Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 5,784 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
/-
Copyright (c) 2021 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import algebra.algebra.basic
import algebra.direct_sum.module
import algebra.direct_sum.ring
/-! # Additively-graded algebra structures on `⨁ i, A i`
This file provides `R`-algebra structures on external direct sums of `R`-modules.
Recall that if `A i` are a family of `add_comm_monoid`s indexed by an `add_monoid`, then an instance
of `direct_sum.gmonoid A` is a multiplication `A i → A j → A (i + j)` giving `⨁ i, A i` the
structure of a semiring. In this file, we introduce the `direct_sum.galgebra R A` class for the case
where all `A i` are `R`-modules. This is the extra structure needed to promote `⨁ i, A i` to an
`R`-algebra.
## Main definitions
* `direct_sum.galgebra R A`, the typeclass.
* `direct_sum.galgebra.of_submodules`, for creating the above instance from a collection of
submodules.
* `direct_sum.to_algebra` extends `direct_sum.to_semiring` to produce an `alg_hom`.
-/
universes uι uR uA uB
variables {ι : Type uι}
namespace direct_sum
open_locale direct_sum
variables (R : Type uR) (A : ι → Type uA) {B : Type uB} [decidable_eq ι]
variables [comm_semiring R] [Π i, add_comm_monoid (A i)] [Π i, module R (A i)]
variables [add_monoid ι] [gsemiring A]
section
/-- A graded version of `algebra`. An instance of `direct_sum.galgebra R A` endows `(⨁ i, A i)`
with an `R`-algebra structure. -/
class galgebra :=
(to_fun : R →+ A 0)
(map_one : to_fun 1 = graded_monoid.ghas_one.one)
(map_mul : ∀ r s,
graded_monoid.mk _ (to_fun (r * s)) = ⟨_, graded_monoid.ghas_mul.mul (to_fun r) (to_fun s)⟩)
(commutes : ∀ r x, graded_monoid.mk _ (to_fun r) * x = x * ⟨_, to_fun r⟩)
(smul_def : ∀ r (x : graded_monoid A), graded_monoid.mk x.1 (r • x.2) = ⟨_, to_fun (r)⟩ * x)
end
variables [semiring B] [galgebra R A] [algebra R B]
instance : algebra R (⨁ i, A i) :=
{ to_fun := (direct_sum.of A 0).comp galgebra.to_fun,
map_zero' := add_monoid_hom.map_zero _,
map_add' := add_monoid_hom.map_add _,
map_one' := (direct_sum.of A 0).congr_arg galgebra.map_one,
map_mul' := λ a b, begin
simp only [add_monoid_hom.comp_apply],
rw of_mul_of,
apply dfinsupp.single_eq_of_sigma_eq (galgebra.map_mul a b),
end,
commutes' := λ r x, begin
change add_monoid_hom.mul (direct_sum.of _ _ _) x =
add_monoid_hom.mul.flip (direct_sum.of _ _ _) x,
apply add_monoid_hom.congr_fun _ x,
ext i xi : 2,
dsimp only [add_monoid_hom.comp_apply, add_monoid_hom.mul_apply, add_monoid_hom.flip_apply],
rw [of_mul_of, of_mul_of],
apply dfinsupp.single_eq_of_sigma_eq (galgebra.commutes r ⟨i, xi⟩),
end,
smul_def' := λ r x, begin
change distrib_mul_action.to_add_monoid_hom _ r x = add_monoid_hom.mul (direct_sum.of _ _ _) x,
apply add_monoid_hom.congr_fun _ x,
ext i xi : 2,
dsimp only [add_monoid_hom.comp_apply, distrib_mul_action.to_add_monoid_hom_apply,
add_monoid_hom.mul_apply],
rw [direct_sum.of_mul_of, ←of_smul],
apply dfinsupp.single_eq_of_sigma_eq (galgebra.smul_def r ⟨i, xi⟩),
end }
lemma algebra_map_apply (r : R) :
algebra_map R (⨁ i, A i) r = direct_sum.of A 0 (galgebra.to_fun r) := rfl
lemma algebra_map_to_add_monoid_hom :
↑(algebra_map R (⨁ i, A i)) = (direct_sum.of A 0).comp (galgebra.to_fun : R →+ A 0) := rfl
/-- A family of `linear_map`s preserving `direct_sum.ghas_one.one` and `direct_sum.ghas_mul.mul`
describes an `alg_hom` on `⨁ i, A i`. This is a stronger version of `direct_sum.to_semiring`.
Of particular interest is the case when `A i` are bundled subojects, `f` is the family of
coercions such as `submodule.subtype (A i)`, and the `[gmonoid A]` structure originates from
`direct_sum.gmonoid.of_add_submodules`, in which case the proofs about `ghas_one` and `ghas_mul`
can be discharged by `rfl`. -/
@[simps]
def to_algebra
(f : Π i, A i →ₗ[R] B) (hone : f _ (graded_monoid.ghas_one.one) = 1)
(hmul : ∀ {i j} (ai : A i) (aj : A j), f _ (graded_monoid.ghas_mul.mul ai aj) = f _ ai * f _ aj)
(hcommutes : ∀ r, (f 0) (galgebra.to_fun r) = (algebra_map R B) r) :
(⨁ i, A i) →ₐ[R] B :=
{ to_fun := to_semiring (λ i, (f i).to_add_monoid_hom) hone @hmul,
commutes' := λ r, (direct_sum.to_semiring_of _ _ _ _ _).trans (hcommutes r),
.. to_semiring (λ i, (f i).to_add_monoid_hom) hone @hmul}
/-- Two `alg_hom`s out of a direct sum are equal if they agree on the generators.
See note [partially-applied ext lemmas]. -/
@[ext]
lemma alg_hom_ext' ⦃f g : (⨁ i, A i) →ₐ[R] B⦄
(h : ∀ i, f.to_linear_map.comp (lof _ _ A i) = g.to_linear_map.comp (lof _ _ A i)) : f = g :=
alg_hom.to_linear_map_injective $ direct_sum.linear_map_ext _ h
lemma alg_hom_ext ⦃f g : (⨁ i, A i) →ₐ[R] B⦄ (h : ∀ i x, f (of A i x) = g (of A i x)) : f = g :=
alg_hom_ext' R A $ λ i, linear_map.ext $ h i
end direct_sum
/-! ### Concrete instances -/
/-- A direct sum of copies of a `algebra` inherits the algebra structure.
-/
@[simps]
instance algebra.direct_sum_galgebra {R A : Type*} [decidable_eq ι]
[add_monoid ι] [comm_semiring R] [semiring A] [algebra R A] :
direct_sum.galgebra R (λ i : ι, A) :=
{ to_fun := (algebra_map R A).to_add_monoid_hom,
map_one := (algebra_map R A).map_one,
map_mul := λ a b, sigma.ext (zero_add _).symm (heq_of_eq $ (algebra_map R A).map_mul a b),
commutes := λ r ⟨ai, a⟩, sigma.ext ((zero_add _).trans (add_zero _).symm)
(heq_of_eq $ algebra.commutes _ _),
smul_def := λ r ⟨ai, a⟩, sigma.ext (zero_add _).symm (heq_of_eq $ algebra.smul_def _ _) }
namespace submodule
variables {R A : Type*} [comm_semiring R]
end submodule
|