Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Andrew Yang. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Andrew Yang | |
-/ | |
import algebraic_geometry.Gamma_Spec_adjunction | |
import algebraic_geometry.open_immersion | |
import category_theory.limits.opposites | |
import ring_theory.localization.inv_submonoid | |
/-! | |
We define the category of `AffineScheme`s as the essential image of `Spec`. | |
We also define predicates about affine schemes and affine open sets. | |
* `algebraic_geometry.AffineScheme`: The category of affine schemes. | |
* `algebraic_geometry.is_affine`: A scheme is affine if the canonical map `X ⟶ Spec Γ(X)` is an | |
isomorphism. | |
* `algebraic_geometry.Scheme.iso_Spec`: The canonical isomorphism `X ≅ Spec Γ(X)` for an affine | |
scheme. | |
* `algebraic_geometry.AffineScheme.equiv_CommRing`: The equivalence of categories | |
`AffineScheme ≌ CommRingᵒᵖ` given by `AffineScheme.Spec : CommRingᵒᵖ ⥤ AffineScheme` and | |
`AffineScheme.Γ : AffineSchemeᵒᵖ ⥤ CommRing`. | |
* `algebraic_geometry.is_affine_open`: An open subset of a scheme is affine if the open subscheme is | |
affine. | |
* `algebraic_geometry.is_affine_open.from_Spec`: The immersion `Spec 𝒪ₓ(U) ⟶ X` for an affine `U`. | |
-/ | |
noncomputable theory | |
open category_theory category_theory.limits opposite topological_space | |
universe u | |
namespace algebraic_geometry | |
open Spec (structure_sheaf) | |
/-- The category of affine schemes -/ | |
@[derive category, nolint has_nonempty_instance] | |
def AffineScheme := Scheme.Spec.ess_image_subcategory | |
/-- A Scheme is affine if the canonical map `X ⟶ Spec Γ(X)` is an isomorphism. -/ | |
class is_affine (X : Scheme) : Prop := | |
(affine : is_iso (Γ_Spec.adjunction.unit.app X)) | |
attribute [instance] is_affine.affine | |
/-- The canonical isomorphism `X ≅ Spec Γ(X)` for an affine scheme. -/ | |
def Scheme.iso_Spec (X : Scheme) [is_affine X] : | |
X ≅ Scheme.Spec.obj (op $ Scheme.Γ.obj $ op X) := | |
as_iso (Γ_Spec.adjunction.unit.app X) | |
/-- Construct an affine scheme from a scheme and the information that it is affine. -/ | |
@[simps] | |
def AffineScheme.mk (X : Scheme) (h : is_affine X) : AffineScheme := | |
⟨X, @@mem_ess_image_of_unit_is_iso _ _ _ _ h.1⟩ | |
lemma mem_Spec_ess_image (X : Scheme) : X ∈ Scheme.Spec.ess_image ↔ is_affine X := | |
⟨λ h, ⟨functor.ess_image.unit_is_iso h⟩, λ h, @@mem_ess_image_of_unit_is_iso _ _ _ X h.1⟩ | |
instance is_affine_AffineScheme (X : AffineScheme.{u}) : is_affine X.obj := | |
⟨functor.ess_image.unit_is_iso X.property⟩ | |
instance Spec_is_affine (R : CommRingᵒᵖ) : is_affine (Scheme.Spec.obj R) := | |
algebraic_geometry.is_affine_AffineScheme ⟨_, Scheme.Spec.obj_mem_ess_image R⟩ | |
lemma is_affine_of_iso {X Y : Scheme} (f : X ⟶ Y) [is_iso f] [h : is_affine Y] : | |
is_affine X := | |
by { rw [← mem_Spec_ess_image] at h ⊢, exact functor.ess_image.of_iso (as_iso f).symm h } | |
namespace AffineScheme | |
/-- The `Spec` functor into the category of affine schemes. -/ | |
@[derive [full, faithful, ess_surj]] | |
def Spec : CommRingᵒᵖ ⥤ AffineScheme := Scheme.Spec.to_ess_image | |
/-- The forgetful functor `AffineScheme ⥤ Scheme`. -/ | |
@[derive [full, faithful], simps] | |
def forget_to_Scheme : AffineScheme ⥤ Scheme := Scheme.Spec.ess_image_inclusion | |
/-- The global section functor of an affine scheme. -/ | |
def Γ : AffineSchemeᵒᵖ ⥤ CommRing := forget_to_Scheme.op ⋙ Scheme.Γ | |
/-- The category of affine schemes is equivalent to the category of commutative rings. -/ | |
def equiv_CommRing : AffineScheme ≌ CommRingᵒᵖ := | |
equiv_ess_image_of_reflective.symm | |
instance Γ_is_equiv : is_equivalence Γ.{u} := | |
begin | |
haveI : is_equivalence Γ.{u}.right_op.op := is_equivalence.of_equivalence equiv_CommRing.op, | |
exact (functor.is_equivalence_trans Γ.{u}.right_op.op (op_op_equivalence _).functor : _), | |
end | |
instance : has_colimits AffineScheme.{u} := | |
begin | |
haveI := adjunction.has_limits_of_equivalence.{u} Γ.{u}, | |
haveI : has_colimits AffineScheme.{u} ᵒᵖᵒᵖ := has_colimits_op_of_has_limits, | |
exactI adjunction.has_colimits_of_equivalence.{u} (op_op_equivalence AffineScheme.{u}).inverse | |
end | |
instance : has_limits AffineScheme.{u} := | |
begin | |
haveI := adjunction.has_colimits_of_equivalence Γ.{u}, | |
haveI : has_limits AffineScheme.{u} ᵒᵖᵒᵖ := limits.has_limits_op_of_has_colimits, | |
exactI adjunction.has_limits_of_equivalence (op_op_equivalence AffineScheme.{u}).inverse | |
end | |
end AffineScheme | |
/-- An open subset of a scheme is affine if the open subscheme is affine. -/ | |
def is_affine_open {X : Scheme} (U : opens X.carrier) : Prop := | |
is_affine (X.restrict U.open_embedding) | |
/-- The set of affine opens as a subset of `opens X.carrier`. -/ | |
def Scheme.affine_opens (X : Scheme) : set (opens X.carrier) := | |
{ U : opens X.carrier | is_affine_open U } | |
lemma range_is_affine_open_of_open_immersion {X Y : Scheme} [is_affine X] (f : X ⟶ Y) | |
[H : is_open_immersion f] : is_affine_open ⟨set.range f.1.base, H.base_open.open_range⟩ := | |
begin | |
refine is_affine_of_iso (is_open_immersion.iso_of_range_eq f (Y.of_restrict _) _).inv, | |
exact subtype.range_coe.symm, | |
apply_instance | |
end | |
lemma top_is_affine_open (X : Scheme) [is_affine X] : is_affine_open (⊤ : opens X.carrier) := | |
begin | |
convert range_is_affine_open_of_open_immersion (𝟙 X), | |
ext1, | |
exact set.range_id.symm | |
end | |
instance Scheme.affine_cover_is_affine (X : Scheme) (i : X.affine_cover.J) : | |
is_affine (X.affine_cover.obj i) := | |
algebraic_geometry.Spec_is_affine _ | |
instance Scheme.affine_basis_cover_is_affine (X : Scheme) (i : X.affine_basis_cover.J) : | |
is_affine (X.affine_basis_cover.obj i) := | |
algebraic_geometry.Spec_is_affine _ | |
lemma is_basis_affine_open (X : Scheme) : | |
opens.is_basis X.affine_opens := | |
begin | |
rw opens.is_basis_iff_nbhd, | |
rintros U x (hU : x ∈ (U : set X.carrier)), | |
obtain ⟨S, hS, hxS, hSU⟩ := X.affine_basis_cover_is_basis.exists_subset_of_mem_open hU U.prop, | |
refine ⟨⟨S, X.affine_basis_cover_is_basis.is_open hS⟩, _, hxS, hSU⟩, | |
rcases hS with ⟨i, rfl⟩, | |
exact range_is_affine_open_of_open_immersion _, | |
end | |
/-- The open immersion `Spec 𝒪ₓ(U) ⟶ X` for an affine `U`. -/ | |
def is_affine_open.from_Spec {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : | |
Scheme.Spec.obj (op $ X.presheaf.obj $ op U) ⟶ X := | |
begin | |
haveI : is_affine (X.restrict U.open_embedding) := hU, | |
have : U.open_embedding.is_open_map.functor.obj ⊤ = U, | |
{ ext1, exact set.image_univ.trans subtype.range_coe }, | |
exact Scheme.Spec.map (X.presheaf.map (eq_to_hom this.symm).op).op ≫ | |
(X.restrict U.open_embedding).iso_Spec.inv ≫ X.of_restrict _ | |
end | |
instance is_affine_open.is_open_immersion_from_Spec {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) : | |
is_open_immersion hU.from_Spec := | |
by { delta is_affine_open.from_Spec, apply_instance } | |
lemma is_affine_open.from_Spec_range {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : | |
set.range hU.from_Spec.1.base = (U : set X.carrier) := | |
begin | |
delta is_affine_open.from_Spec, | |
erw [← category.assoc, Scheme.comp_val_base], | |
rw [coe_comp, set.range_comp, set.range_iff_surjective.mpr, set.image_univ], | |
exact subtype.range_coe, | |
rw ← Top.epi_iff_surjective, | |
apply_instance | |
end | |
lemma is_affine_open.from_Spec_image_top {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) : | |
hU.is_open_immersion_from_Spec.base_open.is_open_map.functor.obj ⊤ = U := | |
by { ext1, exact set.image_univ.trans hU.from_Spec_range } | |
lemma is_affine_open.is_compact {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : | |
is_compact (U : set X.carrier) := | |
begin | |
convert @is_compact.image _ _ _ _ set.univ hU.from_Spec.1.base | |
prime_spectrum.compact_space.1 (by continuity), | |
convert hU.from_Spec_range.symm, | |
exact set.image_univ | |
end | |
lemma is_affine_open.image_is_open_immersion {X Y : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) | |
(f : X ⟶ Y) [H : is_open_immersion f] : is_affine_open (H.open_functor.obj U) := | |
begin | |
haveI : is_affine _ := hU, | |
convert range_is_affine_open_of_open_immersion (X.of_restrict U.open_embedding ≫ f), | |
ext1, | |
change f.1.base '' U.1 = set.range (f.1.base ∘ coe), | |
rw [set.range_comp, subtype.range_coe], | |
end | |
instance Scheme.quasi_compact_of_affine (X : Scheme) [is_affine X] : compact_space X.carrier := | |
⟨(top_is_affine_open X).is_compact⟩ | |
lemma is_affine_open.from_Spec_base_preimage | |
{X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : | |
(opens.map hU.from_Spec.val.base).obj U = ⊤ := | |
begin | |
ext1, | |
change hU.from_Spec.1.base ⁻¹' (U : set X.carrier) = set.univ, | |
rw [← hU.from_Spec_range, ← set.image_univ], | |
exact set.preimage_image_eq _ PresheafedSpace.is_open_immersion.base_open.inj | |
end | |
lemma Scheme.Spec_map_presheaf_map_eq_to_hom {X : Scheme} {U V : opens X.carrier} (h : U = V) (W) : | |
(Scheme.Spec.map (X.presheaf.map (eq_to_hom h).op).op).val.c.app W = | |
eq_to_hom (by { cases h, dsimp, induction W using opposite.rec, congr, ext1, simpa }) := | |
begin | |
have : Scheme.Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 _, | |
{ rw [X.presheaf.map_id, op_id, Scheme.Spec.map_id] }, | |
cases h, | |
refine (Scheme.congr_app this _).trans _, | |
erw category.id_comp, | |
simpa [eq_to_hom_map], | |
end | |
lemma is_affine_open.Spec_Γ_identity_hom_app_from_Spec {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) : | |
(Spec_Γ_identity.hom.app (X.presheaf.obj $ op U)) ≫ hU.from_Spec.1.c.app (op U) = | |
(Scheme.Spec.obj _).presheaf.map (eq_to_hom hU.from_Spec_base_preimage).op := | |
begin | |
haveI : is_affine _ := hU, | |
have e₁ := | |
Spec_Γ_identity.hom.naturality (X.presheaf.map (eq_to_hom U.open_embedding_obj_top).op), | |
rw ← is_iso.comp_inv_eq at e₁, | |
have e₂ := Γ_Spec.adjunction_unit_app_app_top (X.restrict U.open_embedding), | |
erw ← e₂ at e₁, | |
simp only [functor.id_map, quiver.hom.unop_op, functor.comp_map, ← functor.map_inv, ← op_inv, | |
LocallyRingedSpace.Γ_map, category.assoc, functor.right_op_map, inv_eq_to_hom] at e₁, | |
delta is_affine_open.from_Spec Scheme.iso_Spec, | |
rw [Scheme.comp_val_c_app, Scheme.comp_val_c_app, ← e₁], | |
simp_rw category.assoc, | |
erw ← X.presheaf.map_comp_assoc, | |
rw ← op_comp, | |
have e₃ : U.open_embedding.is_open_map.adjunction.counit.app U ≫ | |
eq_to_hom U.open_embedding_obj_top.symm = | |
U.open_embedding.is_open_map.functor.map (eq_to_hom U.inclusion_map_eq_top) := | |
subsingleton.elim _ _, | |
have e₄ : X.presheaf.map _ ≫ _ = _ := | |
(as_iso (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding))) | |
.inv.1.c.naturality_assoc (eq_to_hom U.inclusion_map_eq_top).op _, | |
erw [e₃, e₄, ← Scheme.comp_val_c_app_assoc, iso.inv_hom_id], | |
simp only [eq_to_hom_map, eq_to_hom_op, Scheme.Spec_map_presheaf_map_eq_to_hom], | |
erw [Scheme.Spec_map_presheaf_map_eq_to_hom, category.id_comp], | |
simpa only [eq_to_hom_trans] | |
end | |
@[elementwise] | |
lemma is_affine_open.from_Spec_app_eq {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) : | |
hU.from_Spec.1.c.app (op U) = Spec_Γ_identity.inv.app (X.presheaf.obj $ op U) ≫ | |
(Scheme.Spec.obj _).presheaf.map (eq_to_hom hU.from_Spec_base_preimage).op := | |
by rw [← hU.Spec_Γ_identity_hom_app_from_Spec, iso.inv_hom_id_app_assoc] | |
lemma is_affine_open.basic_open_is_affine {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) (f : X.presheaf.obj (op U)) : is_affine_open (X.basic_open f) := | |
begin | |
convert range_is_affine_open_of_open_immersion (Scheme.Spec.map (CommRing.of_hom | |
(algebra_map (X.presheaf.obj (op U)) (localization.away f))).op ≫ hU.from_Spec), | |
ext1, | |
have : hU.from_Spec.val.base '' (hU.from_Spec.val.base ⁻¹' (X.basic_open f : set X.carrier)) = | |
(X.basic_open f : set X.carrier), | |
{ rw [set.image_preimage_eq_inter_range, set.inter_eq_left_iff_subset, hU.from_Spec_range], | |
exact Scheme.basic_open_subset _ _ }, | |
rw [subtype.coe_mk, Scheme.comp_val_base, ← this, coe_comp, set.range_comp], | |
congr' 1, | |
refine (congr_arg coe $ Scheme.preimage_basic_open hU.from_Spec f).trans _, | |
refine eq.trans _ (prime_spectrum.localization_away_comap_range (localization.away f) f).symm, | |
congr' 1, | |
have : (opens.map hU.from_Spec.val.base).obj U = ⊤, | |
{ ext1, | |
change hU.from_Spec.1.base ⁻¹' (U : set X.carrier) = set.univ, | |
rw [← hU.from_Spec_range, ← set.image_univ], | |
exact set.preimage_image_eq _ PresheafedSpace.is_open_immersion.base_open.inj }, | |
refine eq.trans _ (basic_open_eq_of_affine f), | |
have lm : ∀ s, (opens.map hU.from_Spec.val.base).obj U ⊓ s = s := λ s, this.symm ▸ top_inf_eq, | |
refine eq.trans _ (lm _), | |
refine eq.trans _ | |
((Scheme.Spec.obj $ op $ X.presheaf.obj $ op U).basic_open_res _ (eq_to_hom this).op), | |
rw ← comp_apply, | |
congr' 2, | |
rw iso.eq_inv_comp, | |
erw hU.Spec_Γ_identity_hom_app_from_Spec, | |
end | |
lemma Scheme.map_prime_spectrum_basic_open_of_affine (X : Scheme) [is_affine X] | |
(f : Scheme.Γ.obj (op X)) : | |
(opens.map X.iso_Spec.hom.1.base).obj (prime_spectrum.basic_open f) = X.basic_open f := | |
begin | |
rw ← basic_open_eq_of_affine, | |
transitivity (opens.map X.iso_Spec.hom.1.base).obj ((Scheme.Spec.obj | |
(op (Scheme.Γ.obj (op X)))).basic_open ((inv (X.iso_Spec.hom.1.c.app | |
(op ((opens.map (inv X.iso_Spec.hom).val.base).obj ⊤)))) ((X.presheaf.map (eq_to_hom _)) f))), | |
congr, | |
{ rw [← is_iso.inv_eq_inv, is_iso.inv_inv, is_iso.iso.inv_inv, nat_iso.app_hom], | |
erw ← Γ_Spec.adjunction_unit_app_app_top, | |
refl }, | |
{ rw eq_to_hom_map, refl }, | |
{ dsimp, congr }, | |
{ refine (Scheme.preimage_basic_open _ _).trans _, | |
rw [is_iso.inv_hom_id_apply, Scheme.basic_open_res_eq] } | |
end | |
lemma is_basis_basic_open (X : Scheme) [is_affine X] : | |
opens.is_basis (set.range (X.basic_open : X.presheaf.obj (op ⊤) → opens X.carrier)) := | |
begin | |
delta opens.is_basis, | |
convert prime_spectrum.is_basis_basic_opens.inducing | |
(Top.homeo_of_iso (Scheme.forget_to_Top.map_iso X.iso_Spec)).inducing using 1, | |
ext, | |
simp only [set.mem_image, exists_exists_eq_and], | |
split, | |
{ rintro ⟨_, ⟨x, rfl⟩, rfl⟩, | |
refine ⟨_, ⟨_, ⟨x, rfl⟩, rfl⟩, _⟩, | |
exact congr_arg subtype.val (X.map_prime_spectrum_basic_open_of_affine x) }, | |
{ rintro ⟨_, ⟨_, ⟨x, rfl⟩, rfl⟩, rfl⟩, | |
refine ⟨_, ⟨x, rfl⟩, _⟩, | |
exact congr_arg subtype.val (X.map_prime_spectrum_basic_open_of_affine x).symm } | |
end | |
lemma is_affine_open.exists_basic_open_subset {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) {V : opens X.carrier} (x : V) (h : ↑x ∈ U) : | |
∃ f : X.presheaf.obj (op U), X.basic_open f ⊆ V ∧ ↑x ∈ X.basic_open f := | |
begin | |
haveI : is_affine _ := hU, | |
obtain ⟨_, ⟨_, ⟨r, rfl⟩, rfl⟩, h₁, h₂⟩ := (is_basis_basic_open (X.restrict U.open_embedding)) | |
.exists_subset_of_mem_open _ ((opens.map U.inclusion).obj V).prop, | |
swap, exact ⟨x, h⟩, | |
have : U.open_embedding.is_open_map.functor.obj ((X.restrict U.open_embedding).basic_open r) | |
= X.basic_open (X.presheaf.map (eq_to_hom U.open_embedding_obj_top.symm).op r), | |
{ refine (is_open_immersion.image_basic_open (X.of_restrict U.open_embedding) r).trans _, | |
erw ← Scheme.basic_open_res_eq _ _ (eq_to_hom U.open_embedding_obj_top).op, | |
rw [← comp_apply, ← category_theory.functor.map_comp, ← op_comp, eq_to_hom_trans, | |
eq_to_hom_refl, op_id, category_theory.functor.map_id], | |
erw PresheafedSpace.is_open_immersion.of_restrict_inv_app, | |
congr }, | |
use X.presheaf.map (eq_to_hom U.open_embedding_obj_top.symm).op r, | |
rw ← this, | |
exact ⟨set.image_subset_iff.mpr h₂, set.mem_image_of_mem _ h₁⟩, | |
exact x.prop, | |
end | |
instance {X : Scheme} {U : opens X.carrier} (f : X.presheaf.obj (op U)) : | |
algebra (X.presheaf.obj (op U)) (X.presheaf.obj (op $ X.basic_open f)) := | |
(X.presheaf.map (hom_of_le $ RingedSpace.basic_open_subset _ f : _ ⟶ U).op).to_algebra | |
lemma is_affine_open.opens_map_from_Spec_basic_open {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) (f : X.presheaf.obj (op U)) : | |
(opens.map hU.from_Spec.val.base).obj (X.basic_open f) = | |
RingedSpace.basic_open _ (Spec_Γ_identity.inv.app (X.presheaf.obj $ op U) f) := | |
begin | |
erw LocallyRingedSpace.preimage_basic_open, | |
refine eq.trans _ (RingedSpace.basic_open_res_eq (Scheme.Spec.obj $ op $ X.presheaf.obj (op U)) | |
.to_LocallyRingedSpace.to_RingedSpace (eq_to_hom hU.from_Spec_base_preimage).op _), | |
congr, | |
rw ← comp_apply, | |
congr, | |
erw ← hU.Spec_Γ_identity_hom_app_from_Spec, | |
rw iso.inv_hom_id_app_assoc, | |
end | |
/-- The canonical map `Γ(𝒪ₓ, D(f)) ⟶ Γ(Spec 𝒪ₓ(U), D(Spec_Γ_identity.inv f))` | |
This is an isomorphism, as witnessed by an `is_iso` instance. -/ | |
def basic_open_sections_to_affine {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) | |
(f : X.presheaf.obj (op U)) : X.presheaf.obj (op $ X.basic_open f) ⟶ | |
(Scheme.Spec.obj $ op $ X.presheaf.obj (op U)).presheaf.obj | |
(op $ Scheme.basic_open _ $ Spec_Γ_identity.inv.app (X.presheaf.obj (op U)) f) := | |
hU.from_Spec.1.c.app (op $ X.basic_open f) ≫ (Scheme.Spec.obj $ op $ X.presheaf.obj (op U)) | |
.presheaf.map (eq_to_hom $ (hU.opens_map_from_Spec_basic_open f).symm).op | |
instance {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) | |
(f : X.presheaf.obj (op U)) : is_iso (basic_open_sections_to_affine hU f) := | |
begin | |
delta basic_open_sections_to_affine, | |
apply_with is_iso.comp_is_iso { instances := ff }, | |
{ apply PresheafedSpace.is_open_immersion.is_iso_of_subset, | |
rw hU.from_Spec_range, | |
exact RingedSpace.basic_open_subset _ _ }, | |
apply_instance | |
end | |
. | |
lemma is_localization_basic_open {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) | |
(f : X.presheaf.obj (op U)) : | |
is_localization.away f (X.presheaf.obj (op $ X.basic_open f)) := | |
begin | |
apply (is_localization.is_localization_iff_of_ring_equiv (submonoid.powers f) | |
(as_iso $ basic_open_sections_to_affine hU f ≫ (Scheme.Spec.obj _).presheaf.map | |
(eq_to_hom (basic_open_eq_of_affine _).symm).op).CommRing_iso_to_ring_equiv).mpr, | |
convert structure_sheaf.is_localization.to_basic_open _ f, | |
change _ ≫ (basic_open_sections_to_affine hU f ≫ _) = _, | |
delta basic_open_sections_to_affine, | |
erw ring_hom.algebra_map_to_algebra, | |
simp only [Scheme.comp_val_c_app, category.assoc], | |
erw hU.from_Spec.val.c.naturality_assoc, | |
rw hU.from_Spec_app_eq, | |
dsimp, | |
simp only [category.assoc, ← functor.map_comp, ← op_comp], | |
apply structure_sheaf.to_open_res, | |
end | |
lemma basic_open_basic_open_is_basic_open {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) (f : X.presheaf.obj (op U)) (g : X.presheaf.obj (op $ X.basic_open f)) : | |
∃ f' : X.presheaf.obj (op U), X.basic_open f' = X.basic_open g := | |
begin | |
haveI := is_localization_basic_open hU f, | |
obtain ⟨x, ⟨_, n, rfl⟩, rfl⟩ := is_localization.surj' (submonoid.powers f) g, | |
use f * x, | |
rw [algebra.smul_def, Scheme.basic_open_mul, Scheme.basic_open_mul], | |
erw Scheme.basic_open_res, | |
refine (inf_eq_left.mpr _).symm, | |
convert inf_le_left using 1, | |
apply Scheme.basic_open_of_is_unit, | |
apply submonoid.left_inv_le_is_unit _ (is_localization.to_inv_submonoid (submonoid.powers f) | |
(X.presheaf.obj (op $ X.basic_open f)) _).prop | |
end | |
lemma exists_basic_open_subset_affine_inter {X : Scheme} {U V : opens X.carrier} | |
(hU : is_affine_open U) (hV : is_affine_open V) (x : X.carrier) (hx : x ∈ U ∩ V) : | |
∃ (f : X.presheaf.obj $ op U) (g : X.presheaf.obj $ op V), | |
X.basic_open f = X.basic_open g ∧ x ∈ X.basic_open f := | |
begin | |
obtain ⟨f, hf₁, hf₂⟩ := hU.exists_basic_open_subset ⟨x, hx.2⟩ hx.1, | |
obtain ⟨g, hg₁, hg₂⟩ := hV.exists_basic_open_subset ⟨x, hf₂⟩ hx.2, | |
obtain ⟨f', hf'⟩ := basic_open_basic_open_is_basic_open hU f | |
(X.presheaf.map (hom_of_le hf₁ : _ ⟶ V).op g), | |
replace hf' := (hf'.trans (RingedSpace.basic_open_res _ _ _)).trans (inf_eq_right.mpr hg₁), | |
exact ⟨f', g, hf', hf'.symm ▸ hg₂⟩ | |
end | |
/-- The prime ideal of `𝒪ₓ(U)` corresponding to a point `x : U`. -/ | |
noncomputable | |
def is_affine_open.prime_ideal_of {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) (x : U) : | |
prime_spectrum (X.presheaf.obj $ op U) := | |
((Scheme.Spec.map (X.presheaf.map (eq_to_hom $ | |
show U.open_embedding.is_open_map.functor.obj ⊤ = U, from | |
opens.ext (set.image_univ.trans subtype.range_coe)).op).op).1.base | |
((@@Scheme.iso_Spec (X.restrict U.open_embedding) hU).hom.1.base x)) | |
lemma is_affine_open.from_Spec_prime_ideal_of {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) (x : U) : | |
hU.from_Spec.val.base (hU.prime_ideal_of x) = x.1 := | |
begin | |
dsimp only [is_affine_open.from_Spec, subtype.coe_mk], | |
erw [← Scheme.comp_val_base_apply, ← Scheme.comp_val_base_apply], | |
simpa only [← functor.map_comp_assoc, ← functor.map_comp, ← op_comp, eq_to_hom_trans, op_id, | |
eq_to_hom_refl, category_theory.functor.map_id, category.id_comp, iso.hom_inv_id_assoc] | |
end | |
lemma is_affine_open.is_localization_stalk_aux {X : Scheme} (U : opens X.carrier) | |
[is_affine (X.restrict U.open_embedding)] : | |
(inv (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding))).1.c.app | |
(op ((opens.map U.inclusion).obj U)) = | |
X.presheaf.map (eq_to_hom $ by rw opens.inclusion_map_eq_top : | |
U.open_embedding.is_open_map.functor.obj ⊤ ⟶ | |
(U.open_embedding.is_open_map.functor.obj ((opens.map U.inclusion).obj U))).op ≫ | |
to_Spec_Γ (X.presheaf.obj $ op (U.open_embedding.is_open_map.functor.obj ⊤)) ≫ | |
(Scheme.Spec.obj $ op $ X.presheaf.obj $ _).presheaf.map | |
(eq_to_hom (by { rw [opens.inclusion_map_eq_top], refl }) : unop _ ⟶ ⊤).op := | |
begin | |
have e : (opens.map (inv (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding))).1.base).obj | |
((opens.map U.inclusion).obj U) = ⊤, | |
by { rw [opens.inclusion_map_eq_top], refl }, | |
rw [Scheme.inv_val_c_app, is_iso.comp_inv_eq, Scheme.app_eq _ e, | |
Γ_Spec.adjunction_unit_app_app_top], | |
simp only [category.assoc, eq_to_hom_op], | |
erw ← functor.map_comp_assoc, | |
rw [eq_to_hom_trans, eq_to_hom_refl, category_theory.functor.map_id, | |
category.id_comp], | |
erw Spec_Γ_identity.inv_hom_id_app_assoc, | |
simp only [eq_to_hom_map, eq_to_hom_trans], | |
end | |
lemma is_affine_open.is_localization_stalk {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) (x : U) : | |
is_localization.at_prime (X.presheaf.stalk x) (hU.prime_ideal_of x).as_ideal := | |
begin | |
haveI : is_affine _ := hU, | |
haveI : nonempty U := ⟨x⟩, | |
rcases x with ⟨x, hx⟩, | |
let y := hU.prime_ideal_of ⟨x, hx⟩, | |
have : hU.from_Spec.val.base y = x := hU.from_Spec_prime_ideal_of ⟨x, hx⟩, | |
change is_localization y.as_ideal.prime_compl _, | |
clear_value y, | |
subst this, | |
apply (is_localization.is_localization_iff_of_ring_equiv _ | |
(as_iso $ PresheafedSpace.stalk_map hU.from_Spec.1 y).CommRing_iso_to_ring_equiv).mpr, | |
convert structure_sheaf.is_localization.to_stalk _ _ using 1, | |
delta structure_sheaf.stalk_algebra, | |
congr' 1, | |
rw ring_hom.algebra_map_to_algebra, | |
refine (PresheafedSpace.stalk_map_germ hU.from_Spec.1 _ ⟨_, _⟩).trans _, | |
delta is_affine_open.from_Spec Scheme.iso_Spec structure_sheaf.to_stalk, | |
simp only [Scheme.comp_val_c_app, category.assoc], | |
dsimp only [functor.op, as_iso_inv, unop_op], | |
erw is_affine_open.is_localization_stalk_aux, | |
simp only [category.assoc], | |
conv_lhs { rw ← category.assoc }, | |
erw [← X.presheaf.map_comp, Spec_Γ_naturality_assoc], | |
congr' 1, | |
simp only [← category.assoc], | |
transitivity _ ≫ (structure_sheaf (X.presheaf.obj $ op U)).presheaf.germ ⟨_, _⟩, | |
{ refl }, | |
convert ((structure_sheaf (X.presheaf.obj $ op U)).presheaf.germ_res (hom_of_le le_top) ⟨_, _⟩) | |
using 2, | |
rw category.assoc, | |
erw nat_trans.naturality, | |
rw [← LocallyRingedSpace.Γ_map_op, ← LocallyRingedSpace.Γ.map_comp_assoc, ← op_comp], | |
erw ← Scheme.Spec.map_comp, | |
rw [← op_comp, ← X.presheaf.map_comp], | |
transitivity LocallyRingedSpace.Γ.map (quiver.hom.op $ Scheme.Spec.map | |
(X.presheaf.map (𝟙 (op U))).op) ≫ _, | |
{ congr }, | |
simp only [category_theory.functor.map_id, op_id], | |
erw category_theory.functor.map_id, | |
rw category.id_comp, | |
refl | |
end | |
/-- The basic open set of a section `f` on an an affine open as an `X.affine_opens`. -/ | |
@[simps] | |
def Scheme.affine_basic_open (X : Scheme) {U : X.affine_opens} | |
(f : X.presheaf.obj $ op U) : X.affine_opens := | |
⟨X.basic_open f, U.prop.basic_open_is_affine f⟩ | |
@[simp] | |
lemma is_affine_open.basic_open_from_Spec_app {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) (f : X.presheaf.obj (op U)) : | |
@Scheme.basic_open (Scheme.Spec.obj $ op (X.presheaf.obj $ op U)) | |
((opens.map hU.from_Spec.1.base).obj U) | |
(hU.from_Spec.1.c.app (op U) f) = prime_spectrum.basic_open f := | |
begin | |
rw [← Scheme.basic_open_res_eq _ _ (eq_to_hom hU.from_Spec_base_preimage.symm).op, | |
basic_open_eq_of_affine', is_affine_open.from_Spec_app_eq], | |
congr, | |
rw [← comp_apply, ← comp_apply, category.assoc, ← functor.map_comp_assoc, | |
eq_to_hom_op, eq_to_hom_op, eq_to_hom_trans, eq_to_hom_refl, category_theory.functor.map_id, | |
category.id_comp, ← iso.app_inv, iso.inv_hom_id], | |
refl | |
end | |
lemma is_affine_open.from_Spec_map_basic_open {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) (f : X.presheaf.obj (op U)) : | |
(opens.map hU.from_Spec.val.base).obj (X.basic_open f) = prime_spectrum.basic_open f := | |
by simp | |
lemma is_affine_open.basic_open_union_eq_self_iff {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) (s : set (X.presheaf.obj $ op U)) : | |
(⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)) = U ↔ ideal.span s = ⊤ := | |
begin | |
transitivity (⋃ (i : s), (prime_spectrum.basic_open i.1).1) = set.univ, | |
transitivity hU.from_Spec.1.base ⁻¹' (⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)).1 = | |
hU.from_Spec.1.base ⁻¹' U.1, | |
{ refine ⟨λ h, by rw h, _⟩, | |
intro h, | |
apply_fun set.image hU.from_Spec.1.base at h, | |
rw [set.image_preimage_eq_inter_range, set.image_preimage_eq_inter_range, | |
hU.from_Spec_range] at h, | |
simp only [set.inter_self, subtype.val_eq_coe, set.inter_eq_right_iff_subset] | |
at h, | |
ext1, | |
refine le_antisymm _ h, | |
simp only [set.Union_subset_iff, set_coe.forall, opens.supr_def, set.le_eq_subset, | |
subtype.coe_mk], | |
intros x hx, | |
exact X.basic_open_subset x }, | |
{ simp only [opens.supr_def, subtype.coe_mk, set.preimage_Union, subtype.val_eq_coe], | |
congr' 3, | |
{ ext1 x, | |
exact congr_arg subtype.val (hU.from_Spec_map_basic_open _) }, | |
{ exact congr_arg subtype.val hU.from_Spec_base_preimage } }, | |
{ simp only [subtype.val_eq_coe, prime_spectrum.basic_open_eq_zero_locus_compl], | |
rw [← set.compl_Inter, set.compl_univ_iff, ← prime_spectrum.zero_locus_Union, | |
← prime_spectrum.zero_locus_empty_iff_eq_top, prime_spectrum.zero_locus_span], | |
simp only [set.Union_singleton_eq_range, subtype.range_coe_subtype, set.set_of_mem_eq] } | |
end | |
lemma is_affine_open.self_le_basic_open_union_iff {X : Scheme} {U : opens X.carrier} | |
(hU : is_affine_open U) (s : set (X.presheaf.obj $ op U)) : | |
U ≤ (⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)) ↔ ideal.span s = ⊤ := | |
begin | |
rw [← hU.basic_open_union_eq_self_iff, @comm _ eq], | |
refine ⟨λ h, le_antisymm h _, le_of_eq⟩, | |
simp only [supr_le_iff, set_coe.forall], | |
intros x hx, | |
exact X.basic_open_subset x | |
end | |
/-- | |
Let `P` be a predicate on the affine open sets of `X` satisfying | |
1. If `P` holds on `U`, then `P` holds on the basic open set of every section on `U`. | |
2. If `P` holds for a family of basic open sets covering `U`, then `P` holds for `U`. | |
3. There exists an affine open cover of `X` each satisfying `P`. | |
Then `P` holds for every affine open of `X`. | |
This is also known as the **Affine communication lemma** in Vakil's "The rising sea". -/ | |
@[elab_as_eliminator] | |
lemma of_affine_open_cover {X : Scheme} (V : X.affine_opens) (S : set X.affine_opens) | |
{P : X.affine_opens → Prop} | |
(hP₁ : ∀ (U : X.affine_opens) (f : X.presheaf.obj $ op U.1), P U → | |
P (X.affine_basic_open f)) | |
(hP₂ : ∀ (U : X.affine_opens) (s : finset (X.presheaf.obj $ op U)) | |
(hs : ideal.span (s : set (X.presheaf.obj $ op U)) = ⊤), | |
(∀ (f : s), P (X.affine_basic_open f.1)) → P U) | |
(hS : (⋃ (i : S), i : set X.carrier) = set.univ) | |
(hS' : ∀ (U : S), P U) : P V := | |
begin | |
classical, | |
have : ∀ (x : V), ∃ (f : X.presheaf.obj $ op V.1), | |
↑x ∈ (X.basic_open f) ∧ P (X.affine_basic_open f), | |
{ intro x, | |
have : ↑x ∈ (set.univ : set X.carrier) := trivial, | |
rw ← hS at this, | |
obtain ⟨W, hW⟩ := set.mem_Union.mp this, | |
obtain ⟨f, g, e, hf⟩ := exists_basic_open_subset_affine_inter V.prop W.1.prop x ⟨x.prop, hW⟩, | |
refine ⟨f, hf, _⟩, | |
convert hP₁ _ g (hS' W) using 1, | |
ext1, | |
exact e }, | |
choose f hf₁ hf₂ using this, | |
suffices : ideal.span (set.range f) = ⊤, | |
{ obtain ⟨t, ht₁, ht₂⟩ := (ideal.span_eq_top_iff_finite _).mp this, | |
apply hP₂ V t ht₂, | |
rintro ⟨i, hi⟩, | |
obtain ⟨x, rfl⟩ := ht₁ hi, | |
exact hf₂ x }, | |
rw ← V.prop.self_le_basic_open_union_iff, | |
intros x hx, | |
simp only [exists_prop, set.mem_Union, set.mem_range, set_coe.exists, opens.supr_def, | |
exists_exists_eq_and, opens.mem_coe, subtype.coe_mk], | |
refine ⟨_, hf₁ ⟨x, hx⟩⟩, | |
end | |
end algebraic_geometry | |