import analysis.inner_product_space.basic import data.matrix.notation import linear_algebra.bilinear_form import linear_algebra.matrix import tactic universes u v noncomputable theory namespace lftcm section exercise1 namespace module open _root_.module variables (R M : Type*) [comm_semiring R] [add_comm_monoid M] [module R M] /- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Exercise 1: defining modules and submodules - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/ /- The endomorphisms of an `R`-module `M` are the `R`-linear maps from `M` to `M` are defined as: `def End := M →ₗ[R] M` -/ /-- The following line tells Lean we can apply `f : End R M` as if it was a function. -/ instance : has_coe_to_fun (End R M) (λ _, M → M) := ⟨linear_map.to_fun⟩ /-- Endomorphisms inherit the pointwise addition operator from linear maps. -/ instance : add_comm_monoid (End R M) := linear_map.add_comm_monoid /- Define the identity endomorphism `id`. -/ def End.id : End R M := sorry /- Show that the endomorphisms of `M` form a module over `R`. Hint: we can re-use the scalar multiplication of linear maps using the `refine` tactic: ``` refine { smul := linear_map.has_scalar.smul, .. }, ``` This will fill in the `smul` field of the `module` structure with the given value. The remaining fields become goals that you can fill in yourself. Hint: Prove the equalities using the module structure on `M`. If `f` and `g` are linear maps, the `ext` tactic turns the goal `f = g` into `∀ x, f x = g x`. -/ instance : module R (End R M) := begin sorry end variables {R M} /- Bonus exercise: define the submodule of `End R M` consisting of the scalar multiplications. That is, `f ∈ homothety R M` iff `f` is of the form `λ (x : M), s • x` for some `s : R`. Hints: * You could specify the carrier subset and show it is closed under the operations. * You could instead use library functions: try `submodule.map` or `linear_map.range`. -/ def homothety : submodule R (End R M) := sorry end module end exercise1 section exercise2 namespace matrix open _root_.matrix variables {m n R M : Type} [fintype m] [fintype n] [comm_ring R] [add_comm_group M] [module R M] /- The following line allows us to write `⬝` (`\cdot`) and `ᵀ` (`\^T`) for matrix multiplication and transpose. -/ open_locale matrix /- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Exercise 2: working with matrices - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/ /-- Prove the following four lemmas, that used to be missing from `mathlib`. Hints: * Look up the definition of `vec_mul` and `mul_vec`. * Search the library for useful lemmas about the function used in that definition. -/ @[simp] lemma add_vec_mul (v w : m → R) (M : matrix m n R) : vec_mul (v + w) M = vec_mul v M + vec_mul w M := sorry @[simp] lemma smul_vec_mul (x : R) (v : m → R) (M : matrix m n R) : vec_mul (x • v) M = x • vec_mul v M := sorry @[simp] lemma mul_vec_add (M : matrix m n R) (v w : n → R) : mul_vec M (v + w) = mul_vec M v + mul_vec M w := sorry @[simp] lemma mul_vec_smul (M : matrix m n R) (x : R) (v : n → R) : mul_vec M (x • v) = x • mul_vec M v := sorry /- Define the canonical map from bilinear forms to matrices. We assume `R` has a basis `v` indexed by `ι`. Hint: Follow your nose, the types will guide you. A matrix `A : matrix ι ι R` is not much more than a function `ι → ι → R`, and a bilinear form is not much more than a function `M → M → R`. -/ def bilin_form_to_matrix {ι : Type*} [fintype ι] (v : ι → M) (B : bilin_form R M) : matrix ι ι R := sorry /-- Define the canonical map from matrices to bilinear forms. For a matrix `A`, `to_bilin_form A` should take two vectors `v`, `w` and multiply `A` by `v` on the left and `v` on the right. -/ def matrix_to_bilin_form (A : matrix n n R) : bilin_form R (n → R) := sorry /- Can you define a bilinear form directly that is equivalent to this matrix `A`? Don't use `bilin_form_to_matrix`, give the map explicitly in the form `λ v w, _`. Check your definition by putting your cursor on the lines starting with `#eval`. Hints: * Use the `simp` tactic to simplify `(x + y) i` to `x i + y i` and `(s • x) i` to `s * x i`. * To deal with equalities containing many `+` and `*` symbols, use the `ring` tactic. -/ def A : matrix (fin 2) (fin 2) R := ![![1, 0], ![-2, 1]] def your_bilin_form : bilin_form R (fin 2 → R) := sorry /- Check your definition here, by uncommenting the #eval lines: -/ def v : fin 2 → ℤ := ![1, 3] def w : fin 2 → ℤ := ![2, 4] -- #eval matrix_to_bilin_form A v w -- #eval your_bilin_form v w end matrix end exercise2 section exercise3 namespace pi variables {n : Type*} [fintype n] open _root_.matrix /- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Exercise 3: inner product spaces - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/ /- Use the `dot_product` function to put an inner product on `n → R`. Hints: * Try the lemmas `finset.sum_nonneg`, `finset.sum_eq_zero_iff_of_nonneg`, `mul_self_nonneg` and `mul_self_eq_zero`. -/ noncomputable instance : inner_product_space ℝ (n → ℝ) := inner_product_space.of_core sorry end pi end exercise3 section exercise4 namespace pi variables (R n : Type) [comm_ring R] [fintype n] [decidable_eq n] /- Enable sum and product notation with `∑` and `∏`. -/ open_locale big_operators /- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Exercise 4: basis and dimension - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -/ /-- The `i`'th vector in the standard basis of `n → R` is `1` at the `i`th entry and `0` otherwise. -/ def std_basis_fun (i : n) : (n → R) := λ j, if i = j then 1 else 0 /- Bonus exercise: Show the standard basis of `n → R` is a basis. This is a difficult exercise, so feel free to skip some parts. Hints for showing linear independence: * Try using the lemma `linear_independent_iff` or `linear_independent_iff'`. * To derive `f x = 0` from `h : f = 0`, use a tactic `have := congr_fun h x`. * Take a term out of a sum by combining `finset.insert_erase` and `finset.sum_insert`. Hints for showing it spans the whole module: * To show equality of set-like terms, apply the `ext` tactic. * First show `x = ∑ i, x i • std_basis R n i`, then rewrite with this equality. -/ lemma linear_independent_std_basis : linear_independent R (std_basis_fun R n) := sorry lemma range_std_basis : submodule.span R (set.range (std_basis_fun R n)) = ⊤ := sorry /- Bases in mathlib are bundled, i.e., the data of a basis is given as an isomorphism between the vector space and the space of finitely supported functions on the basis. This turns out to be a convenient way to work out most arguments using bases. Of course, one can construct such a bundled basis from the data that a family of vectors is linearly independent and spans the whole space, as follows. -/ def std_basis : basis n R (n → R) := basis.mk (linear_independent_std_basis R n) (range_std_basis R n) variables {K : Type} [field K] /- Instead of the dimension of a vector space, `mathlib` chooses to use the more general notion of rank of a module. If you want the rank/dimension as a potentially infinite cardinal number, you can use `module.rank`. If you want the rank/dimension as a finite natural number, you can use `finite_dimensional.finrank`. (If `module.rank` is infinite, `finrank` is defined to be equal to `0`.) -/ /- Conclude `n → K` is a finite dimensional vector space for each field `K` and the dimension of `n → K` over `K` is the cardinality of `n`. You don't need to complete `std_basis_is_basis` to prove these two lemmas. Hint: search the library for appropriate lemmas. -/ lemma finite_dimensional : finite_dimensional K (n → K) := sorry lemma finrank_eq : finite_dimensional.finrank K (n → K) = fintype.card n := sorry end pi end exercise4 end lftcm