/- Copyright (c) 2021 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import algebra.algebra.basic import algebra.direct_sum.module import algebra.direct_sum.ring /-! # Additively-graded algebra structures on `⨁ i, A i` This file provides `R`-algebra structures on external direct sums of `R`-modules. Recall that if `A i` are a family of `add_comm_monoid`s indexed by an `add_monoid`, then an instance of `direct_sum.gmonoid A` is a multiplication `A i → A j → A (i + j)` giving `⨁ i, A i` the structure of a semiring. In this file, we introduce the `direct_sum.galgebra R A` class for the case where all `A i` are `R`-modules. This is the extra structure needed to promote `⨁ i, A i` to an `R`-algebra. ## Main definitions * `direct_sum.galgebra R A`, the typeclass. * `direct_sum.galgebra.of_submodules`, for creating the above instance from a collection of submodules. * `direct_sum.to_algebra` extends `direct_sum.to_semiring` to produce an `alg_hom`. -/ universes uι uR uA uB variables {ι : Type uι} namespace direct_sum open_locale direct_sum variables (R : Type uR) (A : ι → Type uA) {B : Type uB} [decidable_eq ι] variables [comm_semiring R] [Π i, add_comm_monoid (A i)] [Π i, module R (A i)] variables [add_monoid ι] [gsemiring A] section /-- A graded version of `algebra`. An instance of `direct_sum.galgebra R A` endows `(⨁ i, A i)` with an `R`-algebra structure. -/ class galgebra := (to_fun : R →+ A 0) (map_one : to_fun 1 = graded_monoid.ghas_one.one) (map_mul : ∀ r s, graded_monoid.mk _ (to_fun (r * s)) = ⟨_, graded_monoid.ghas_mul.mul (to_fun r) (to_fun s)⟩) (commutes : ∀ r x, graded_monoid.mk _ (to_fun r) * x = x * ⟨_, to_fun r⟩) (smul_def : ∀ r (x : graded_monoid A), graded_monoid.mk x.1 (r • x.2) = ⟨_, to_fun (r)⟩ * x) end variables [semiring B] [galgebra R A] [algebra R B] instance : algebra R (⨁ i, A i) := { to_fun := (direct_sum.of A 0).comp galgebra.to_fun, map_zero' := add_monoid_hom.map_zero _, map_add' := add_monoid_hom.map_add _, map_one' := (direct_sum.of A 0).congr_arg galgebra.map_one, map_mul' := λ a b, begin simp only [add_monoid_hom.comp_apply], rw of_mul_of, apply dfinsupp.single_eq_of_sigma_eq (galgebra.map_mul a b), end, commutes' := λ r x, begin change add_monoid_hom.mul (direct_sum.of _ _ _) x = add_monoid_hom.mul.flip (direct_sum.of _ _ _) x, apply add_monoid_hom.congr_fun _ x, ext i xi : 2, dsimp only [add_monoid_hom.comp_apply, add_monoid_hom.mul_apply, add_monoid_hom.flip_apply], rw [of_mul_of, of_mul_of], apply dfinsupp.single_eq_of_sigma_eq (galgebra.commutes r ⟨i, xi⟩), end, smul_def' := λ r x, begin change distrib_mul_action.to_add_monoid_hom _ r x = add_monoid_hom.mul (direct_sum.of _ _ _) x, apply add_monoid_hom.congr_fun _ x, ext i xi : 2, dsimp only [add_monoid_hom.comp_apply, distrib_mul_action.to_add_monoid_hom_apply, add_monoid_hom.mul_apply], rw [direct_sum.of_mul_of, ←of_smul], apply dfinsupp.single_eq_of_sigma_eq (galgebra.smul_def r ⟨i, xi⟩), end } lemma algebra_map_apply (r : R) : algebra_map R (⨁ i, A i) r = direct_sum.of A 0 (galgebra.to_fun r) := rfl lemma algebra_map_to_add_monoid_hom : ↑(algebra_map R (⨁ i, A i)) = (direct_sum.of A 0).comp (galgebra.to_fun : R →+ A 0) := rfl /-- A family of `linear_map`s preserving `direct_sum.ghas_one.one` and `direct_sum.ghas_mul.mul` describes an `alg_hom` on `⨁ i, A i`. This is a stronger version of `direct_sum.to_semiring`. Of particular interest is the case when `A i` are bundled subojects, `f` is the family of coercions such as `submodule.subtype (A i)`, and the `[gmonoid A]` structure originates from `direct_sum.gmonoid.of_add_submodules`, in which case the proofs about `ghas_one` and `ghas_mul` can be discharged by `rfl`. -/ @[simps] def to_algebra (f : Π i, A i →ₗ[R] B) (hone : f _ (graded_monoid.ghas_one.one) = 1) (hmul : ∀ {i j} (ai : A i) (aj : A j), f _ (graded_monoid.ghas_mul.mul ai aj) = f _ ai * f _ aj) (hcommutes : ∀ r, (f 0) (galgebra.to_fun r) = (algebra_map R B) r) : (⨁ i, A i) →ₐ[R] B := { to_fun := to_semiring (λ i, (f i).to_add_monoid_hom) hone @hmul, commutes' := λ r, (direct_sum.to_semiring_of _ _ _ _ _).trans (hcommutes r), .. to_semiring (λ i, (f i).to_add_monoid_hom) hone @hmul} /-- Two `alg_hom`s out of a direct sum are equal if they agree on the generators. See note [partially-applied ext lemmas]. -/ @[ext] lemma alg_hom_ext' ⦃f g : (⨁ i, A i) →ₐ[R] B⦄ (h : ∀ i, f.to_linear_map.comp (lof _ _ A i) = g.to_linear_map.comp (lof _ _ A i)) : f = g := alg_hom.to_linear_map_injective $ direct_sum.linear_map_ext _ h lemma alg_hom_ext ⦃f g : (⨁ i, A i) →ₐ[R] B⦄ (h : ∀ i x, f (of A i x) = g (of A i x)) : f = g := alg_hom_ext' R A $ λ i, linear_map.ext $ h i end direct_sum /-! ### Concrete instances -/ /-- A direct sum of copies of a `algebra` inherits the algebra structure. -/ @[simps] instance algebra.direct_sum_galgebra {R A : Type*} [decidable_eq ι] [add_monoid ι] [comm_semiring R] [semiring A] [algebra R A] : direct_sum.galgebra R (λ i : ι, A) := { to_fun := (algebra_map R A).to_add_monoid_hom, map_one := (algebra_map R A).map_one, map_mul := λ a b, sigma.ext (zero_add _).symm (heq_of_eq $ (algebra_map R A).map_mul a b), commutes := λ r ⟨ai, a⟩, sigma.ext ((zero_add _).trans (add_zero _).symm) (heq_of_eq $ algebra.commutes _ _), smul_def := λ r ⟨ai, a⟩, sigma.ext (zero_add _).symm (heq_of_eq $ algebra.smul_def _ _) } namespace submodule variables {R A : Type*} [comm_semiring R] end submodule