/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau -/ import algebra.direct_sum.basic import linear_algebra.dfinsupp /-! # Direct sum of modules The first part of the file provides constructors for direct sums of modules. It provides a construction of the direct sum using the universal property and proves its uniqueness (`direct_sum.to_module.unique`). The second part of the file covers the special case of direct sums of submodules of a fixed module `M`. There is a canonical linear map from this direct sum to `M` (`direct_sum.coe_linear_map`), and the construction is of particular importance when this linear map is an equivalence; that is, when the submodules provide an internal decomposition of `M`. The property is defined more generally elsewhere as `direct_sum.is_internal`, but its basic consequences on `submodule`s are established in this file. -/ universes u v w u₁ namespace direct_sum open_locale direct_sum section general variables {R : Type u} [semiring R] variables {ι : Type v} [dec_ι : decidable_eq ι] include R variables {M : ι → Type w} [Π i, add_comm_monoid (M i)] [Π i, module R (M i)] instance : module R (⨁ i, M i) := dfinsupp.module instance {S : Type*} [semiring S] [Π i, module S (M i)] [Π i, smul_comm_class R S (M i)] : smul_comm_class R S (⨁ i, M i) := dfinsupp.smul_comm_class instance {S : Type*} [semiring S] [has_smul R S] [Π i, module S (M i)] [Π i, is_scalar_tower R S (M i)] : is_scalar_tower R S (⨁ i, M i) := dfinsupp.is_scalar_tower instance [Π i, module Rᵐᵒᵖ (M i)] [Π i, is_central_scalar R (M i)] : is_central_scalar R (⨁ i, M i) := dfinsupp.is_central_scalar lemma smul_apply (b : R) (v : ⨁ i, M i) (i : ι) : (b • v) i = b • (v i) := dfinsupp.smul_apply _ _ _ include dec_ι variables R ι M /-- Create the direct sum given a family `M` of `R` modules indexed over `ι`. -/ def lmk : Π s : finset ι, (Π i : (↑s : set ι), M i.val) →ₗ[R] (⨁ i, M i) := dfinsupp.lmk /-- Inclusion of each component into the direct sum. -/ def lof : Π i : ι, M i →ₗ[R] (⨁ i, M i) := dfinsupp.lsingle lemma lof_eq_of (i : ι) (b : M i) : lof R ι M i b = of M i b := rfl variables {ι M} lemma single_eq_lof (i : ι) (b : M i) : dfinsupp.single i b = lof R ι M i b := rfl /-- Scalar multiplication commutes with direct sums. -/ theorem mk_smul (s : finset ι) (c : R) (x) : mk M s (c • x) = c • mk M s x := (lmk R ι M s).map_smul c x /-- Scalar multiplication commutes with the inclusion of each component into the direct sum. -/ theorem of_smul (i : ι) (c : R) (x) : of M i (c • x) = c • of M i x := (lof R ι M i).map_smul c x variables {R} lemma support_smul [Π (i : ι) (x : M i), decidable (x ≠ 0)] (c : R) (v : ⨁ i, M i) : (c • v).support ⊆ v.support := dfinsupp.support_smul _ _ variables {N : Type u₁} [add_comm_monoid N] [module R N] variables (φ : Π i, M i →ₗ[R] N) variables (R ι N φ) /-- The linear map constructed using the universal property of the coproduct. -/ def to_module : (⨁ i, M i) →ₗ[R] N := dfinsupp.lsum ℕ φ /-- Coproducts in the categories of modules and additive monoids commute with the forgetful functor from modules to additive monoids. -/ lemma coe_to_module_eq_coe_to_add_monoid : (to_module R ι N φ : (⨁ i, M i) → N) = to_add_monoid (λ i, (φ i).to_add_monoid_hom) := rfl variables {ι N φ} /-- The map constructed using the universal property gives back the original maps when restricted to each component. -/ @[simp] lemma to_module_lof (i) (x : M i) : to_module R ι N φ (lof R ι M i x) = φ i x := to_add_monoid_of (λ i, (φ i).to_add_monoid_hom) i x variables (ψ : (⨁ i, M i) →ₗ[R] N) /-- Every linear map from a direct sum agrees with the one obtained by applying the universal property to each of its components. -/ theorem to_module.unique (f : ⨁ i, M i) : ψ f = to_module R ι N (λ i, ψ.comp $ lof R ι M i) f := to_add_monoid.unique ψ.to_add_monoid_hom f variables {ψ} {ψ' : (⨁ i, M i) →ₗ[R] N} /-- Two `linear_map`s out of a direct sum are equal if they agree on the generators. See note [partially-applied ext lemmas]. -/ @[ext] theorem linear_map_ext ⦃ψ ψ' : (⨁ i, M i) →ₗ[R] N⦄ (H : ∀ i, ψ.comp (lof R ι M i) = ψ'.comp (lof R ι M i)) : ψ = ψ' := dfinsupp.lhom_ext' H /-- The inclusion of a subset of the direct summands into a larger subset of the direct summands, as a linear map. -/ def lset_to_set (S T : set ι) (H : S ⊆ T) : (⨁ (i : S), M i) →ₗ[R] (⨁ (i : T), M i) := to_module R _ _ $ λ i, lof R T (λ (i : subtype T), M i) ⟨i, H i.prop⟩ omit dec_ι variables (ι M) /-- Given `fintype α`, `linear_equiv_fun_on_fintype R` is the natural `R`-linear equivalence between `⨁ i, M i` and `Π i, M i`. -/ @[simps apply] def linear_equiv_fun_on_fintype [fintype ι] : (⨁ i, M i) ≃ₗ[R] (Π i, M i) := { to_fun := coe_fn, map_add' := λ f g, by { ext, simp only [add_apply, pi.add_apply] }, map_smul' := λ c f, by { ext, simp only [dfinsupp.coe_smul, ring_hom.id_apply] }, .. dfinsupp.equiv_fun_on_fintype } variables {ι M} @[simp] lemma linear_equiv_fun_on_fintype_lof [fintype ι] [decidable_eq ι] (i : ι) (m : M i) : (linear_equiv_fun_on_fintype R ι M) (lof R ι M i m) = pi.single i m := begin ext a, change (dfinsupp.equiv_fun_on_fintype (lof R ι M i m)) a = _, convert _root_.congr_fun (dfinsupp.equiv_fun_on_fintype_single i m) a, end @[simp] lemma linear_equiv_fun_on_fintype_symm_single [fintype ι] [decidable_eq ι] (i : ι) (m : M i) : (linear_equiv_fun_on_fintype R ι M).symm (pi.single i m) = lof R ι M i m := begin ext a, change (dfinsupp.equiv_fun_on_fintype.symm (pi.single i m)) a = _, rw (dfinsupp.equiv_fun_on_fintype_symm_single i m), refl end @[simp] lemma linear_equiv_fun_on_fintype_symm_coe [fintype ι] (f : ⨁ i, M i) : (linear_equiv_fun_on_fintype R ι M).symm f = f := by { ext, simp [linear_equiv_fun_on_fintype], } /-- The natural linear equivalence between `⨁ _ : ι, M` and `M` when `unique ι`. -/ protected def lid (M : Type v) (ι : Type* := punit) [add_comm_monoid M] [module R M] [unique ι] : (⨁ (_ : ι), M) ≃ₗ[R] M := { .. direct_sum.id M ι, .. to_module R ι M (λ i, linear_map.id) } variables (ι M) /-- The projection map onto one component, as a linear map. -/ def component (i : ι) : (⨁ i, M i) →ₗ[R] M i := dfinsupp.lapply i variables {ι M} lemma apply_eq_component (f : ⨁ i, M i) (i : ι) : f i = component R ι M i f := rfl @[ext] lemma ext {f g : ⨁ i, M i} (h : ∀ i, component R ι M i f = component R ι M i g) : f = g := dfinsupp.ext h lemma ext_iff {f g : ⨁ i, M i} : f = g ↔ ∀ i, component R ι M i f = component R ι M i g := ⟨λ h _, by rw h, ext R⟩ include dec_ι @[simp] lemma lof_apply (i : ι) (b : M i) : ((lof R ι M i) b) i = b := dfinsupp.single_eq_same @[simp] lemma component.lof_self (i : ι) (b : M i) : component R ι M i ((lof R ι M i) b) = b := lof_apply R i b lemma component.of (i j : ι) (b : M j) : component R ι M i ((lof R ι M j) b) = if h : j = i then eq.rec_on h b else 0 := dfinsupp.single_apply omit dec_ι section congr_left variables {κ : Type*} /--Reindexing terms of a direct sum is linear.-/ def lequiv_congr_left (h : ι ≃ κ) : (⨁ i, M i) ≃ₗ[R] ⨁ k, M (h.symm k) := { map_smul' := dfinsupp.comap_domain'_smul _ _, ..equiv_congr_left h } @[simp] lemma lequiv_congr_left_apply (h : ι ≃ κ) (f : ⨁ i, M i) (k : κ) : lequiv_congr_left R h f k = f (h.symm k) := equiv_congr_left_apply _ _ _ end congr_left section sigma variables {α : ι → Type*} {δ : Π i, α i → Type w} variables [Π i j, add_comm_monoid (δ i j)] [Π i j, module R (δ i j)] /--`curry` as a linear map.-/ noncomputable def sigma_lcurry : (⨁ (i : Σ i, _), δ i.1 i.2) →ₗ[R] ⨁ i j, δ i j := { map_smul' := λ r, by convert (@dfinsupp.sigma_curry_smul _ _ _ δ _ _ _ r), ..sigma_curry } @[simp] lemma sigma_lcurry_apply (f : ⨁ (i : Σ i, _), δ i.1 i.2) (i : ι) (j : α i) : sigma_lcurry R f i j = f ⟨i, j⟩ := sigma_curry_apply f i j /--`uncurry` as a linear map.-/ noncomputable def sigma_luncurry : (⨁ i j, δ i j) →ₗ[R] ⨁ (i : Σ i, _), δ i.1 i.2 := { map_smul' := dfinsupp.sigma_uncurry_smul, ..sigma_uncurry } @[simp] lemma sigma_luncurry_apply (f : ⨁ i j, δ i j) (i : ι) (j : α i) : sigma_luncurry R f ⟨i, j⟩ = f i j := sigma_uncurry_apply f i j /--`curry_equiv` as a linear equiv.-/ noncomputable def sigma_lcurry_equiv : (⨁ (i : Σ i, _), δ i.1 i.2) ≃ₗ[R] ⨁ i j, δ i j := { ..sigma_curry_equiv, ..sigma_lcurry R } end sigma section option variables {α : option ι → Type w} [Π i, add_comm_monoid (α i)] [Π i, module R (α i)] include dec_ι /--Linear isomorphism obtained by separating the term of index `none` of a direct sum over `option ι`.-/ @[simps] noncomputable def lequiv_prod_direct_sum : (⨁ i, α i) ≃ₗ[R] α none × ⨁ i, α (some i) := { map_smul' := dfinsupp.equiv_prod_dfinsupp_smul, ..add_equiv_prod_direct_sum } end option end general section submodule section semiring variables {R : Type u} [semiring R] variables {ι : Type v} [dec_ι : decidable_eq ι] include dec_ι variables {M : Type*} [add_comm_monoid M] [module R M] variables (A : ι → submodule R M) /-- The canonical embedding from `⨁ i, A i` to `M` where `A` is a collection of `submodule R M` indexed by `ι`. This is `direct_sum.coe_add_monoid_hom` as a `linear_map`. -/ def coe_linear_map : (⨁ i, A i) →ₗ[R] M := to_module R ι M (λ i, (A i).subtype) @[simp] lemma coe_linear_map_of (i : ι) (x : A i) : direct_sum.coe_linear_map A (of (λ i, A i) i x) = x := to_add_monoid_of _ _ _ variables {A} /-- If a direct sum of submodules is internal then the submodules span the module. -/ lemma is_internal.submodule_supr_eq_top (h : is_internal A) : supr A = ⊤ := begin rw [submodule.supr_eq_range_dfinsupp_lsum, linear_map.range_eq_top], exact function.bijective.surjective h, end /-- If a direct sum of submodules is internal then the submodules are independent. -/ lemma is_internal.submodule_independent (h : is_internal A) : complete_lattice.independent A := complete_lattice.independent_of_dfinsupp_lsum_injective _ h.injective /-- Given an internal direct sum decomposition of a module `M`, and a basis for each of the components of the direct sum, the disjoint union of these bases is a basis for `M`. -/ noncomputable def is_internal.collected_basis (h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) : basis (Σ i, α i) R M := { repr := (linear_equiv.of_bijective (direct_sum.coe_linear_map A) h.injective h.surjective).symm ≪≫ₗ (dfinsupp.map_range.linear_equiv (λ i, (v i).repr)) ≪≫ₗ (sigma_finsupp_lequiv_dfinsupp R).symm } @[simp] lemma is_internal.collected_basis_coe (h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) : ⇑(h.collected_basis v) = λ a : Σ i, (α i), ↑(v a.1 a.2) := begin funext a, simp only [is_internal.collected_basis, to_module, coe_linear_map, add_equiv.to_fun_eq_coe, basis.coe_of_repr, basis.repr_symm_apply, dfinsupp.lsum_apply_apply, dfinsupp.map_range.linear_equiv_apply, dfinsupp.map_range.linear_equiv_symm, dfinsupp.map_range_single, finsupp.total_single, linear_equiv.of_bijective_apply, linear_equiv.symm_symm, linear_equiv.symm_trans_apply, one_smul, sigma_finsupp_add_equiv_dfinsupp_apply, sigma_finsupp_equiv_dfinsupp_single, sigma_finsupp_lequiv_dfinsupp_apply], convert dfinsupp.sum_add_hom_single (λ i, (A i).subtype.to_add_monoid_hom) a.1 (v a.1 a.2), end lemma is_internal.collected_basis_mem (h : is_internal A) {α : ι → Type*} (v : Π i, basis (α i) R (A i)) (a : Σ i, α i) : h.collected_basis v a ∈ A a.1 := by simp /-- When indexed by only two distinct elements, `direct_sum.is_internal` implies the two submodules are complementary. Over a `ring R`, this is true as an iff, as `direct_sum.is_internal_iff_is_compl`. --/ lemma is_internal.is_compl {A : ι → submodule R M} {i j : ι} (hij : i ≠ j) (h : (set.univ : set ι) = {i, j}) (hi : is_internal A) : is_compl (A i) (A j) := ⟨hi.submodule_independent.pairwise_disjoint _ _ hij, eq.le $ hi.submodule_supr_eq_top.symm.trans $ by rw [←Sup_pair, supr, ←set.image_univ, h, set.image_insert_eq, set.image_singleton]⟩ end semiring section ring variables {R : Type u} [ring R] variables {ι : Type v} [dec_ι : decidable_eq ι] include dec_ι variables {M : Type*} [add_comm_group M] [module R M] /-- Note that this is not generally true for `[semiring R]`; see `complete_lattice.independent.dfinsupp_lsum_injective` for details. -/ lemma is_internal_submodule_of_independent_of_supr_eq_top {A : ι → submodule R M} (hi : complete_lattice.independent A) (hs : supr A = ⊤) : is_internal A := ⟨hi.dfinsupp_lsum_injective, linear_map.range_eq_top.1 $ (submodule.supr_eq_range_dfinsupp_lsum _).symm.trans hs⟩ /-- `iff` version of `direct_sum.is_internal_submodule_of_independent_of_supr_eq_top`, `direct_sum.is_internal.independent`, and `direct_sum.is_internal.supr_eq_top`. -/ lemma is_internal_submodule_iff_independent_and_supr_eq_top (A : ι → submodule R M) : is_internal A ↔ complete_lattice.independent A ∧ supr A = ⊤ := ⟨λ i, ⟨i.submodule_independent, i.submodule_supr_eq_top⟩, and.rec is_internal_submodule_of_independent_of_supr_eq_top⟩ /-- If a collection of submodules has just two indices, `i` and `j`, then `direct_sum.is_internal` is equivalent to `is_compl`. -/ lemma is_internal_submodule_iff_is_compl (A : ι → submodule R M) {i j : ι} (hij : i ≠ j) (h : (set.univ : set ι) = {i, j}) : is_internal A ↔ is_compl (A i) (A j) := begin have : ∀ k, k = i ∨ k = j := λ k, by simpa using set.ext_iff.mp h k, rw [is_internal_submodule_iff_independent_and_supr_eq_top, supr, ←set.image_univ, h, set.image_insert_eq, set.image_singleton, Sup_pair, complete_lattice.independent_pair hij this], exact ⟨λ ⟨hd, ht⟩, ⟨hd, ht.ge⟩, λ ⟨hd, ht⟩, ⟨hd, eq_top_iff.mpr ht⟩⟩, end /-! Now copy the lemmas for subgroup and submonoids. -/ lemma is_internal.add_submonoid_independent {M : Type*} [add_comm_monoid M] {A : ι → add_submonoid M} (h : is_internal A) : complete_lattice.independent A := complete_lattice.independent_of_dfinsupp_sum_add_hom_injective _ h.injective lemma is_internal.add_subgroup_independent {M : Type*} [add_comm_group M] {A : ι → add_subgroup M} (h : is_internal A) : complete_lattice.independent A := complete_lattice.independent_of_dfinsupp_sum_add_hom_injective' _ h.injective end ring end submodule end direct_sum