Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Eric Wieser. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Eric Wieser | |
-/ | |
import algebra.algebra.basic | |
import algebra.direct_sum.module | |
import algebra.direct_sum.ring | |
/-! # Additively-graded algebra structures on `⨁ i, A i` | |
This file provides `R`-algebra structures on external direct sums of `R`-modules. | |
Recall that if `A i` are a family of `add_comm_monoid`s indexed by an `add_monoid`, then an instance | |
of `direct_sum.gmonoid A` is a multiplication `A i → A j → A (i + j)` giving `⨁ i, A i` the | |
structure of a semiring. In this file, we introduce the `direct_sum.galgebra R A` class for the case | |
where all `A i` are `R`-modules. This is the extra structure needed to promote `⨁ i, A i` to an | |
`R`-algebra. | |
## Main definitions | |
* `direct_sum.galgebra R A`, the typeclass. | |
* `direct_sum.galgebra.of_submodules`, for creating the above instance from a collection of | |
submodules. | |
* `direct_sum.to_algebra` extends `direct_sum.to_semiring` to produce an `alg_hom`. | |
-/ | |
universes uι uR uA uB | |
variables {ι : Type uι} | |
namespace direct_sum | |
open_locale direct_sum | |
variables (R : Type uR) (A : ι → Type uA) {B : Type uB} [decidable_eq ι] | |
variables [comm_semiring R] [Π i, add_comm_monoid (A i)] [Π i, module R (A i)] | |
variables [add_monoid ι] [gsemiring A] | |
section | |
/-- A graded version of `algebra`. An instance of `direct_sum.galgebra R A` endows `(⨁ i, A i)` | |
with an `R`-algebra structure. -/ | |
class galgebra := | |
(to_fun : R →+ A 0) | |
(map_one : to_fun 1 = graded_monoid.ghas_one.one) | |
(map_mul : ∀ r s, | |
graded_monoid.mk _ (to_fun (r * s)) = ⟨_, graded_monoid.ghas_mul.mul (to_fun r) (to_fun s)⟩) | |
(commutes : ∀ r x, graded_monoid.mk _ (to_fun r) * x = x * ⟨_, to_fun r⟩) | |
(smul_def : ∀ r (x : graded_monoid A), graded_monoid.mk x.1 (r • x.2) = ⟨_, to_fun (r)⟩ * x) | |
end | |
variables [semiring B] [galgebra R A] [algebra R B] | |
instance : algebra R (⨁ i, A i) := | |
{ to_fun := (direct_sum.of A 0).comp galgebra.to_fun, | |
map_zero' := add_monoid_hom.map_zero _, | |
map_add' := add_monoid_hom.map_add _, | |
map_one' := (direct_sum.of A 0).congr_arg galgebra.map_one, | |
map_mul' := λ a b, begin | |
simp only [add_monoid_hom.comp_apply], | |
rw of_mul_of, | |
apply dfinsupp.single_eq_of_sigma_eq (galgebra.map_mul a b), | |
end, | |
commutes' := λ r x, begin | |
change add_monoid_hom.mul (direct_sum.of _ _ _) x = | |
add_monoid_hom.mul.flip (direct_sum.of _ _ _) x, | |
apply add_monoid_hom.congr_fun _ x, | |
ext i xi : 2, | |
dsimp only [add_monoid_hom.comp_apply, add_monoid_hom.mul_apply, add_monoid_hom.flip_apply], | |
rw [of_mul_of, of_mul_of], | |
apply dfinsupp.single_eq_of_sigma_eq (galgebra.commutes r ⟨i, xi⟩), | |
end, | |
smul_def' := λ r x, begin | |
change distrib_mul_action.to_add_monoid_hom _ r x = add_monoid_hom.mul (direct_sum.of _ _ _) x, | |
apply add_monoid_hom.congr_fun _ x, | |
ext i xi : 2, | |
dsimp only [add_monoid_hom.comp_apply, distrib_mul_action.to_add_monoid_hom_apply, | |
add_monoid_hom.mul_apply], | |
rw [direct_sum.of_mul_of, ←of_smul], | |
apply dfinsupp.single_eq_of_sigma_eq (galgebra.smul_def r ⟨i, xi⟩), | |
end } | |
lemma algebra_map_apply (r : R) : | |
algebra_map R (⨁ i, A i) r = direct_sum.of A 0 (galgebra.to_fun r) := rfl | |
lemma algebra_map_to_add_monoid_hom : | |
↑(algebra_map R (⨁ i, A i)) = (direct_sum.of A 0).comp (galgebra.to_fun : R →+ A 0) := rfl | |
/-- A family of `linear_map`s preserving `direct_sum.ghas_one.one` and `direct_sum.ghas_mul.mul` | |
describes an `alg_hom` on `⨁ i, A i`. This is a stronger version of `direct_sum.to_semiring`. | |
Of particular interest is the case when `A i` are bundled subojects, `f` is the family of | |
coercions such as `submodule.subtype (A i)`, and the `[gmonoid A]` structure originates from | |
`direct_sum.gmonoid.of_add_submodules`, in which case the proofs about `ghas_one` and `ghas_mul` | |
can be discharged by `rfl`. -/ | |
@[simps] | |
def to_algebra | |
(f : Π i, A i →ₗ[R] B) (hone : f _ (graded_monoid.ghas_one.one) = 1) | |
(hmul : ∀ {i j} (ai : A i) (aj : A j), f _ (graded_monoid.ghas_mul.mul ai aj) = f _ ai * f _ aj) | |
(hcommutes : ∀ r, (f 0) (galgebra.to_fun r) = (algebra_map R B) r) : | |
(⨁ i, A i) →ₐ[R] B := | |
{ to_fun := to_semiring (λ i, (f i).to_add_monoid_hom) hone @hmul, | |
commutes' := λ r, (direct_sum.to_semiring_of _ _ _ _ _).trans (hcommutes r), | |
.. to_semiring (λ i, (f i).to_add_monoid_hom) hone @hmul} | |
/-- Two `alg_hom`s out of a direct sum are equal if they agree on the generators. | |
See note [partially-applied ext lemmas]. -/ | |
@[ext] | |
lemma alg_hom_ext' ⦃f g : (⨁ i, A i) →ₐ[R] B⦄ | |
(h : ∀ i, f.to_linear_map.comp (lof _ _ A i) = g.to_linear_map.comp (lof _ _ A i)) : f = g := | |
alg_hom.to_linear_map_injective $ direct_sum.linear_map_ext _ h | |
lemma alg_hom_ext ⦃f g : (⨁ i, A i) →ₐ[R] B⦄ (h : ∀ i x, f (of A i x) = g (of A i x)) : f = g := | |
alg_hom_ext' R A $ λ i, linear_map.ext $ h i | |
end direct_sum | |
/-! ### Concrete instances -/ | |
/-- A direct sum of copies of a `algebra` inherits the algebra structure. | |
-/ | |
@[simps] | |
instance algebra.direct_sum_galgebra {R A : Type*} [decidable_eq ι] | |
[add_monoid ι] [comm_semiring R] [semiring A] [algebra R A] : | |
direct_sum.galgebra R (λ i : ι, A) := | |
{ to_fun := (algebra_map R A).to_add_monoid_hom, | |
map_one := (algebra_map R A).map_one, | |
map_mul := λ a b, sigma.ext (zero_add _).symm (heq_of_eq $ (algebra_map R A).map_mul a b), | |
commutes := λ r ⟨ai, a⟩, sigma.ext ((zero_add _).trans (add_zero _).symm) | |
(heq_of_eq $ algebra.commutes _ _), | |
smul_def := λ r ⟨ai, a⟩, sigma.ext (zero_add _).symm (heq_of_eq $ algebra.smul_def _ _) } | |
namespace submodule | |
variables {R A : Type*} [comm_semiring R] | |
end submodule | |