid (M i)] [Π i, module R (M i)]
instance : module R (⨁ i, M i) := dfinsupp.module
instance {S : Type*} [semiring S] [Π i, module S (M i)] [Π i, smul_comm_class R S (M i)] :
smul_comm_class R S (⨁ i, M i) := dfinsupp.smul_comm_class
instance {S : Type*} [semiring S] [has_smul R S] [Π i, module S (M i)]
[Π i, is_scalar_tower R S (M i)] :
is_scalar_tower R S (⨁ i, M i) := dfinsupp.is_scalar_tower
instance [Π i, module Rᵐᵒᵖ (M i)] [Π i, is_central_scalar R (M i)] :
is_central_scalar R (⨁ i, M i) := dfinsupp.is_central_scalar
lemma smul_apply (b : R) (v : ⨁ i, M i) (i : ι) :
(b • v) i = b • (v i) := dfinsupp.smul_apply _ _ _
include dec_ι
variables R ι M
/-- Create the direct sum given a family `M` of `R` modules indexed over `ι`. -/
def lmk : Π s : finset ι, (Π i : (↑s : set ι), M i.val) →ₗ[R] (⨁ i, M i) :=
dfinsupp.lmk
/-- Inclusion of each component into the direct sum. -/
def lof : Π i : ι, M i →ₗ[R] (⨁ i, M i) :=
dfinsupp.lsingle
lemma lof_eq_of (i : ι) (b : M i) : lof R ι M i b = of M i b := rfl
variables {ι M}
lemma single_eq_lof (i : ι) (b : M i) :
dfinsupp.single i b = lof R ι M i b := rfl
/-- Scalar multiplication commutes with direct sums. -/
theorem mk_smul (s : finset ι) (c : R) (x) : mk M s (c • x) = c • mk M s x :=
(lmk R ι M s).map_smul c x
/-- Scalar multiplication commutes with the inclusion of each component into the direct sum. -/
theorem of_smul (i : ι) (c : R) (x) : of M i (c • x) = c • of M i x :=
(lof R ι M i).map_smul c x
variables {R}
lemma support_smul [Π (i : ι) (x : M i), decidable (x ≠ 0)]
(c : R) (v : ⨁ i, M i) : (c • v).support ⊆ v.support := dfinsupp.support_smul _ _
variables {N : Type u₁} [add_comm_monoid N] [module R N]
variables (φ : Π i, M i →ₗ[R] N)
variables (R ι N φ)
/-- The linear map constructed using the universal property of the coproduct. -/
def to_module : (⨁ i, M i) →ₗ[R] N :=
dfinsupp.lsum ℕ φ
/-- Coproducts in the categories of modules and additive monoids commute with the forgetful functor
from modules to additive monoids. -/
lemma coe_to_module_eq_coe_to_add_monoid :
(to_module R ι N φ : (⨁ i, M i) → N) = to_add_monoid (λ i, (φ i).to_add_monoid_hom) :=
rfl
variables {ι N φ}
/-- The map constructed using the universal property gives back the original maps when
restricted to each component. -/
@[simp] lemma to_module_lof (i) (x : M i) : to_module R ι N φ (lof R ι M i x) = φ i x :=
to_add_monoid_of (λ i, (φ i).to_add_monoid_hom) i x
variables (ψ : (⨁ i, M i) →ₗ[R] N)
/-- Every linear map from a direct sum agrees with the one obtained by applying
the universal property to each of its components. -/
theorem to_module.unique (f : ⨁ i, M i) : ψ f = to_module R ι N (λ i, ψ.comp $ lof R ι M i) f :=
to_add_monoid.unique ψ.to_add_monoid_hom f
variables {ψ} {ψ' : (⨁ i, M i) →ₗ[R] N}
/-- Two `linear_map`s out of a direct sum are equal if they agree on the generators.
See note [partially-applied ext lemmas]. -/
@[ext]
theorem linear_map_ext ⦃ψ ψ' : (⨁ i, M i) →ₗ[R] N⦄
(H : ∀ i, ψ.comp (lof R ι M i) = ψ'.comp (lof R ι M i)) : ψ = ψ' :=
dfinsupp.lhom_ext' H
/--
The inclusion of a subset of the direct summands
into a larger subset of the direct summands, as a linear map.
-/
def lset_to_set (S T : set ι) (H : S ⊆ T) :
(⨁ (i : S), M i) →ₗ[R] (⨁ (i : T), M i) :=
to_module R _ _ $ λ i, lof R T (λ (i : subtype T), M i) ⟨i, H i.prop⟩
omit dec_ι
variables (ι M)
/-- Given `fintype α`, `linear_equiv_fun_on_fintype R` is the natural `R`-linear equivalence
between `⨁ i, M i` and `Π i, M i`. -/
@[simps apply] def linear_equiv_fun_on_fintype [fintype ι] :
(⨁ i, M i) ≃ₗ[R] (Π i, M i) :=
{ to_fun := coe_fn,
map_add' := λ f g, by { ext, simp only [add_apply, pi.add_apply] },
map_smul' := λ c f, by { ext, simp only [dfinsupp.coe_smul, ring_hom.id_apply] },
.. dfinsupp.equiv_fun_on_fintype }
variables {ι M}
@[simp] lemma linear_equiv_fun_on_fintype_lof [fintype ι] [decidable_eq ι] (i : ι) (m : M i) :
(linear_equiv_fun_on_fintype R ι M) (lof R ι M i m) = pi.single i m :=
begin
ext a,
change (dfinsupp.equiv_fun_on_fintype (lof R ι M i m)) a = _,
convert _root_.congr_fun (dfinsupp.equiv_fun_on_fintype_single i m) a,
end
@[simp] lemma linear_equiv_fun_on_fintype_symm_single [fintype ι] [decidable_eq ι]
(i : ι) (m : M i) :
(linear_equiv_fun_on_fintype R ι M).symm (pi.single i m) = lof R ι M i m :=
begin
ext a,
change (dfinsupp.equiv_fun_on_fintype.symm (pi.single i m)) a = _,
rw (dfinsupp.equiv_fun_on_fintype_symm_single i m),
refl
end
@[simp] lemma linear_equiv_fun_on_fintype_symm_coe [fintype ι] (f : ⨁ i, M i) :
(linear_equiv_fun_on_fintype R ι M).symm f = f :=
by { ext, simp [linear_equiv_fun_on_fintype], }
/-- The natural linear equivalence between `⨁ _ : ι, M` and `M` when `unique ι`. -/
protected def lid (M : Type v) (ι : Type* := punit) [add_comm_monoid M] [module R M]
[unique ι] :
(⨁ (_ : ι), M) ≃ₗ[R] M :=
{ .. direct_sum.id M ι,
.. to_module R ι M (λ i, linear_map.id) }
variables (ι M)
/-- The projection map onto one component, as a linear map. -/
def component (i : ι) : (⨁ i, M i) →ₗ[R] M i :=
dfinsupp.lapply i
variables {ι M}
lemma apply_eq_component (f : ⨁ i, M i) (i : ι) :
f i = component R ι M i f := rfl
@[ext] lemma ext {f g : ⨁ i, M i}
(h : ∀ i, component R ι M i f = component R ι M i g) : f = g :=
dfinsupp.ext h
lemma ext_iff {f g : ⨁ i, M i} : f = g ↔
∀ i, component R ι M i f = component R ι M i g :=
⟨λ h _, by rw h, ext R⟩
include dec_ι
@[simp] lemma lof_apply (i : ι) (b : M i) : ((lof R ι M i) b) i = b :=
dfinsupp.single_eq_same
@[simp] lemma component.lof_self (i : ι) (b : M i) :
component R ι M i ((lof R ι M i) b) = b :=
lof_apply R i b
lemma component.of (i j : ι) (b : M j) :
component R ι M i ((lof R ι M j) b) =
if h : j = i then eq.rec_on h b else 0 :=
dfinsupp.single_apply
omit dec_ι
section congr_left
variables {κ : Type*}
/--Reindexing terms of a direct sum is linear.-/
def lequiv_congr_left (h : ι ≃ κ) : (⨁ i, M i) ≃ₗ[R] ⨁ k, M (h.symm k) :=
{ map_smul' := dfinsupp.comap_domain'_smul _ _,
..equiv_congr_left h }
@[simp] lemma lequiv_congr_left_apply (h : ι ≃ κ) (f : ⨁ i, M i) (k : κ) :
lequiv_congr_left R h f k = f (h.symm k) := equiv_congr_left_apply _ _ _
end congr_left
section sigma
variables {α : ι → Type*} {δ : Π i, α i → Type w}
variables [Π i j, add_comm_monoid (δ i j)] [Π i j, module R (δ i j)]
/--`curry` as a linear map.-/
noncomputable def sigma_lcurry : (⨁ (i : Σ i, _), δ i.1 i.2) →ₗ[R] ⨁ i j, δ i j :=
{ map_smul' := λ r, by convert (@dfinsupp.sigma_curry_smul _ _ _ δ _ _ _ r),
..sigma_curry }
@[simp] lemma sigma_lcurry_apply (f : ⨁ (i : Σ i, _), δ i.1 i.2) (i : ι) (j : α i) :
sigma_lcurry R f i j = f ⟨i, j⟩ := sigma_curry_apply f i j
/--`uncurry` as a linear map.-/
noncomputable def sigma_luncurry : (⨁ i j, δ i j) →ₗ[R] ⨁ (i : Σ i, _), δ i.1 i.2 :=
{ map_smul' := dfinsupp.sigma_uncurry_smul,
..sigma_uncurry }
@[simp] lemma sigma_luncurry_apply (f : ⨁ i j, δ i j) (i : ι) (j : α i) :
sigma_luncurry R f ⟨i, j⟩ = f i j := sigma_uncurry_apply f i j
/--`curry_equiv` as a linear equiv.-/
noncomputable def sigma_lcurry_equiv : (⨁ (i : Σ i, _), δ i.1 i.2) ≃ₗ[R] ⨁ i j, δ i j :=
{ ..sigma_curry_equiv, ..sigma_lcurry R }
end sigma
section option
variables {α : option ι → Type w} [Π i, add_comm_monoid (α i)] [Π i, module R (α i)]
include dec_ι
/--Linear isomorphism obtained by separating the term of index `none` of a direct sum over
`option ι`.-/
@[simps] noncomputable def lequiv_prod_direct_sum : (⨁ i, α i) ≃ₗ[R] α none × ⨁ i, α (some i) :=
{ map_smul' := dfinsupp.equiv_prod_dfinsupp_smul,
..add_equiv_prod_direct_sum }
end option
end general
section submodule
section semiring
variables {R : Type u} [semiring R]
variables {ι : Type v} [dec_ι : decidable_eq ι]
include dec_ι
variables {M : Type*} [add_comm_monoid M] [module R M]
variables (A : ι → submodule R M)
/-- The canonical embedding from `⨁ i, A i` to `M` where `A` is a collection of `submodule R M`
indexed by `ι`. This is `direct_sum.coe_add_monoid_hom` as a `linear_map`. -/
def coe_linear_map : (⨁ i, A i) →ₗ[R] M := to_module R ι M (λ i, (A i).subtype)
@[simp] lemma coe_linear_map_of (i : ι) (x : A i) :
direct_sum.coe_linear_map A (of (λ i, A i) i x) = x :=
to_add_monoid_of _ _ _
variables {A}
/-- If a direct sum of submodules is internal then the submodules span the module. -/
lemma is_internal.submodule_supr_eq_top (h : is_internal A) : supr A = ⊤ :=
begin
rw [submodule.supr_eq_range_dfinsupp_lsum, linear_map.range_eq_top],
exact function.bijective.surjective h,
end
/-- If a direct sum of submodules is internal then the submodules are independent. -/
lemma is_internal.submodule_independent (h : is_internal A) :
complete_lattice.independent A :=
complete_lattice.independent_of_dfinsupp_lsum_injective _ h.injective
/-- Given an internal direct sum decomposition of a module `M`, and a basis for each of the
components of the direct sum, the disjoint union of these bases is a basis for `M`. -/
noncomputable def is_internal.collected_basis
(h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) :
basis (Σ i, α i) R M :=
{ repr :=
(linear_equiv.of_bijective (direct_sum.coe_linear_map A) h.injective h.surjective).symm ≪≫ₗ
(dfinsupp.map_range.linear_equiv (λ i, (v i).repr)) ≪≫ₗ
(sigma_finsupp_lequiv_dfinsupp R).symm }
@[simp] lemma is_internal.collected_basis_coe
(h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) :
⇑(h.collected_basis v) = λ a : Σ i, (α i), ↑(v a.1 a.2) :=
begin
funext a,
simp only [is_internal.collected_basis, to_module, coe_linear_map,
add_equiv.to_fun_eq_coe, basis.coe_of_repr, basis.repr_symm_apply, dfinsupp.lsum_apply_apply,
dfinsupp.map_range.linear_equiv_apply, dfinsupp.map_range.linear_equiv_symm,
dfinsupp.map_range_single, finsupp.total_single, linear_equiv.of_bijective_apply,
linear_equiv.symm_symm, linear_equiv.symm_trans_apply, one_smul,
sigma_finsupp_add_equiv_dfinsupp_apply, sigma_finsupp_equiv_dfinsupp_single,
sigma_finsupp_lequiv_dfinsupp_apply],
convert dfinsupp.sum_add_hom_single (λ i, (A i).subtype.to_add_monoid_hom) a.1 (v a.1 a.2),
end
lemma is_internal.collected_basis_mem
(h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) (a : Σ i, α i) :
h.collected_basis v a ∈ A a.1 :=
by simp
/-- When indexed by only two distinct elements, `direct_sum.is_internal` implies
the two submodules are complementary. Over a `ring R`, this is true as an iff, as
`direct_sum.is_internal_iff_is_compl`. --/
lemma is_internal.is_compl {A : ι → submodule R M} {i j : ι} (hij : i ≠ j)
(h : (set.univ : set ι) = {i, j}) (hi : is_internal A) : is_compl (A i) (A j) :=
⟨hi.submodule_independent.pairwise_disjoint _ _ hij, eq.le $ hi.submodule_supr_eq_top.symm.trans $
by rw [←Sup_pair, supr, ←set.image_univ, h, set.image_insert_eq, set.image_singleton]⟩
end semiring
section ring
variables {R : Type u} [ring R]
variables {ι : Type v} [dec_ι : decidable_eq ι]
include dec_ι
variables {M : Type*} [add_comm_group M] [module R M]
/-- Note that this is not generally true for `[semiring R]`; see
`complete_lattice.independent.dfinsupp_lsum_injective` for details. -/
lemma is_internal_submodule_of_independent_of_supr_eq_top {A : ι → submodule R M}
(hi : complete_lattice.independent A) (hs : supr A = ⊤) : is_internal A :=
⟨hi.dfinsupp_lsum_injective, linear_map.range_eq_top.1 $
(submodule.supr_eq_range_dfinsupp_lsum _).symm.trans hs⟩
/-- `iff` version of `direct_sum.is_internal_submodule_of_independent_of_supr_eq_top`,
`direct_sum.is_internal.independent`, and `direct_sum.is_internal.supr_eq_top`.
-/
lemma is_internal_submodule_iff_independent_and_supr_eq_top (A : ι → submodule R M) :
is_internal A ↔ complete_lattice.independent A ∧ supr A = ⊤ :=
⟨λ i, ⟨i.submodule_independent, i.submodule_supr_eq_top⟩,
and.rec is_internal_submodule_of_independent_of_supr_eq_top⟩
/-- If a collection of submodules has just two indices, `i` and `j`, then
`direct_sum.is_internal` is equivalent to `is_compl`. -/
lemma is_internal_submodule_iff_is_compl (A : ι → submodule R M) {i j : ι} (hij : i ≠ j)
(h : (set.univ : set ι) = {i, j}) :
is_internal A ↔ is_compl (A i) (A j) :=
begin
have : ∀ k, k = i ∨ k = j := λ k, by simpa using set.ext_iff.mp h k,
rw [is_internal_submodule_iff_independent_and_supr_eq_top,
supr, ←set.image_univ, h, set.image_insert_eq, set.image_singleton, Sup_pair,
complete_lattice.independent_pair hij this],
exact ⟨λ ⟨hd, ht⟩, ⟨hd, ht.ge⟩, λ ⟨hd, ht⟩, ⟨hd, eq_top_iff.mpr ht⟩⟩,
end
/-! Now copy the lemmas for subgroup and submonoids. -/
lemma is_internal.add_submonoid_independent {M : Type*} [add_comm_monoid M]
{A : ι → add_submonoid M} (h : is_internal A) :
complete_lattice.independent A :=
complete_lattice.independent_of_dfinsupp_sum_add_hom_injective _ h.injective
lemma is_internal.add_subgroup_independent {M : Type*} [add_comm_group M]
{A : ι → add_subgroup M} (h : is_internal A) :
complete_lattice.independent A :=
complete_lattice.independent_of_dfinsupp_sum_add_hom_injective' _ h.injective
end ring
end submodule
end direct_sum
|