Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
import analysis.inner_product_space.basic | |
import data.matrix.notation | |
import linear_algebra.bilinear_form | |
import linear_algebra.matrix | |
import tactic | |
universes u v | |
noncomputable theory | |
namespace lftcm | |
section exercise1 | |
namespace module | |
open _root_.module | |
variables (R M : Type*) [comm_semiring R] [add_comm_monoid M] [module R M] | |
/- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Exercise 1: defining modules and submodules | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/ | |
/- The endomorphisms of an `R`-module `M` are the `R`-linear maps from `M` to `M` are defined as: | |
`def End := M ββ[R] M` | |
-/ | |
/-- The following line tells Lean we can apply `f : End R M` as if it was a function. -/ | |
instance : has_coe_to_fun (End R M) (Ξ» _, M β M) := β¨linear_map.to_funβ© | |
/-- Endomorphisms inherit the pointwise addition operator from linear maps. -/ | |
instance : add_comm_monoid (End R M) := linear_map.add_comm_monoid | |
/- Define the identity endomorphism `id`. -/ | |
def End.id : End R M := | |
sorry | |
/- | |
Show that the endomorphisms of `M` form a module over `R`. | |
Hint: we can re-use the scalar multiplication of linear maps using the `refine` tactic: | |
``` | |
refine { smul := linear_map.has_scalar.smul, .. }, | |
``` | |
This will fill in the `smul` field of the `module` structure with the given value. | |
The remaining fields become goals that you can fill in yourself. | |
Hint: Prove the equalities using the module structure on `M`. | |
If `f` and `g` are linear maps, the `ext` tactic turns the goal `f = g` into `β x, f x = g x`. | |
-/ | |
instance : module R (End R M) := | |
begin | |
sorry | |
end | |
variables {R M} | |
/- Bonus exercise: define the submodule of `End R M` consisting of the scalar multiplications. | |
That is, `f β homothety R M` iff `f` is of the form `Ξ» (x : M), s β’ x` for some `s : R`. | |
Hints: | |
* You could specify the carrier subset and show it is closed under the operations. | |
* You could instead use library functions: try `submodule.map` or `linear_map.range`. | |
-/ | |
def homothety : submodule R (End R M) := | |
sorry | |
end module | |
end exercise1 | |
section exercise2 | |
namespace matrix | |
open _root_.matrix | |
variables {m n R M : Type} [fintype m] [fintype n] [comm_ring R] [add_comm_group M] [module R M] | |
/- The following line allows us to write `β¬` (`\cdot`) and `α΅` (`\^T`) for | |
matrix multiplication and transpose. -/ | |
open_locale matrix | |
/- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Exercise 2: working with matrices | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/ | |
/-- Prove the following four lemmas, that used to be missing from `mathlib`. | |
Hints: | |
* Look up the definition of `vec_mul` and `mul_vec`. | |
* Search the library for useful lemmas about the function used in that definition. | |
-/ | |
@[simp] lemma add_vec_mul (v w : m β R) (M : matrix m n R) : | |
vec_mul (v + w) M = vec_mul v M + vec_mul w M := | |
sorry | |
@[simp] lemma smul_vec_mul (x : R) (v : m β R) (M : matrix m n R) : | |
vec_mul (x β’ v) M = x β’ vec_mul v M := | |
sorry | |
@[simp] lemma mul_vec_add (M : matrix m n R) (v w : n β R) : | |
mul_vec M (v + w) = mul_vec M v + mul_vec M w := | |
sorry | |
@[simp] lemma mul_vec_smul (M : matrix m n R) (x : R) (v : n β R) : | |
mul_vec M (x β’ v) = x β’ mul_vec M v := | |
sorry | |
/- Define the canonical map from bilinear forms to matrices. | |
We assume `R` has a basis `v` indexed by `ΞΉ`. | |
Hint: Follow your nose, the types will guide you. | |
A matrix `A : matrix ΞΉ ΞΉ R` is not much more than a function `ΞΉ β ΞΉ β R`, | |
and a bilinear form is not much more than a function `M β M β R`. -/ | |
def bilin_form_to_matrix {ΞΉ : Type*} [fintype ΞΉ] (v : ΞΉ β M) | |
(B : bilin_form R M) : matrix ΞΉ ΞΉ R := | |
sorry | |
/-- Define the canonical map from matrices to bilinear forms. | |
For a matrix `A`, `to_bilin_form A` should take two vectors `v`, `w` | |
and multiply `A` by `v` on the left and `v` on the right. | |
-/ | |
def matrix_to_bilin_form (A : matrix n n R) : bilin_form R (n β R) := | |
sorry | |
/- Can you define a bilinear form directly that is equivalent to this matrix `A`? | |
Don't use `bilin_form_to_matrix`, give the map explicitly in the form `Ξ» v w, _`. | |
Check your definition by putting your cursor on the lines starting with `#eval`. | |
Hints: | |
* Use the `simp` tactic to simplify `(x + y) i` to `x i + y i` and `(s β’ x) i` to `s * x i`. | |
* To deal with equalities containing many `+` and `*` symbols, use the `ring` tactic. | |
-/ | |
def A : matrix (fin 2) (fin 2) R := ![![1, 0], ![-2, 1]] | |
def your_bilin_form : bilin_form R (fin 2 β R) := | |
sorry | |
/- Check your definition here, by uncommenting the #eval lines: -/ | |
def v : fin 2 β β€ := ![1, 3] | |
def w : fin 2 β β€ := ![2, 4] | |
-- #eval matrix_to_bilin_form A v w | |
-- #eval your_bilin_form v w | |
end matrix | |
end exercise2 | |
section exercise3 | |
namespace pi | |
variables {n : Type*} [fintype n] | |
open _root_.matrix | |
/- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Exercise 3: inner product spaces | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/ | |
/- Use the `dot_product` function to put an inner product on `n β R`. | |
Hints: | |
* Try the lemmas `finset.sum_nonneg`, `finset.sum_eq_zero_iff_of_nonneg`, | |
`mul_self_nonneg` and `mul_self_eq_zero`. | |
-/ | |
noncomputable instance : inner_product_space β (n β β) := | |
inner_product_space.of_core | |
sorry | |
end pi | |
end exercise3 | |
section exercise4 | |
namespace pi | |
variables (R n : Type) [comm_ring R] [fintype n] [decidable_eq n] | |
/- Enable sum and product notation with `β` and `β`. -/ | |
open_locale big_operators | |
/- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | |
Exercise 4: basis and dimension | |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/ | |
/-- The `i`'th vector in the standard basis of `n β R` is `1` at the `i`th entry | |
and `0` otherwise. -/ | |
def std_basis_fun (i : n) : (n β R) := Ξ» j, if i = j then 1 else 0 | |
/- Bonus exercise: Show the standard basis of `n β R` is a basis. | |
This is a difficult exercise, so feel free to skip some parts. | |
Hints for showing linear independence: | |
* Try using the lemma `linear_independent_iff` or `linear_independent_iff'`. | |
* To derive `f x = 0` from `h : f = 0`, use a tactic `have := congr_fun h x`. | |
* Take a term out of a sum by combining `finset.insert_erase` and `finset.sum_insert`. | |
Hints for showing it spans the whole module: | |
* To show equality of set-like terms, apply the `ext` tactic. | |
* First show `x = β i, x i β’ std_basis R n i`, then rewrite with this equality. | |
-/ | |
lemma linear_independent_std_basis : linear_independent R (std_basis_fun R n) := | |
sorry | |
lemma range_std_basis : submodule.span R (set.range (std_basis_fun R n)) = β€ := | |
sorry | |
/- Bases in mathlib are bundled, i.e., the data of a basis is given as an isomorphism | |
between the vector space and the space of finitely supported functions on the basis. This turns | |
out to be a convenient way to work out most arguments using bases. Of course, one can construct | |
such a bundled basis from the data that a family of vectors is linearly independent and spans | |
the whole space, as follows. -/ | |
def std_basis : basis n R (n β R) := | |
basis.mk (linear_independent_std_basis R n) (range_std_basis R n) | |
variables {K : Type} [field K] | |
/- | |
Instead of the dimension of a vector space, `mathlib` chooses to use the more general | |
notion of rank of a module. | |
If you want the rank/dimension as a potentially infinite cardinal number, you | |
can use `module.rank`. If you want the rank/dimension as a finite natural | |
number, you can use `finite_dimensional.finrank`. (If `module.rank` is infinite, | |
`finrank` is defined to be equal to `0`.) | |
-/ | |
/- | |
Conclude `n β K` is a finite dimensional vector space for each field `K` | |
and the dimension of `n β K` over `K` is the cardinality of `n`. | |
You don't need to complete `std_basis_is_basis` to prove these two lemmas. | |
Hint: search the library for appropriate lemmas. | |
-/ | |
lemma finite_dimensional : finite_dimensional K (n β K) := | |
sorry | |
lemma finrank_eq : finite_dimensional.finrank K (n β K) = fintype.card n := | |
sorry | |
end pi | |
end exercise4 | |
end lftcm | |