Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,158 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import analysis.inner_product_space.basic
import data.matrix.notation
import linear_algebra.bilinear_form
import linear_algebra.matrix
import tactic

universes u v
noncomputable theory

namespace lftcm

section exercise1

namespace module

open _root_.module

variables (R M : Type*) [comm_semiring R] [add_comm_monoid M] [module R M]

/- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  Exercise 1: defining modules and submodules
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/

/- The endomorphisms of an `R`-module `M` are the `R`-linear maps from `M` to `M` are defined as:
`def End := M →ₗ[R] M`
-/

/-- The following line tells Lean we can apply `f : End R M` as if it was a function. -/
instance : has_coe_to_fun (End R M) (λ _, M → M) := ⟨linear_map.to_fun⟩

/-- Endomorphisms inherit the pointwise addition operator from linear maps. -/
instance : add_comm_monoid (End R M) := linear_map.add_comm_monoid

/- Define the identity endomorphism `id`. -/
def End.id : End R M :=
sorry

/-
Show that the endomorphisms of `M` form a module over `R`.

Hint: we can re-use the scalar multiplication of linear maps using the `refine` tactic:
```
refine { smul := linear_map.has_scalar.smul, .. },
```
This will fill in the `smul` field of the `module` structure with the given value.
The remaining fields become goals that you can fill in yourself.

Hint: Prove the equalities using the module structure on `M`.
If `f` and `g` are linear maps, the `ext` tactic turns the goal `f = g` into `∀ x, f x = g x`.
-/
instance : module R (End R M) :=
begin
  sorry
end

variables {R M}

/- Bonus exercise: define the submodule of `End R M` consisting of the scalar multiplications.
That is, `f ∈ homothety R M` iff `f` is of the form `λ (x : M), s • x` for some `s : R`.

Hints:
  * You could specify the carrier subset and show it is closed under the operations.
  * You could instead use library functions: try `submodule.map` or `linear_map.range`.
-/
def homothety : submodule R (End R M) :=
sorry

end module

end exercise1


section exercise2

namespace matrix
open _root_.matrix


variables {m n R M : Type} [fintype m] [fintype n] [comm_ring R] [add_comm_group M] [module R M]

/- The following line allows us to write `⬝` (`\cdot`) and `ᵀ` (`\^T`) for
matrix multiplication and transpose. -/
open_locale matrix

/- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  Exercise 2: working with matrices
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/

/-- Prove the following four lemmas, that used to be missing from `mathlib`.

Hints:
  * Look up the definition of `vec_mul` and `mul_vec`.
  * Search the library for useful lemmas about the function used in that definition.
-/
@[simp] lemma add_vec_mul (v w : m → R) (M : matrix m n R) :
  vec_mul (v + w) M = vec_mul v M + vec_mul w M :=
sorry

@[simp] lemma smul_vec_mul (x : R) (v : m → R) (M : matrix m n R) :
vec_mul (x • v) M = x • vec_mul v M :=
sorry

@[simp] lemma mul_vec_add (M : matrix m n R) (v w : n → R) :
  mul_vec M (v + w) = mul_vec M v + mul_vec M w :=
sorry

@[simp] lemma mul_vec_smul (M : matrix m n R) (x : R) (v : n → R) :
  mul_vec M (x • v) = x • mul_vec M v :=
sorry

/- Define the canonical map from bilinear forms to matrices.
We assume `R` has a basis `v` indexed by `ι`.

Hint: Follow your nose, the types will guide you.
A matrix `A : matrix ι ι R` is not much more than a function `ι → ι → R`,
and a bilinear form is not much more than a function `M → M → R`. -/
def bilin_form_to_matrix {ι : Type*} [fintype ι] (v : ι → M)
  (B : bilin_form R M) : matrix ι ι R :=
sorry

/-- Define the canonical map from matrices to bilinear forms.

For a matrix `A`, `to_bilin_form A` should take two vectors `v`, `w`
and multiply `A` by `v` on the left and `v` on the right.
-/
def matrix_to_bilin_form (A : matrix n n R) : bilin_form R (n → R) :=
sorry

/- Can you define a bilinear form directly that is equivalent to this matrix `A`?
Don't use `bilin_form_to_matrix`, give the map explicitly in the form `λ v w, _`.
Check your definition by putting your cursor on the lines starting with `#eval`.

Hints:
  * Use the `simp` tactic to simplify `(x + y) i` to `x i + y i` and `(s • x) i` to `s * x i`.
  * To deal with equalities containing many `+` and `*` symbols, use the `ring` tactic.
-/
def A : matrix (fin 2) (fin 2) R := ![![1, 0], ![-2, 1]]
def your_bilin_form : bilin_form R (fin 2 → R) :=
sorry

/- Check your definition here, by uncommenting the #eval lines: -/
def v : fin 2 → ℤ := ![1, 3]
def w : fin 2 → ℤ := ![2, 4]
-- #eval matrix_to_bilin_form A v w
-- #eval your_bilin_form v w

end matrix

end exercise2

section exercise3

namespace pi

variables {n : Type*} [fintype n]

open _root_.matrix

/- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Exercise 3: inner product spaces
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/

/- Use the `dot_product` function to put an inner product on `n → R`.

Hints:
* Try the lemmas `finset.sum_nonneg`, `finset.sum_eq_zero_iff_of_nonneg`,
  `mul_self_nonneg` and `mul_self_eq_zero`.
-/
noncomputable instance : inner_product_space ℝ (n → ℝ) :=
inner_product_space.of_core
sorry

end pi

end exercise3

section exercise4

namespace pi

variables (R n : Type) [comm_ring R] [fintype n] [decidable_eq n]

/- Enable sum and product notation with `∑` and `∏`. -/
open_locale big_operators

/- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
  Exercise 4: basis and dimension
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/

/-- The `i`'th vector in the standard basis of `n → R` is `1` at the `i`th entry
and `0` otherwise. -/
def std_basis_fun (i : n) : (n → R) := λ j, if i = j then 1 else 0

/- Bonus exercise: Show the standard basis of `n → R` is a basis.
This is a difficult exercise, so feel free to skip some parts.

Hints for showing linear independence:
  * Try using the lemma `linear_independent_iff` or `linear_independent_iff'`.
  * To derive `f x = 0` from `h : f = 0`, use a tactic `have := congr_fun h x`.
  * Take a term out of a sum by combining `finset.insert_erase` and `finset.sum_insert`.

Hints for showing it spans the whole module:
  * To show equality of set-like terms, apply the `ext` tactic.
  * First show `x = ∑ i, x i • std_basis R n i`, then rewrite with this equality.
-/
lemma linear_independent_std_basis : linear_independent R (std_basis_fun R n) :=
sorry

lemma range_std_basis : submodule.span R (set.range (std_basis_fun R n)) = ⊤ :=
sorry

/- Bases in mathlib are bundled, i.e., the data of a basis is given as an isomorphism
between the vector space and the space of finitely supported functions on the basis. This turns
out to be a convenient way to work out most arguments using bases. Of course, one can construct
such a bundled basis from the data that a family of vectors is linearly independent and spans
the whole space, as follows. -/

def std_basis : basis n R (n → R) :=
basis.mk (linear_independent_std_basis R n) (range_std_basis R n)

variables {K : Type} [field K]

/-
Instead of the dimension of a vector space, `mathlib` chooses to use the more general
notion of rank of a module.

If you want the rank/dimension as a potentially infinite cardinal number, you
can use `module.rank`. If you want the rank/dimension as a finite natural
number, you can use `finite_dimensional.finrank`. (If `module.rank` is infinite,
`finrank` is defined to be equal to `0`.)
-/

/-
Conclude `n → K` is a finite dimensional vector space for each field `K`
and the dimension of `n → K` over `K` is the cardinality of `n`.
You don't need to complete `std_basis_is_basis` to prove these two lemmas.

Hint: search the library for appropriate lemmas.
-/
lemma finite_dimensional : finite_dimensional K (n → K) :=
sorry

lemma finrank_eq : finite_dimensional.finrank K (n → K) = fintype.card n :=
sorry

end pi

end exercise4

end lftcm