/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import algebraic_geometry.Gamma_Spec_adjunction import algebraic_geometry.open_immersion import category_theory.limits.opposites import ring_theory.localization.inv_submonoid /-! # Affine schemes We define the category of `AffineScheme`s as the essential image of `Spec`. We also define predicates about affine schemes and affine open sets. ## Main definitions * `algebraic_geometry.AffineScheme`: The category of affine schemes. * `algebraic_geometry.is_affine`: A scheme is affine if the canonical map `X ⟶ Spec Γ(X)` is an isomorphism. * `algebraic_geometry.Scheme.iso_Spec`: The canonical isomorphism `X ≅ Spec Γ(X)` for an affine scheme. * `algebraic_geometry.AffineScheme.equiv_CommRing`: The equivalence of categories `AffineScheme ≌ CommRingᵒᵖ` given by `AffineScheme.Spec : CommRingᵒᵖ ⥤ AffineScheme` and `AffineScheme.Γ : AffineSchemeᵒᵖ ⥤ CommRing`. * `algebraic_geometry.is_affine_open`: An open subset of a scheme is affine if the open subscheme is affine. * `algebraic_geometry.is_affine_open.from_Spec`: The immersion `Spec 𝒪ₓ(U) ⟶ X` for an affine `U`. -/ noncomputable theory open category_theory category_theory.limits opposite topological_space universe u namespace algebraic_geometry open Spec (structure_sheaf) /-- The category of affine schemes -/ @[derive category, nolint has_nonempty_instance] def AffineScheme := Scheme.Spec.ess_image_subcategory /-- A Scheme is affine if the canonical map `X ⟶ Spec Γ(X)` is an isomorphism. -/ class is_affine (X : Scheme) : Prop := (affine : is_iso (Γ_Spec.adjunction.unit.app X)) attribute [instance] is_affine.affine /-- The canonical isomorphism `X ≅ Spec Γ(X)` for an affine scheme. -/ def Scheme.iso_Spec (X : Scheme) [is_affine X] : X ≅ Scheme.Spec.obj (op $ Scheme.Γ.obj $ op X) := as_iso (Γ_Spec.adjunction.unit.app X) /-- Construct an affine scheme from a scheme and the information that it is affine. -/ @[simps] def AffineScheme.mk (X : Scheme) (h : is_affine X) : AffineScheme := ⟨X, @@mem_ess_image_of_unit_is_iso _ _ _ _ h.1⟩ lemma mem_Spec_ess_image (X : Scheme) : X ∈ Scheme.Spec.ess_image ↔ is_affine X := ⟨λ h, ⟨functor.ess_image.unit_is_iso h⟩, λ h, @@mem_ess_image_of_unit_is_iso _ _ _ X h.1⟩ instance is_affine_AffineScheme (X : AffineScheme.{u}) : is_affine X.obj := ⟨functor.ess_image.unit_is_iso X.property⟩ instance Spec_is_affine (R : CommRingᵒᵖ) : is_affine (Scheme.Spec.obj R) := algebraic_geometry.is_affine_AffineScheme ⟨_, Scheme.Spec.obj_mem_ess_image R⟩ lemma is_affine_of_iso {X Y : Scheme} (f : X ⟶ Y) [is_iso f] [h : is_affine Y] : is_affine X := by { rw [← mem_Spec_ess_image] at h ⊢, exact functor.ess_image.of_iso (as_iso f).symm h } namespace AffineScheme /-- The `Spec` functor into the category of affine schemes. -/ @[derive [full, faithful, ess_surj]] def Spec : CommRingᵒᵖ ⥤ AffineScheme := Scheme.Spec.to_ess_image /-- The forgetful functor `AffineScheme ⥤ Scheme`. -/ @[derive [full, faithful], simps] def forget_to_Scheme : AffineScheme ⥤ Scheme := Scheme.Spec.ess_image_inclusion /-- The global section functor of an affine scheme. -/ def Γ : AffineSchemeᵒᵖ ⥤ CommRing := forget_to_Scheme.op ⋙ Scheme.Γ /-- The category of affine schemes is equivalent to the category of commutative rings. -/ def equiv_CommRing : AffineScheme ≌ CommRingᵒᵖ := equiv_ess_image_of_reflective.symm instance Γ_is_equiv : is_equivalence Γ.{u} := begin haveI : is_equivalence Γ.{u}.right_op.op := is_equivalence.of_equivalence equiv_CommRing.op, exact (functor.is_equivalence_trans Γ.{u}.right_op.op (op_op_equivalence _).functor : _), end instance : has_colimits AffineScheme.{u} := begin haveI := adjunction.has_limits_of_equivalence.{u} Γ.{u}, haveI : has_colimits AffineScheme.{u} ᵒᵖᵒᵖ := has_colimits_op_of_has_limits, exactI adjunction.has_colimits_of_equivalence.{u} (op_op_equivalence AffineScheme.{u}).inverse end instance : has_limits AffineScheme.{u} := begin haveI := adjunction.has_colimits_of_equivalence Γ.{u}, haveI : has_limits AffineScheme.{u} ᵒᵖᵒᵖ := limits.has_limits_op_of_has_colimits, exactI adjunction.has_limits_of_equivalence (op_op_equivalence AffineScheme.{u}).inverse end end AffineScheme /-- An open subset of a scheme is affine if the open subscheme is affine. -/ def is_affine_open {X : Scheme} (U : opens X.carrier) : Prop := is_affine (X.restrict U.open_embedding) /-- The set of affine opens as a subset of `opens X.carrier`. -/ def Scheme.affine_opens (X : Scheme) : set (opens X.carrier) := { U : opens X.carrier | is_affine_open U } lemma range_is_affine_open_of_open_immersion {X Y : Scheme} [is_affine X] (f : X ⟶ Y) [H : is_open_immersion f] : is_affine_open ⟨set.range f.1.base, H.base_open.open_range⟩ := begin refine is_affine_of_iso (is_open_immersion.iso_of_range_eq f (Y.of_restrict _) _).inv, exact subtype.range_coe.symm, apply_instance end lemma top_is_affine_open (X : Scheme) [is_affine X] : is_affine_open (⊤ : opens X.carrier) := begin convert range_is_affine_open_of_open_immersion (𝟙 X), ext1, exact set.range_id.symm end instance Scheme.affine_cover_is_affine (X : Scheme) (i : X.affine_cover.J) : is_affine (X.affine_cover.obj i) := algebraic_geometry.Spec_is_affine _ instance Scheme.affine_basis_cover_is_affine (X : Scheme) (i : X.affine_basis_cover.J) : is_affine (X.affine_basis_cover.obj i) := algebraic_geometry.Spec_is_affine _ lemma is_basis_affine_open (X : Scheme) : opens.is_basis X.affine_opens := begin rw opens.is_basis_iff_nbhd, rintros U x (hU : x ∈ (U : set X.carrier)), obtain ⟨S, hS, hxS, hSU⟩ := X.affine_basis_cover_is_basis.exists_subset_of_mem_open hU U.prop, refine ⟨⟨S, X.affine_basis_cover_is_basis.is_open hS⟩, _, hxS, hSU⟩, rcases hS with ⟨i, rfl⟩, exact range_is_affine_open_of_open_immersion _, end /-- The open immersion `Spec 𝒪ₓ(U) ⟶ X` for an affine `U`. -/ def is_affine_open.from_Spec {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : Scheme.Spec.obj (op $ X.presheaf.obj $ op U) ⟶ X := begin haveI : is_affine (X.restrict U.open_embedding) := hU, have : U.open_embedding.is_open_map.functor.obj ⊤ = U, { ext1, exact set.image_univ.trans subtype.range_coe }, exact Scheme.Spec.map (X.presheaf.map (eq_to_hom this.symm).op).op ≫ (X.restrict U.open_embedding).iso_Spec.inv ≫ X.of_restrict _ end instance is_affine_open.is_open_immersion_from_Spec {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : is_open_immersion hU.from_Spec := by { delta is_affine_open.from_Spec, apply_instance } lemma is_affine_open.from_Spec_range {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : set.range hU.from_Spec.1.base = (U : set X.carrier) := begin delta is_affine_open.from_Spec, erw [← category.assoc, Scheme.comp_val_base], rw [coe_comp, set.range_comp, set.range_iff_surjective.mpr, set.image_univ], exact subtype.range_coe, rw ← Top.epi_iff_surjective, apply_instance end lemma is_affine_open.from_Spec_image_top {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : hU.is_open_immersion_from_Spec.base_open.is_open_map.functor.obj ⊤ = U := by { ext1, exact set.image_univ.trans hU.from_Spec_range } lemma is_affine_open.is_compact {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : is_compact (U : set X.carrier) := begin convert @is_compact.image _ _ _ _ set.univ hU.from_Spec.1.base prime_spectrum.compact_space.1 (by continuity), convert hU.from_Spec_range.symm, exact set.image_univ end lemma is_affine_open.image_is_open_immersion {X Y : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X ⟶ Y) [H : is_open_immersion f] : is_affine_open (H.open_functor.obj U) := begin haveI : is_affine _ := hU, convert range_is_affine_open_of_open_immersion (X.of_restrict U.open_embedding ≫ f), ext1, change f.1.base '' U.1 = set.range (f.1.base ∘ coe), rw [set.range_comp, subtype.range_coe], end instance Scheme.quasi_compact_of_affine (X : Scheme) [is_affine X] : compact_space X.carrier := ⟨(top_is_affine_open X).is_compact⟩ lemma is_affine_open.from_Spec_base_preimage {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : (opens.map hU.from_Spec.val.base).obj U = ⊤ := begin ext1, change hU.from_Spec.1.base ⁻¹' (U : set X.carrier) = set.univ, rw [← hU.from_Spec_range, ← set.image_univ], exact set.preimage_image_eq _ PresheafedSpace.is_open_immersion.base_open.inj end lemma Scheme.Spec_map_presheaf_map_eq_to_hom {X : Scheme} {U V : opens X.carrier} (h : U = V) (W) : (Scheme.Spec.map (X.presheaf.map (eq_to_hom h).op).op).val.c.app W = eq_to_hom (by { cases h, dsimp, induction W using opposite.rec, congr, ext1, simpa }) := begin have : Scheme.Spec.map (X.presheaf.map (𝟙 (op U))).op = 𝟙 _, { rw [X.presheaf.map_id, op_id, Scheme.Spec.map_id] }, cases h, refine (Scheme.congr_app this _).trans _, erw category.id_comp, simpa [eq_to_hom_map], end lemma is_affine_open.Spec_Γ_identity_hom_app_from_Spec {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : (Spec_Γ_identity.hom.app (X.presheaf.obj $ op U)) ≫ hU.from_Spec.1.c.app (op U) = (Scheme.Spec.obj _).presheaf.map (eq_to_hom hU.from_Spec_base_preimage).op := begin haveI : is_affine _ := hU, have e₁ := Spec_Γ_identity.hom.naturality (X.presheaf.map (eq_to_hom U.open_embedding_obj_top).op), rw ← is_iso.comp_inv_eq at e₁, have e₂ := Γ_Spec.adjunction_unit_app_app_top (X.restrict U.open_embedding), erw ← e₂ at e₁, simp only [functor.id_map, quiver.hom.unop_op, functor.comp_map, ← functor.map_inv, ← op_inv, LocallyRingedSpace.Γ_map, category.assoc, functor.right_op_map, inv_eq_to_hom] at e₁, delta is_affine_open.from_Spec Scheme.iso_Spec, rw [Scheme.comp_val_c_app, Scheme.comp_val_c_app, ← e₁], simp_rw category.assoc, erw ← X.presheaf.map_comp_assoc, rw ← op_comp, have e₃ : U.open_embedding.is_open_map.adjunction.counit.app U ≫ eq_to_hom U.open_embedding_obj_top.symm = U.open_embedding.is_open_map.functor.map (eq_to_hom U.inclusion_map_eq_top) := subsingleton.elim _ _, have e₄ : X.presheaf.map _ ≫ _ = _ := (as_iso (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding))) .inv.1.c.naturality_assoc (eq_to_hom U.inclusion_map_eq_top).op _, erw [e₃, e₄, ← Scheme.comp_val_c_app_assoc, iso.inv_hom_id], simp only [eq_to_hom_map, eq_to_hom_op, Scheme.Spec_map_presheaf_map_eq_to_hom], erw [Scheme.Spec_map_presheaf_map_eq_to_hom, category.id_comp], simpa only [eq_to_hom_trans] end @[elementwise] lemma is_affine_open.from_Spec_app_eq {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) : hU.from_Spec.1.c.app (op U) = Spec_Γ_identity.inv.app (X.presheaf.obj $ op U) ≫ (Scheme.Spec.obj _).presheaf.map (eq_to_hom hU.from_Spec_base_preimage).op := by rw [← hU.Spec_Γ_identity_hom_app_from_Spec, iso.inv_hom_id_app_assoc] lemma is_affine_open.basic_open_is_affine {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : is_affine_open (X.basic_open f) := begin convert range_is_affine_open_of_open_immersion (Scheme.Spec.map (CommRing.of_hom (algebra_map (X.presheaf.obj (op U)) (localization.away f))).op ≫ hU.from_Spec), ext1, have : hU.from_Spec.val.base '' (hU.from_Spec.val.base ⁻¹' (X.basic_open f : set X.carrier)) = (X.basic_open f : set X.carrier), { rw [set.image_preimage_eq_inter_range, set.inter_eq_left_iff_subset, hU.from_Spec_range], exact Scheme.basic_open_subset _ _ }, rw [subtype.coe_mk, Scheme.comp_val_base, ← this, coe_comp, set.range_comp], congr' 1, refine (congr_arg coe $ Scheme.preimage_basic_open hU.from_Spec f).trans _, refine eq.trans _ (prime_spectrum.localization_away_comap_range (localization.away f) f).symm, congr' 1, have : (opens.map hU.from_Spec.val.base).obj U = ⊤, { ext1, change hU.from_Spec.1.base ⁻¹' (U : set X.carrier) = set.univ, rw [← hU.from_Spec_range, ← set.image_univ], exact set.preimage_image_eq _ PresheafedSpace.is_open_immersion.base_open.inj }, refine eq.trans _ (basic_open_eq_of_affine f), have lm : ∀ s, (opens.map hU.from_Spec.val.base).obj U ⊓ s = s := λ s, this.symm ▸ top_inf_eq, refine eq.trans _ (lm _), refine eq.trans _ ((Scheme.Spec.obj $ op $ X.presheaf.obj $ op U).basic_open_res _ (eq_to_hom this).op), rw ← comp_apply, congr' 2, rw iso.eq_inv_comp, erw hU.Spec_Γ_identity_hom_app_from_Spec, end lemma Scheme.map_prime_spectrum_basic_open_of_affine (X : Scheme) [is_affine X] (f : Scheme.Γ.obj (op X)) : (opens.map X.iso_Spec.hom.1.base).obj (prime_spectrum.basic_open f) = X.basic_open f := begin rw ← basic_open_eq_of_affine, transitivity (opens.map X.iso_Spec.hom.1.base).obj ((Scheme.Spec.obj (op (Scheme.Γ.obj (op X)))).basic_open ((inv (X.iso_Spec.hom.1.c.app (op ((opens.map (inv X.iso_Spec.hom).val.base).obj ⊤)))) ((X.presheaf.map (eq_to_hom _)) f))), congr, { rw [← is_iso.inv_eq_inv, is_iso.inv_inv, is_iso.iso.inv_inv, nat_iso.app_hom], erw ← Γ_Spec.adjunction_unit_app_app_top, refl }, { rw eq_to_hom_map, refl }, { dsimp, congr }, { refine (Scheme.preimage_basic_open _ _).trans _, rw [is_iso.inv_hom_id_apply, Scheme.basic_open_res_eq] } end lemma is_basis_basic_open (X : Scheme) [is_affine X] : opens.is_basis (set.range (X.basic_open : X.presheaf.obj (op ⊤) → opens X.carrier)) := begin delta opens.is_basis, convert prime_spectrum.is_basis_basic_opens.inducing (Top.homeo_of_iso (Scheme.forget_to_Top.map_iso X.iso_Spec)).inducing using 1, ext, simp only [set.mem_image, exists_exists_eq_and], split, { rintro ⟨_, ⟨x, rfl⟩, rfl⟩, refine ⟨_, ⟨_, ⟨x, rfl⟩, rfl⟩, _⟩, exact congr_arg subtype.val (X.map_prime_spectrum_basic_open_of_affine x) }, { rintro ⟨_, ⟨_, ⟨x, rfl⟩, rfl⟩, rfl⟩, refine ⟨_, ⟨x, rfl⟩, _⟩, exact congr_arg subtype.val (X.map_prime_spectrum_basic_open_of_affine x).symm } end lemma is_affine_open.exists_basic_open_subset {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) {V : opens X.carrier} (x : V) (h : ↑x ∈ U) : ∃ f : X.presheaf.obj (op U), X.basic_open f ⊆ V ∧ ↑x ∈ X.basic_open f := begin haveI : is_affine _ := hU, obtain ⟨_, ⟨_, ⟨r, rfl⟩, rfl⟩, h₁, h₂⟩ := (is_basis_basic_open (X.restrict U.open_embedding)) .exists_subset_of_mem_open _ ((opens.map U.inclusion).obj V).prop, swap, exact ⟨x, h⟩, have : U.open_embedding.is_open_map.functor.obj ((X.restrict U.open_embedding).basic_open r) = X.basic_open (X.presheaf.map (eq_to_hom U.open_embedding_obj_top.symm).op r), { refine (is_open_immersion.image_basic_open (X.of_restrict U.open_embedding) r).trans _, erw ← Scheme.basic_open_res_eq _ _ (eq_to_hom U.open_embedding_obj_top).op, rw [← comp_apply, ← category_theory.functor.map_comp, ← op_comp, eq_to_hom_trans, eq_to_hom_refl, op_id, category_theory.functor.map_id], erw PresheafedSpace.is_open_immersion.of_restrict_inv_app, congr }, use X.presheaf.map (eq_to_hom U.open_embedding_obj_top.symm).op r, rw ← this, exact ⟨set.image_subset_iff.mpr h₂, set.mem_image_of_mem _ h₁⟩, exact x.prop, end instance {X : Scheme} {U : opens X.carrier} (f : X.presheaf.obj (op U)) : algebra (X.presheaf.obj (op U)) (X.presheaf.obj (op $ X.basic_open f)) := (X.presheaf.map (hom_of_le $ RingedSpace.basic_open_subset _ f : _ ⟶ U).op).to_algebra lemma is_affine_open.opens_map_from_Spec_basic_open {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : (opens.map hU.from_Spec.val.base).obj (X.basic_open f) = RingedSpace.basic_open _ (Spec_Γ_identity.inv.app (X.presheaf.obj $ op U) f) := begin erw LocallyRingedSpace.preimage_basic_open, refine eq.trans _ (RingedSpace.basic_open_res_eq (Scheme.Spec.obj $ op $ X.presheaf.obj (op U)) .to_LocallyRingedSpace.to_RingedSpace (eq_to_hom hU.from_Spec_base_preimage).op _), congr, rw ← comp_apply, congr, erw ← hU.Spec_Γ_identity_hom_app_from_Spec, rw iso.inv_hom_id_app_assoc, end /-- The canonical map `Γ(𝒪ₓ, D(f)) ⟶ Γ(Spec 𝒪ₓ(U), D(Spec_Γ_identity.inv f))` This is an isomorphism, as witnessed by an `is_iso` instance. -/ def basic_open_sections_to_affine {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : X.presheaf.obj (op $ X.basic_open f) ⟶ (Scheme.Spec.obj $ op $ X.presheaf.obj (op U)).presheaf.obj (op $ Scheme.basic_open _ $ Spec_Γ_identity.inv.app (X.presheaf.obj (op U)) f) := hU.from_Spec.1.c.app (op $ X.basic_open f) ≫ (Scheme.Spec.obj $ op $ X.presheaf.obj (op U)) .presheaf.map (eq_to_hom $ (hU.opens_map_from_Spec_basic_open f).symm).op instance {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : is_iso (basic_open_sections_to_affine hU f) := begin delta basic_open_sections_to_affine, apply_with is_iso.comp_is_iso { instances := ff }, { apply PresheafedSpace.is_open_immersion.is_iso_of_subset, rw hU.from_Spec_range, exact RingedSpace.basic_open_subset _ _ }, apply_instance end . lemma is_localization_basic_open {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : is_localization.away f (X.presheaf.obj (op $ X.basic_open f)) := begin apply (is_localization.is_localization_iff_of_ring_equiv (submonoid.powers f) (as_iso $ basic_open_sections_to_affine hU f ≫ (Scheme.Spec.obj _).presheaf.map (eq_to_hom (basic_open_eq_of_affine _).symm).op).CommRing_iso_to_ring_equiv).mpr, convert structure_sheaf.is_localization.to_basic_open _ f, change _ ≫ (basic_open_sections_to_affine hU f ≫ _) = _, delta basic_open_sections_to_affine, erw ring_hom.algebra_map_to_algebra, simp only [Scheme.comp_val_c_app, category.assoc], erw hU.from_Spec.val.c.naturality_assoc, rw hU.from_Spec_app_eq, dsimp, simp only [category.assoc, ← functor.map_comp, ← op_comp], apply structure_sheaf.to_open_res, end lemma basic_open_basic_open_is_basic_open {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) (g : X.presheaf.obj (op $ X.basic_open f)) : ∃ f' : X.presheaf.obj (op U), X.basic_open f' = X.basic_open g := begin haveI := is_localization_basic_open hU f, obtain ⟨x, ⟨_, n, rfl⟩, rfl⟩ := is_localization.surj' (submonoid.powers f) g, use f * x, rw [algebra.smul_def, Scheme.basic_open_mul, Scheme.basic_open_mul], erw Scheme.basic_open_res, refine (inf_eq_left.mpr _).symm, convert inf_le_left using 1, apply Scheme.basic_open_of_is_unit, apply submonoid.left_inv_le_is_unit _ (is_localization.to_inv_submonoid (submonoid.powers f) (X.presheaf.obj (op $ X.basic_open f)) _).prop end lemma exists_basic_open_subset_affine_inter {X : Scheme} {U V : opens X.carrier} (hU : is_affine_open U) (hV : is_affine_open V) (x : X.carrier) (hx : x ∈ U ∩ V) : ∃ (f : X.presheaf.obj $ op U) (g : X.presheaf.obj $ op V), X.basic_open f = X.basic_open g ∧ x ∈ X.basic_open f := begin obtain ⟨f, hf₁, hf₂⟩ := hU.exists_basic_open_subset ⟨x, hx.2⟩ hx.1, obtain ⟨g, hg₁, hg₂⟩ := hV.exists_basic_open_subset ⟨x, hf₂⟩ hx.2, obtain ⟨f', hf'⟩ := basic_open_basic_open_is_basic_open hU f (X.presheaf.map (hom_of_le hf₁ : _ ⟶ V).op g), replace hf' := (hf'.trans (RingedSpace.basic_open_res _ _ _)).trans (inf_eq_right.mpr hg₁), exact ⟨f', g, hf', hf'.symm ▸ hg₂⟩ end /-- The prime ideal of `𝒪ₓ(U)` corresponding to a point `x : U`. -/ noncomputable def is_affine_open.prime_ideal_of {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (x : U) : prime_spectrum (X.presheaf.obj $ op U) := ((Scheme.Spec.map (X.presheaf.map (eq_to_hom $ show U.open_embedding.is_open_map.functor.obj ⊤ = U, from opens.ext (set.image_univ.trans subtype.range_coe)).op).op).1.base ((@@Scheme.iso_Spec (X.restrict U.open_embedding) hU).hom.1.base x)) lemma is_affine_open.from_Spec_prime_ideal_of {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (x : U) : hU.from_Spec.val.base (hU.prime_ideal_of x) = x.1 := begin dsimp only [is_affine_open.from_Spec, subtype.coe_mk], erw [← Scheme.comp_val_base_apply, ← Scheme.comp_val_base_apply], simpa only [← functor.map_comp_assoc, ← functor.map_comp, ← op_comp, eq_to_hom_trans, op_id, eq_to_hom_refl, category_theory.functor.map_id, category.id_comp, iso.hom_inv_id_assoc] end lemma is_affine_open.is_localization_stalk_aux {X : Scheme} (U : opens X.carrier) [is_affine (X.restrict U.open_embedding)] : (inv (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding))).1.c.app (op ((opens.map U.inclusion).obj U)) = X.presheaf.map (eq_to_hom $ by rw opens.inclusion_map_eq_top : U.open_embedding.is_open_map.functor.obj ⊤ ⟶ (U.open_embedding.is_open_map.functor.obj ((opens.map U.inclusion).obj U))).op ≫ to_Spec_Γ (X.presheaf.obj $ op (U.open_embedding.is_open_map.functor.obj ⊤)) ≫ (Scheme.Spec.obj $ op $ X.presheaf.obj $ _).presheaf.map (eq_to_hom (by { rw [opens.inclusion_map_eq_top], refl }) : unop _ ⟶ ⊤).op := begin have e : (opens.map (inv (Γ_Spec.adjunction.unit.app (X.restrict U.open_embedding))).1.base).obj ((opens.map U.inclusion).obj U) = ⊤, by { rw [opens.inclusion_map_eq_top], refl }, rw [Scheme.inv_val_c_app, is_iso.comp_inv_eq, Scheme.app_eq _ e, Γ_Spec.adjunction_unit_app_app_top], simp only [category.assoc, eq_to_hom_op], erw ← functor.map_comp_assoc, rw [eq_to_hom_trans, eq_to_hom_refl, category_theory.functor.map_id, category.id_comp], erw Spec_Γ_identity.inv_hom_id_app_assoc, simp only [eq_to_hom_map, eq_to_hom_trans], end lemma is_affine_open.is_localization_stalk {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (x : U) : is_localization.at_prime (X.presheaf.stalk x) (hU.prime_ideal_of x).as_ideal := begin haveI : is_affine _ := hU, haveI : nonempty U := ⟨x⟩, rcases x with ⟨x, hx⟩, let y := hU.prime_ideal_of ⟨x, hx⟩, have : hU.from_Spec.val.base y = x := hU.from_Spec_prime_ideal_of ⟨x, hx⟩, change is_localization y.as_ideal.prime_compl _, clear_value y, subst this, apply (is_localization.is_localization_iff_of_ring_equiv _ (as_iso $ PresheafedSpace.stalk_map hU.from_Spec.1 y).CommRing_iso_to_ring_equiv).mpr, convert structure_sheaf.is_localization.to_stalk _ _ using 1, delta structure_sheaf.stalk_algebra, congr' 1, rw ring_hom.algebra_map_to_algebra, refine (PresheafedSpace.stalk_map_germ hU.from_Spec.1 _ ⟨_, _⟩).trans _, delta is_affine_open.from_Spec Scheme.iso_Spec structure_sheaf.to_stalk, simp only [Scheme.comp_val_c_app, category.assoc], dsimp only [functor.op, as_iso_inv, unop_op], erw is_affine_open.is_localization_stalk_aux, simp only [category.assoc], conv_lhs { rw ← category.assoc }, erw [← X.presheaf.map_comp, Spec_Γ_naturality_assoc], congr' 1, simp only [← category.assoc], transitivity _ ≫ (structure_sheaf (X.presheaf.obj $ op U)).presheaf.germ ⟨_, _⟩, { refl }, convert ((structure_sheaf (X.presheaf.obj $ op U)).presheaf.germ_res (hom_of_le le_top) ⟨_, _⟩) using 2, rw category.assoc, erw nat_trans.naturality, rw [← LocallyRingedSpace.Γ_map_op, ← LocallyRingedSpace.Γ.map_comp_assoc, ← op_comp], erw ← Scheme.Spec.map_comp, rw [← op_comp, ← X.presheaf.map_comp], transitivity LocallyRingedSpace.Γ.map (quiver.hom.op $ Scheme.Spec.map (X.presheaf.map (𝟙 (op U))).op) ≫ _, { congr }, simp only [category_theory.functor.map_id, op_id], erw category_theory.functor.map_id, rw category.id_comp, refl end /-- The basic open set of a section `f` on an an affine open as an `X.affine_opens`. -/ @[simps] def Scheme.affine_basic_open (X : Scheme) {U : X.affine_opens} (f : X.presheaf.obj $ op U) : X.affine_opens := ⟨X.basic_open f, U.prop.basic_open_is_affine f⟩ @[simp] lemma is_affine_open.basic_open_from_Spec_app {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : @Scheme.basic_open (Scheme.Spec.obj $ op (X.presheaf.obj $ op U)) ((opens.map hU.from_Spec.1.base).obj U) (hU.from_Spec.1.c.app (op U) f) = prime_spectrum.basic_open f := begin rw [← Scheme.basic_open_res_eq _ _ (eq_to_hom hU.from_Spec_base_preimage.symm).op, basic_open_eq_of_affine', is_affine_open.from_Spec_app_eq], congr, rw [← comp_apply, ← comp_apply, category.assoc, ← functor.map_comp_assoc, eq_to_hom_op, eq_to_hom_op, eq_to_hom_trans, eq_to_hom_refl, category_theory.functor.map_id, category.id_comp, ← iso.app_inv, iso.inv_hom_id], refl end lemma is_affine_open.from_Spec_map_basic_open {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (f : X.presheaf.obj (op U)) : (opens.map hU.from_Spec.val.base).obj (X.basic_open f) = prime_spectrum.basic_open f := by simp lemma is_affine_open.basic_open_union_eq_self_iff {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (s : set (X.presheaf.obj $ op U)) : (⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)) = U ↔ ideal.span s = ⊤ := begin transitivity (⋃ (i : s), (prime_spectrum.basic_open i.1).1) = set.univ, transitivity hU.from_Spec.1.base ⁻¹' (⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)).1 = hU.from_Spec.1.base ⁻¹' U.1, { refine ⟨λ h, by rw h, _⟩, intro h, apply_fun set.image hU.from_Spec.1.base at h, rw [set.image_preimage_eq_inter_range, set.image_preimage_eq_inter_range, hU.from_Spec_range] at h, simp only [set.inter_self, subtype.val_eq_coe, set.inter_eq_right_iff_subset] at h, ext1, refine le_antisymm _ h, simp only [set.Union_subset_iff, set_coe.forall, opens.supr_def, set.le_eq_subset, subtype.coe_mk], intros x hx, exact X.basic_open_subset x }, { simp only [opens.supr_def, subtype.coe_mk, set.preimage_Union, subtype.val_eq_coe], congr' 3, { ext1 x, exact congr_arg subtype.val (hU.from_Spec_map_basic_open _) }, { exact congr_arg subtype.val hU.from_Spec_base_preimage } }, { simp only [subtype.val_eq_coe, prime_spectrum.basic_open_eq_zero_locus_compl], rw [← set.compl_Inter, set.compl_univ_iff, ← prime_spectrum.zero_locus_Union, ← prime_spectrum.zero_locus_empty_iff_eq_top, prime_spectrum.zero_locus_span], simp only [set.Union_singleton_eq_range, subtype.range_coe_subtype, set.set_of_mem_eq] } end lemma is_affine_open.self_le_basic_open_union_iff {X : Scheme} {U : opens X.carrier} (hU : is_affine_open U) (s : set (X.presheaf.obj $ op U)) : U ≤ (⨆ (f : s), X.basic_open (f : X.presheaf.obj $ op U)) ↔ ideal.span s = ⊤ := begin rw [← hU.basic_open_union_eq_self_iff, @comm _ eq], refine ⟨λ h, le_antisymm h _, le_of_eq⟩, simp only [supr_le_iff, set_coe.forall], intros x hx, exact X.basic_open_subset x end /-- Let `P` be a predicate on the affine open sets of `X` satisfying 1. If `P` holds on `U`, then `P` holds on the basic open set of every section on `U`. 2. If `P` holds for a family of basic open sets covering `U`, then `P` holds for `U`. 3. There exists an affine open cover of `X` each satisfying `P`. Then `P` holds for every affine open of `X`. This is also known as the **Affine communication lemma** in Vakil's "The rising sea". -/ @[elab_as_eliminator] lemma of_affine_open_cover {X : Scheme} (V : X.affine_opens) (S : set X.affine_opens) {P : X.affine_opens → Prop} (hP₁ : ∀ (U : X.affine_opens) (f : X.presheaf.obj $ op U.1), P U → P (X.affine_basic_open f)) (hP₂ : ∀ (U : X.affine_opens) (s : finset (X.presheaf.obj $ op U)) (hs : ideal.span (s : set (X.presheaf.obj $ op U)) = ⊤), (∀ (f : s), P (X.affine_basic_open f.1)) → P U) (hS : (⋃ (i : S), i : set X.carrier) = set.univ) (hS' : ∀ (U : S), P U) : P V := begin classical, have : ∀ (x : V), ∃ (f : X.presheaf.obj $ op V.1), ↑x ∈ (X.basic_open f) ∧ P (X.affine_basic_open f), { intro x, have : ↑x ∈ (set.univ : set X.carrier) := trivial, rw ← hS at this, obtain ⟨W, hW⟩ := set.mem_Union.mp this, obtain ⟨f, g, e, hf⟩ := exists_basic_open_subset_affine_inter V.prop W.1.prop x ⟨x.prop, hW⟩, refine ⟨f, hf, _⟩, convert hP₁ _ g (hS' W) using 1, ext1, exact e }, choose f hf₁ hf₂ using this, suffices : ideal.span (set.range f) = ⊤, { obtain ⟨t, ht₁, ht₂⟩ := (ideal.span_eq_top_iff_finite _).mp this, apply hP₂ V t ht₂, rintro ⟨i, hi⟩, obtain ⟨x, rfl⟩ := ht₁ hi, exact hf₂ x }, rw ← V.prop.self_le_basic_open_union_iff, intros x hx, simp only [exists_prop, set.mem_Union, set.mem_range, set_coe.exists, opens.supr_def, exists_exists_eq_and, opens.mem_coe, subtype.coe_mk], refine ⟨_, hf₁ ⟨x, hx⟩⟩, end end algebraic_geometry