Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 5,784 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import algebra.algebra.basic
import algebra.direct_sum.module
import algebra.direct_sum.ring

/-! # Additively-graded algebra structures on `⨁ i, A i`

This file provides `R`-algebra structures on external direct sums of `R`-modules.

Recall that if `A i` are a family of `add_comm_monoid`s indexed by an `add_monoid`, then an instance
of `direct_sum.gmonoid A` is a multiplication `A i → A j → A (i + j)` giving `⨁ i, A i` the
structure of a semiring. In this file, we introduce the `direct_sum.galgebra R A` class for the case
where all `A i` are `R`-modules. This is the extra structure needed to promote `⨁ i, A i` to an
`R`-algebra.

## Main definitions

* `direct_sum.galgebra R A`, the typeclass.
* `direct_sum.galgebra.of_submodules`, for creating the above instance from a collection of
  submodules.
* `direct_sum.to_algebra` extends `direct_sum.to_semiring` to produce an `alg_hom`.

-/

universes uι uR uA uB

variables {ι : Type uι}

namespace direct_sum
open_locale direct_sum

variables (R : Type uR) (A : ι → Type uA) {B : Type uB} [decidable_eq ι]

variables [comm_semiring R] [Π i, add_comm_monoid (A i)] [Π i, module R (A i)]
variables [add_monoid ι] [gsemiring A]

section

/-- A graded version of `algebra`. An instance of `direct_sum.galgebra R A` endows `(⨁ i, A i)`
with an `R`-algebra structure. -/
class galgebra :=
(to_fun : R →+ A 0)
(map_one : to_fun 1 = graded_monoid.ghas_one.one)
(map_mul : ∀ r s,
  graded_monoid.mk _ (to_fun (r * s)) = ⟨_, graded_monoid.ghas_mul.mul (to_fun r) (to_fun s)⟩)
(commutes : ∀ r x, graded_monoid.mk _ (to_fun r) * x = x * ⟨_, to_fun r⟩)
(smul_def : ∀ r (x : graded_monoid A), graded_monoid.mk x.1 (r • x.2) = ⟨_, to_fun (r)⟩ * x)

end

variables [semiring B] [galgebra R A] [algebra R B]

instance : algebra R (⨁ i, A i) :=
{ to_fun := (direct_sum.of A 0).comp galgebra.to_fun,
  map_zero' := add_monoid_hom.map_zero _,
  map_add' := add_monoid_hom.map_add _,
  map_one' := (direct_sum.of A 0).congr_arg galgebra.map_one,
  map_mul' := λ a b, begin
    simp only [add_monoid_hom.comp_apply],
    rw of_mul_of,
    apply dfinsupp.single_eq_of_sigma_eq (galgebra.map_mul a b),
  end,
  commutes' := λ r x, begin
    change add_monoid_hom.mul (direct_sum.of _ _ _) x =
      add_monoid_hom.mul.flip (direct_sum.of _ _ _) x,
    apply add_monoid_hom.congr_fun _ x,
    ext i xi : 2,
    dsimp only [add_monoid_hom.comp_apply, add_monoid_hom.mul_apply, add_monoid_hom.flip_apply],
    rw [of_mul_of, of_mul_of],
    apply dfinsupp.single_eq_of_sigma_eq (galgebra.commutes r ⟨i, xi⟩),
  end,
  smul_def' := λ r x, begin
    change distrib_mul_action.to_add_monoid_hom _ r x = add_monoid_hom.mul (direct_sum.of _ _ _) x,
    apply add_monoid_hom.congr_fun _ x,
    ext i xi : 2,
    dsimp only [add_monoid_hom.comp_apply, distrib_mul_action.to_add_monoid_hom_apply,
      add_monoid_hom.mul_apply],
    rw [direct_sum.of_mul_of, ←of_smul],
    apply dfinsupp.single_eq_of_sigma_eq (galgebra.smul_def r ⟨i, xi⟩),
  end }

lemma algebra_map_apply (r : R) :
  algebra_map R (⨁ i, A i) r = direct_sum.of A 0 (galgebra.to_fun r) := rfl

lemma algebra_map_to_add_monoid_hom :
  ↑(algebra_map R (⨁ i, A i)) = (direct_sum.of A 0).comp (galgebra.to_fun : R →+ A 0) := rfl

/-- A family of `linear_map`s preserving `direct_sum.ghas_one.one` and `direct_sum.ghas_mul.mul`
describes an `alg_hom` on `⨁ i, A i`. This is a stronger version of `direct_sum.to_semiring`.

Of particular interest is the case when `A i` are bundled subojects, `f` is the family of
coercions such as `submodule.subtype (A i)`, and the `[gmonoid A]` structure originates from
`direct_sum.gmonoid.of_add_submodules`, in which case the proofs about `ghas_one` and `ghas_mul`
can be discharged by `rfl`. -/
@[simps]
def to_algebra
  (f : Π i, A i →ₗ[R] B) (hone : f _ (graded_monoid.ghas_one.one) = 1)
  (hmul : ∀ {i j} (ai : A i) (aj : A j), f _ (graded_monoid.ghas_mul.mul ai aj) = f _ ai * f _ aj)
  (hcommutes : ∀ r, (f 0) (galgebra.to_fun r) = (algebra_map R B) r) :
  (⨁ i, A i) →ₐ[R] B :=
{ to_fun := to_semiring (λ i, (f i).to_add_monoid_hom) hone @hmul,
  commutes' := λ r, (direct_sum.to_semiring_of _ _ _ _ _).trans (hcommutes r),
  .. to_semiring (λ i, (f i).to_add_monoid_hom) hone @hmul}

/-- Two `alg_hom`s out of a direct sum are equal if they agree on the generators.

See note [partially-applied ext lemmas]. -/
@[ext]
lemma alg_hom_ext' ⦃f g : (⨁ i, A i) →ₐ[R] B⦄
  (h : ∀ i, f.to_linear_map.comp (lof _ _ A i) = g.to_linear_map.comp (lof _ _ A i)) : f = g :=
alg_hom.to_linear_map_injective $ direct_sum.linear_map_ext _ h

lemma alg_hom_ext ⦃f g : (⨁ i, A i) →ₐ[R] B⦄ (h : ∀ i x, f (of A i x) = g (of A i x)) : f = g :=
alg_hom_ext' R A $ λ i, linear_map.ext $ h i

end direct_sum

/-! ### Concrete instances -/

/-- A direct sum of copies of a `algebra` inherits the algebra structure.

-/
@[simps]
instance algebra.direct_sum_galgebra {R A : Type*} [decidable_eq ι]
  [add_monoid ι] [comm_semiring R] [semiring A] [algebra R A] :
  direct_sum.galgebra R (λ i : ι, A) :=
{ to_fun := (algebra_map R A).to_add_monoid_hom,
  map_one := (algebra_map R A).map_one,
  map_mul := λ a b, sigma.ext (zero_add _).symm (heq_of_eq $ (algebra_map R A).map_mul a b),
  commutes := λ r ⟨ai, a⟩, sigma.ext ((zero_add _).trans (add_zero _).symm)
                                    (heq_of_eq $ algebra.commutes _ _),
  smul_def := λ r ⟨ai, a⟩, sigma.ext (zero_add _).symm (heq_of_eq $ algebra.smul_def _ _) }

namespace submodule

variables {R A : Type*} [comm_semiring R]

end submodule