Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
29.3 kB
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
(* -------------------------------------------------------------------- *)
(* Copyright (c) - 2015--2016 - IMDEA Software Institute *)
(* Copyright (c) - 2015--2018 - Inria *)
(* Copyright (c) - 2016--2018 - Polytechnique *)
(* -------------------------------------------------------------------- *)
From mathcomp Require Import all_ssreflect.
(******************************************************************************)
(* Classical Logic *)
(* *)
(* This file provides the axioms of classical logic and tools to perform *)
(* classical reasoning in the Mathematical Compnent framework. The three *)
(* axioms are taken from the standard library of Coq, more details can be *)
(* found in Section 5 of *)
(* Reynald Affeldt, Cyril Cohen, Damien Rouhling: *)
(* Formalization Techniques for Asymptotic Reasoning in Classical Analysis. *)
(* Journal of Formalized Reasoning, 2018 *)
(* *)
(* * Axioms *)
(* functional_extensionality_dep == functional extensionality (on dependently *)
(* typed functions), i.e., functions that are pointwise *)
(* equal are equal *)
(* propositional_extensionality == propositional extensionality, i.e., iff *)
(* and equality are the same on Prop *)
(* constructive_indefinite_description == existential in Prop (ex) implies *)
(* existential in Type (sig) *)
(* cid := constructive_indefinite_description (shortcut) *)
(* --> A number of properties are derived below from these axioms and are *)
(* often more pratical to use than directly using the axioms. For instance *)
(* propext, funext, the excluded middle (EM),... *)
(* *)
(* * Boolean View of Prop *)
(* `[< P >] == boolean view of P : Prop, see all lemmas about asbool *)
(* *)
(* * Mathematical Components Structures *)
(* {classic T} == Endow T : Type with a canonical eqType/choiceType. *)
(* This is intended for local use. *)
(* E.g., T : Type |- A : {fset {classic T}} *)
(* Alternatively one may use elim/Pchoice: T => T in H *. *)
(* to substitute T with T : choiceType once and for all. *)
(* {eclassic T} == Endow T : eqType with a canonical choiceType. *)
(* On the model of {classic _}. *)
(* See also the lemmas Peq and eqPchoice. *)
(* *)
(* --> Functions into a porderType (resp. latticeType) are equipped with *)
(* a porderType (resp. latticeType), (f <= g)%O when f x <= g x for all x, *)
(* see lemma lefP. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope box_scope.
Declare Scope quant_scope.
(* -------------------------------------------------------------------- *)
Axiom functional_extensionality_dep :
forall (A : Type) (B : A -> Type) (f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g.
Axiom propositional_extensionality :
forall P Q : Prop, P <-> Q -> P = Q.
Axiom constructive_indefinite_description :
forall (A : Type) (P : A -> Prop),
(exists x : A, P x) -> {x : A | P x}.
Notation cid := constructive_indefinite_description.
Lemma cid2 (A : Type) (P Q : A -> Prop) :
(exists2 x : A, P x & Q x) -> {x : A | P x & Q x}.
Proof.
move=> PQA; suff: {x | P x /\ Q x} by move=> [a [*]]; exists a.
by apply: cid; case: PQA => x; exists x.
Qed.
(* -------------------------------------------------------------------- *)
Record mextentionality := {
_ : forall (P Q : Prop), (P <-> Q) -> (P = Q);
_ : forall {T U : Type} (f g : T -> U),
(forall x, f x = g x) -> f = g;
}.
Fact extentionality : mextentionality.
Proof.
split.
- exact: propositional_extensionality.
- by move=> T U f g; apply: functional_extensionality_dep.
Qed.
Lemma propext (P Q : Prop) : (P <-> Q) -> (P = Q).
Proof. by have [propext _] := extentionality; apply: propext. Qed.
Lemma funext {T U : Type} (f g : T -> U) : (f =1 g) -> f = g.
Proof. by case: extentionality=> _; apply. Qed.
Lemma propeqE (P Q : Prop) : (P = Q) = (P <-> Q).
Proof. by apply: propext; split=> [->|/propext]. Qed.
Lemma propeqP (P Q : Prop) : (P = Q) <-> (P <-> Q).
Proof. by rewrite propeqE. Qed.
Lemma funeqE {T U : Type} (f g : T -> U) : (f = g) = (f =1 g).
Proof. by rewrite propeqE; split=> [->//|/funext]. Qed.
Lemma funeq2E {T U V : Type} (f g : T -> U -> V) : (f = g) = (f =2 g).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite funeqE.
Qed.
Lemma funeq3E {T U V W : Type} (f g : T -> U -> V -> W) :
(f = g) = (forall x y z, f x y z = g x y z).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> x y; rewrite funeqE.
Qed.
Lemma funeqP {T U : Type} (f g : T -> U) : (f = g) <-> (f =1 g).
Proof. by rewrite funeqE. Qed.
Lemma funeq2P {T U V : Type} (f g : T -> U -> V) : (f = g) <-> (f =2 g).
Proof. by rewrite funeq2E. Qed.
Lemma funeq3P {T U V W : Type} (f g : T -> U -> V -> W) :
(f = g) <-> (forall x y z, f x y z = g x y z).
Proof. by rewrite funeq3E. Qed.
Lemma predeqE {T} (P Q : T -> Prop) : (P = Q) = (forall x, P x <-> Q x).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite propeqE.
Qed.
Lemma predeq2E {T U} (P Q : T -> U -> Prop) :
(P = Q) = (forall x y, P x y <-> Q x y).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> ??; rewrite propeqE.
Qed.
Lemma predeq3E {T U V} (P Q : T -> U -> V -> Prop) :
(P = Q) = (forall x y z, P x y z <-> Q x y z).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq3E=> ???; rewrite propeqE.
Qed.
Lemma predeqP {T} (A B : T -> Prop) : (A = B) <-> (forall x, A x <-> B x).
Proof. by rewrite predeqE. Qed.
Lemma predeq2P {T U} (P Q : T -> U -> Prop) :
(P = Q) <-> (forall x y, P x y <-> Q x y).
Proof. by rewrite predeq2E. Qed.
Lemma predeq3P {T U V} (P Q : T -> U -> V -> Prop) :
(P = Q) <-> (forall x y z, P x y z <-> Q x y z).
Proof. by rewrite predeq3E. Qed.
Lemma propT {P : Prop} : P -> P = True.
Proof. by move=> p; rewrite propeqE. Qed.
Lemma Prop_irrelevance (P : Prop) (x y : P) : x = y.
Proof. by move: x (x) y => /propT-> [] []. Qed.
#[global] Hint Resolve Prop_irrelevance : core.
(* -------------------------------------------------------------------- *)
Record mclassic := {
_ : forall (P : Prop), {P} + {~P};
_ : forall T, Choice.mixin_of T
}.
Lemma choice X Y (P : X -> Y -> Prop) :
(forall x, exists y, P x y) -> {f & forall x, P x (f x)}.
Proof. by move=> /(_ _)/constructive_indefinite_description -/all_tag. Qed.
(* Diaconescu Theorem *)
Theorem EM P : P \/ ~ P.
Proof.
pose U val := fun Q : bool => Q = val \/ P.
have Uex val : exists b, U val b by exists val; left.
pose f val := projT1 (cid (Uex val)).
pose Uf val : U val (f val) := projT2 (cid (Uex val)).
have : f true != f false \/ P.
have [] := (Uf true, Uf false); rewrite /U.
by move=> [->|?] [->|?] ; do ?[by right]; left.
move=> [/eqP fTFN|]; [right=> p|by left]; apply: fTFN.
have UTF : U true = U false by rewrite predeqE /U => b; split=> _; right.
rewrite /f; move: (Uex true) (Uex false); rewrite UTF => p1 p2.
by congr (projT1 (cid _)).
Qed.
Lemma pselect (P : Prop): {P} + {~P}.
Proof.
have : exists b, if b then P else ~ P.
by case: (EM P); [exists true|exists false].
by move=> /cid [[]]; [left|right].
Qed.
Lemma pselectT T : (T -> False) + T.
Proof.
have [/cid[]//|NT] := pselect (exists t : T, True); first by right.
by left=> t; case: NT; exists t.
Qed.
Lemma classic : mclassic.
Proof.
split=> [|T]; first exact: pselect.
exists (fun (P : pred T) (n : nat) =>
if pselect (exists x, P x) isn't left ex then None
else Some (projT1 (cid ex)))
=> [P n x|P [x Px]|P Q /funext -> //].
by case: pselect => // ex [<- ]; case: cid.
by exists 0; case: pselect => // -[]; exists x.
Qed.
Lemma gen_choiceMixin {T : Type} : Choice.mixin_of T.
Proof. by case: classic. Qed.
Lemma pdegen (P : Prop): P = True \/ P = False.
Proof. by have [p|Np] := pselect P; [left|right]; rewrite propeqE. Qed.
Lemma lem (P : Prop): P \/ ~P.
Proof. by case: (pselect P); tauto. Qed.
(* -------------------------------------------------------------------- *)
Lemma trueE : true = True :> Prop.
Proof. by rewrite propeqE; split. Qed.
Lemma falseE : false = False :> Prop.
Proof. by rewrite propeqE; split. Qed.
Lemma propF (P : Prop) : ~ P -> P = False.
Proof. by move=> p; rewrite propeqE; tauto. Qed.
Lemma eq_fun T rT (U V : T -> rT) :
(forall x : T, U x = V x) -> (fun x => U x) = (fun x => V x).
Proof. by move=> /funext->. Qed.
Lemma eq_fun2 T1 T2 rT (U V : T1 -> T2 -> rT) :
(forall x y, U x y = V x y) -> (fun x y => U x y) = (fun x y => V x y).
Proof. by move=> UV; rewrite funeq2E => x y; rewrite UV. Qed.
Lemma eq_fun3 T1 T2 T3 rT (U V : T1 -> T2 -> T3 -> rT) :
(forall x y z, U x y z = V x y z) ->
(fun x y z => U x y z) = (fun x y z => V x y z).
Proof. by move=> UV; rewrite funeq3E => x y z; rewrite UV. Qed.
Lemma eq_forall T (U V : T -> Prop) :
(forall x : T, U x = V x) -> (forall x, U x) = (forall x, V x).
Proof. by move=> e; rewrite propeqE; split=> ??; rewrite (e,=^~e). Qed.
Lemma eq_forall2 T S (U V : forall x : T, S x -> Prop) :
(forall x y, U x y = V x y) -> (forall x y, U x y) = (forall x y, V x y).
Proof. by move=> UV; apply/eq_forall => x; apply/eq_forall. Qed.
Lemma eq_forall3 T S R (U V : forall (x : T) (y : S x), R x y -> Prop) :
(forall x y z, U x y z = V x y z) ->
(forall x y z, U x y z) = (forall x y z, V x y z).
Proof. by move=> UV; apply/eq_forall2 => x y; apply/eq_forall. Qed.
Lemma eq_exists T (U V : T -> Prop) :
(forall x : T, U x = V x) -> (exists x, U x) = (exists x, V x).
Proof.
by move=> e; rewrite propeqE; split=> - [] x ?; exists x; rewrite (e,=^~e).
Qed.
Lemma eq_exists2 T S (U V : forall x : T, S x -> Prop) :
(forall x y, U x y = V x y) -> (exists x y, U x y) = (exists x y, V x y).
Proof. by move=> UV; apply/eq_exists => x; apply/eq_exists. Qed.
Lemma eq_exists3 T S R (U V : forall (x : T) (y : S x), R x y -> Prop) :
(forall x y z, U x y z = V x y z) ->
(exists x y z, U x y z) = (exists x y z, V x y z).
Proof. by move=> UV; apply/eq_exists2 => x y; apply/eq_exists. Qed.
Lemma eq_exist T (P : T -> Prop) (s t : T) (p : P s) (q : P t) :
s = t -> exist P s p = exist P t q.
Proof. by move=> st; case: _ / st in q *; apply/congr1. Qed.
Lemma forall_swap T S (U : forall (x : T) (y : S), Prop) :
(forall x y, U x y) = (forall y x, U x y).
Proof. by rewrite propeqE; split. Qed.
Lemma exists_swap T S (U : forall (x : T) (y : S), Prop) :
(exists x y, U x y) = (exists y x, U x y).
Proof. by rewrite propeqE; split => -[x [y]]; exists y, x. Qed.
Lemma reflect_eq (P : Prop) (b : bool) : reflect P b -> P = b.
Proof. by rewrite propeqE; exact: rwP. Qed.
Definition asbool (P : Prop) :=
if pselect P then true else false.
Notation "`[< P >]" := (asbool P) : bool_scope.
Lemma asboolE (P : Prop) : `[<P>] = P :> Prop.
Proof. by rewrite propeqE /asbool; case: pselect; split. Qed.
Lemma asboolP (P : Prop) : reflect P `[<P>].
Proof. by apply: (equivP idP); rewrite asboolE. Qed.
Lemma asboolb (b : bool) : `[< b >] = b.
Proof. by apply/asboolP/idP. Qed.
Lemma asboolPn (P : Prop) : reflect (~ P) (~~ `[<P>]).
Proof. by rewrite /asbool; case: pselect=> h; constructor. Qed.
Lemma asboolW (P : Prop) : `[<P>] -> P.
Proof. by case: asboolP. Qed.
(* Shall this be a coercion ?*)
Lemma asboolT (P : Prop) : P -> `[<P>].
Proof. by case: asboolP. Qed.
Lemma asboolF (P : Prop) : ~ P -> `[<P>] = false.
Proof. by apply/introF/asboolP. Qed.
Lemma eq_opE (T : eqType) (x y : T) : (x == y : Prop) = (x = y).
Proof. by apply/propext; split=> /eqP. Qed.
Lemma is_true_inj : injective is_true.
Proof. by move=> [] []; rewrite ?(trueE, falseE) ?propeqE; tauto. Qed.
Definition gen_eq (T : Type) (u v : T) := `[<u = v>].
Lemma gen_eqP (T : Type) : Equality.axiom (@gen_eq T).
Proof. by move=> x y; apply: (iffP (asboolP _)). Qed.
Definition gen_eqMixin {T : Type} := EqMixin (@gen_eqP T).
Canonical arrow_eqType (T : Type) (T' : eqType) :=
EqType (T -> T') gen_eqMixin.
Canonical arrow_choiceType (T : Type) (T' : choiceType) :=
ChoiceType (T -> T') gen_choiceMixin.
Definition dep_arrow_eqType (T : Type) (T' : T -> eqType) :=
EqType (forall x : T, T' x) gen_eqMixin.
Definition dep_arrow_choiceClass (T : Type) (T' : T -> choiceType) :=
Choice.Class (Equality.class (dep_arrow_eqType T')) gen_choiceMixin.
Definition dep_arrow_choiceType (T : Type) (T' : T -> choiceType) :=
Choice.Pack (dep_arrow_choiceClass T').
Canonical Prop_eqType := EqType Prop gen_eqMixin.
Canonical Prop_choiceType := ChoiceType Prop gen_choiceMixin.
Section classicType.
Variable T : Type.
Definition classicType := T.
Canonical classicType_eqType := EqType classicType gen_eqMixin.
Canonical classicType_choiceType := ChoiceType classicType gen_choiceMixin.
End classicType.
Notation "'{classic' T }" := (classicType T)
(format "'{classic' T }") : type_scope.
Section eclassicType.
Variable T : eqType.
Definition eclassicType : Type := T.
Canonical eclassicType_eqType := EqType eclassicType (Equality.class T).
Canonical eclassicType_choiceType := ChoiceType eclassicType gen_choiceMixin.
End eclassicType.
Notation "'{eclassic' T }" := (eclassicType T)
(format "'{eclassic' T }") : type_scope.
Definition canonical_of T U (sort : U -> T) := forall (G : T -> Type),
(forall x', G (sort x')) -> forall x, G x.
Notation canonical_ sort := (@canonical_of _ _ sort).
Notation canonical T E := (@canonical_of T E id).
Lemma canon T U (sort : U -> T) : (forall x, exists y, sort y = x) -> canonical_ sort.
Proof. by move=> + G Gs x => /(_ x)/cid[x' <-]. Qed.
Arguments canon {T U sort} x.
Lemma Peq : canonical Type eqType.
Proof. by apply: canon => T; exists [eqType of {classic T}]. Qed.
Lemma Pchoice : canonical Type choiceType.
Proof. by apply: canon => T; exists [choiceType of {classic T}]. Qed.
Lemma eqPchoice : canonical eqType choiceType.
Proof. by apply: canon=> T; exists [choiceType of {eclassic T}]; case: T. Qed.
Lemma not_True : (~ True) = False. Proof. exact/propext. Qed.
Lemma not_False : (~ False) = True. Proof. by apply/propext; split=> _. Qed.
(* -------------------------------------------------------------------- *)
Lemma asbool_equiv_eq {P Q : Prop} : (P <-> Q) -> `[<P>] = `[<Q>].
Proof. by rewrite -propeqE => ->. Qed.
Lemma asbool_equiv_eqP {P Q : Prop} b : reflect Q b -> (P <-> Q) -> `[<P>] = b.
Proof. by move=> Q_b [PQ QP]; apply/asboolP/Q_b. Qed.
Lemma asbool_equiv {P Q : Prop} : (P <-> Q) -> (`[<P>] <-> `[<Q>]).
Proof. by move/asbool_equiv_eq->. Qed.
Lemma asbool_eq_equiv {P Q : Prop} : `[<P>] = `[<Q>] -> (P <-> Q).
Proof. by move=> eq; split=> /asboolP; rewrite (eq, =^~ eq) => /asboolP. Qed.
(* -------------------------------------------------------------------- *)
Lemma and_asboolP (P Q : Prop) : reflect (P /\ Q) (`[< P >] && `[< Q >]).
Proof.
apply: (iffP idP); first by case/andP => /asboolP p /asboolP q.
by case=> /asboolP-> /asboolP->.
Qed.
Lemma and3_asboolP (P Q R : Prop) :
reflect [/\ P, Q & R] [&& `[< P >], `[< Q >] & `[< R >]].
Proof.
apply: (iffP idP); first by case/and3P => /asboolP p /asboolP q /asboolP r.
by case => /asboolP -> /asboolP -> /asboolP ->.
Qed.
Lemma or_asboolP (P Q : Prop) : reflect (P \/ Q) (`[< P >] || `[< Q >]).
Proof.
apply: (iffP idP); first by case/orP=> /asboolP; [left | right].
by case=> /asboolP-> //=; rewrite orbT.
Qed.
Lemma or3_asboolP (P Q R : Prop) :
reflect [\/ P, Q | R] [|| `[< P >], `[< Q >] | `[< R >]].
Proof.
apply: (iffP idP); last by case=> [| |] /asboolP -> //=; rewrite !orbT.
by case/orP=> [/asboolP p|/orP[]/asboolP]; [exact:Or31|exact:Or32|exact:Or33].
Qed.
Lemma asbool_neg {P : Prop} : `[<~ P>] = ~~ `[<P>].
Proof. by apply/idP/asboolPn=> [/asboolP|/asboolT]. Qed.
Lemma asbool_or {P Q : Prop} : `[<P \/ Q>] = `[<P>] || `[<Q>].
Proof. exact: (asbool_equiv_eqP (or_asboolP _ _)). Qed.
Lemma asbool_and {P Q : Prop} : `[<P /\ Q>] = `[<P>] && `[<Q>].
Proof. exact: (asbool_equiv_eqP (and_asboolP _ _)). Qed.
(* -------------------------------------------------------------------- *)
Lemma imply_asboolP {P Q : Prop} : reflect (P -> Q) (`[<P>] ==> `[<Q>]).
Proof.
apply: (iffP implyP)=> [PQb /asboolP/PQb/asboolW //|].
by move=> PQ /asboolP/PQ/asboolT.
Qed.
Lemma asbool_imply {P Q : Prop} : `[<P -> Q>] = `[<P>] ==> `[<Q>].
Proof. exact: (asbool_equiv_eqP imply_asboolP). Qed.
Lemma imply_asboolPn (P Q : Prop) : reflect (P /\ ~ Q) (~~ `[<P -> Q>]).
Proof.
apply: (iffP idP).
by rewrite asbool_imply negb_imply -asbool_neg => /and_asboolP.
by move/and_asboolP; rewrite asbool_neg -negb_imply asbool_imply.
Qed.
(* -------------------------------------------------------------------- *)
Lemma forall_asboolP {T : Type} (P : T -> Prop) :
reflect (forall x, `[<P x>]) (`[<forall x, P x>]).
Proof.
apply: (iffP idP); first by move/asboolP=> Px x; apply/asboolP.
by move=> Px; apply/asboolP=> x; apply/asboolP.
Qed.
Lemma exists_asboolP {T : Type} (P : T -> Prop) :
reflect (exists x, `[<P x>]) (`[<exists x, P x>]).
Proof.
apply: (iffP idP); first by case/asboolP=> x Px; exists x; apply/asboolP.
by case=> x bPx; apply/asboolP; exists x; apply/asboolP.
Qed.
(* -------------------------------------------------------------------- *)
Lemma notT (P : Prop) : P = False -> ~ P. Proof. by move->. Qed.
Lemma contrapT P : ~ ~ P -> P.
Proof.
by move/asboolPn=> nnb; apply/asboolP; apply: contraR nnb => /asboolPn /asboolP.
Qed.
Lemma notTE (P : Prop) : (~ P) -> P = False.
Proof. by case: (pdegen P)=> ->. Qed.
Lemma notFE (P : Prop) : (~ P) = False -> P.
Proof. move/notT; exact: contrapT. Qed.
Lemma notK : involutive not.
Proof.
move=> P; case: (pdegen P)=> ->; last by apply: notTE; intuition.
by rewrite [~ True]notTE //; case: (pdegen (~ False)) => // /notFE.
Qed.
Lemma contra_notP (Q P : Prop) : (~ Q -> P) -> ~ P -> Q.
Proof.
move=> cb /asboolPn nb; apply/asboolP.
by apply: contraR nb => /asboolP /cb /asboolP.
Qed.
Lemma contraPP (Q P : Prop) : (~ Q -> ~ P) -> P -> Q.
Proof.
move=> cb /asboolP hb; apply/asboolP.
by apply: contraLR hb => /asboolP /cb /asboolPn.
Qed.
Lemma contra_notT b (P : Prop) : (~~ b -> P) -> ~ P -> b.
Proof. by move=> bP; apply: contra_notP => /negP. Qed.
Lemma contraPT (P : Prop) b : (~~ b -> ~ P) -> P -> b.
Proof. by move=> /contra_notT; rewrite notK. Qed.
Lemma contraTP b (Q : Prop) : (~ Q -> ~~ b) -> b -> Q.
Proof. by move=> QB; apply: contraPP => /QB/negP. Qed.
Lemma contraNP (P : Prop) (b : bool) : (~ P -> b) -> ~~ b -> P.
Proof. by move=> /contra_notP + /negP => /[apply]. Qed.
Lemma contra_neqP (T : eqType) (x y : T) P : (~ P -> x = y) -> x != y -> P.
Proof. by move=> Pxy; apply: contraNP => /Pxy/eqP. Qed.
Lemma contra_eqP (T : eqType) (x y : T) (Q : Prop) : (~ Q -> x != y) -> x = y -> Q.
Proof. by move=> Qxy /eqP; apply: contraTP. Qed.
Lemma wlog_neg P : (~ P -> P) -> P.
Proof. by move=> ?; case: (pselect P). Qed.
Lemma not_inj : injective not. Proof. exact: can_inj notK. Qed.
Lemma notLR P Q : (P = ~ Q) -> (~ P) = Q. Proof. exact: canLR notK. Qed.
Lemma notRL P Q : (~ P) = Q -> P = ~ Q. Proof. exact: canRL notK. Qed.
Lemma iff_notr (P Q : Prop) : (P <-> ~ Q) <-> (~ P <-> Q).
Proof. by split=> [/propext ->|/propext <-]; rewrite notK. Qed.
Lemma iff_not2 (P Q : Prop) : (~ P <-> ~ Q) <-> (P <-> Q).
Proof. by split=> [/iff_notr|PQ]; [|apply/iff_notr]; rewrite notK. Qed.
(* -------------------------------------------------------------------- *)
(* assia : let's see if we need the simplpred machinery. In any case, we sould
first try definitions + appropriate Arguments setting to see whether these
can replace the canonical structures machinery. *)
Definition predp T := T -> Prop.
Identity Coercion fun_of_pred : predp >-> Funclass.
Definition relp T := T -> predp T.
Identity Coercion fun_of_rel : rel >-> Funclass.
Notation xpredp0 := (fun _ => False).
Notation xpredpT := (fun _ => True).
Notation xpredpI := (fun (p1 p2 : predp _) x => p1 x /\ p2 x).
Notation xpredpU := (fun (p1 p2 : predp _) x => p1 x \/ p2 x).
Notation xpredpC := (fun (p : predp _) x => ~ p x).
Notation xpredpD := (fun (p1 p2 : predp _) x => ~ p2 x /\ p1 x).
Notation xpreimp := (fun f (p : predp _) x => p (f x)).
Notation xrelpU := (fun (r1 r2 : relp _) x y => r1 x y \/ r2 x y).
(* -------------------------------------------------------------------- *)
Definition pred0p (T : Type) (P : predp T) : bool := `[<P =1 xpredp0>].
Prenex Implicits pred0p.
Lemma pred0pP (T : Type) (P : predp T) : reflect (P =1 xpredp0) (pred0p P).
Proof. by apply: (iffP (asboolP _)). Qed.
(* -------------------------------------------------------------------- *)
Lemma forallp_asboolPn {T} {P : T -> Prop} :
reflect (forall x : T, ~ P x) (~~ `[<exists x : T, P x>]).
Proof.
apply: (iffP idP)=> [/asboolPn NP x Px|NP].
by apply/NP; exists x. by apply/asboolP=> -[x]; apply/NP.
Qed.
Lemma existsp_asboolPn {T} {P : T -> Prop} :
reflect (exists x : T, ~ P x) (~~ `[<forall x : T, P x>]).
Proof.
apply: (iffP idP); last by case=> x NPx; apply/asboolPn=> /(_ x).
move/asboolPn=> NP; apply/asboolP/negbNE/asboolPn=> h.
by apply/NP=> x; apply/asboolP/negbNE/asboolPn=> NPx; apply/h; exists x.
Qed.
Lemma asbool_forallNb {T : Type} (P : pred T) :
`[< forall x : T, ~~ (P x) >] = ~~ `[< exists x : T, P x >].
Proof.
apply: (asbool_equiv_eqP forallp_asboolPn);
by split=> h x; apply/negP/h.
Qed.
Lemma asbool_existsNb {T : Type} (P : pred T) :
`[< exists x : T, ~~ (P x) >] = ~~ `[< forall x : T, P x >].
Proof.
apply: (asbool_equiv_eqP existsp_asboolPn);
by split=> -[x h]; exists x; apply/negP.
Qed.
Lemma not_implyP (P Q : Prop) : ~ (P -> Q) <-> P /\ ~ Q.
Proof.
split=> [/asboolP|[p nq pq]]; [|exact/nq/pq].
by rewrite asbool_neg => /imply_asboolPn.
Qed.
Lemma not_andP (P Q : Prop) : ~ (P /\ Q) <-> ~ P \/ ~ Q.
Proof.
split => [/asboolPn|[|]]; try by apply: contra_not => -[].
by rewrite asbool_and negb_and => /orP[]/asboolPn; [left|right].
Qed.
Lemma not_and3P (P Q R : Prop) : ~ [/\ P, Q & R] <-> [\/ ~ P, ~ Q | ~ R].
Proof.
split=> [/and3_asboolP|/or3_asboolP].
by rewrite 2!negb_and -3!asbool_neg => /or3_asboolP.
by rewrite 3!asbool_neg -2!negb_and => /and3_asboolP.
Qed.
Lemma not_orP (P Q : Prop) : ~ (P \/ Q) <-> ~ P /\ ~ Q.
Proof.
split; [apply: contra_notP => /not_andP|apply: contraPnot => AB; apply/not_andP];
by rewrite 2!notK.
Qed.
Lemma not_implyE (P Q : Prop) : (~ (P -> Q)) = (P /\ ~ Q).
Proof. by rewrite propeqE not_implyP. Qed.
Lemma orC (P Q : Prop) : (P \/ Q) = (Q \/ P).
Proof. by rewrite propeqE; split=> [[]|[]]; [right|left|right|left]. Qed.
Lemma orA : associative or.
Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed.
Lemma andC (P Q : Prop) : (P /\ Q) = (Q /\ P).
Proof. by rewrite propeqE; split=> [[]|[]]. Qed.
Lemma andA : associative and.
Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed.
Lemma forallNE {T} (P : T -> Prop) : (forall x, ~ P x) = ~ exists x, P x.
Proof.
by rewrite propeqE; split => [fP [x /fP]//|nexP x Px]; apply: nexP; exists x.
Qed.
Lemma existsNE {T} (P : T -> Prop) : (exists x, ~ P x) = ~ forall x, P x.
Proof.
rewrite propeqE; split=> [[x Px] aP //|NaP].
by apply: contrapT; rewrite -forallNE => aP; apply: NaP => x; apply: contrapT.
Qed.
Lemma existsNP T (P : T -> Prop) : (exists x, ~ P x) <-> ~ forall x, P x.
Proof. by rewrite existsNE. Qed.
Lemma not_existsP T (P : T -> Prop) : (exists x, P x) <-> ~ forall x, ~ P x.
Proof. by rewrite forallNE notK. Qed.
Lemma forallNP T (P : T -> Prop) : (forall x, ~ P x) <-> ~ exists x, P x.
Proof. by rewrite forallNE. Qed.
Lemma not_forallP T (P : T -> Prop) : (forall x, P x) <-> ~ exists x, ~ P x.
Proof. by rewrite existsNE notK. Qed.
Lemma exists2P T (P Q : T -> Prop) :
(exists2 x, P x & Q x) <-> exists x, P x /\ Q x.
Proof. by split=> [[x ? ?] | [x []]]; exists x. Qed.
Lemma not_exists2P T (P Q : T -> Prop) :
(exists2 x, P x & Q x) <-> ~ forall x, ~ P x \/ ~ Q x.
Proof.
rewrite exists2P not_existsP.
by split; apply: contra_not => PQx x; apply/not_andP; apply: PQx.
Qed.
Lemma forall2NP T (P Q : T -> Prop) :
(forall x, ~ P x \/ ~ Q x) <-> ~ (exists2 x, P x & Q x).
Proof.
split=> [PQ [t Pt Qt]|PQ t]; first by have [] := PQ t.
by rewrite -not_andP => -[Pt Qt]; apply PQ; exists t.
Qed.
Lemma forallPNP T (P Q : T -> Prop) :
(forall x, P x -> ~ Q x) <-> ~ (exists2 x, P x & Q x).
Proof.
split=> [PQ [t Pt Qt]|PQ t]; first by have [] := PQ t.
by move=> Pt Qt; apply: PQ; exists t.
Qed.
Lemma existsPNP T (P Q : T -> Prop) :
(exists2 x, P x & ~ Q x) <-> ~ (forall x, P x -> Q x).
Proof.
split=> [[x Px NQx] /(_ x Px)//|]; apply: contra_notP => + x Px.
by apply: contra_notP => NQx; exists x.
Qed.
Module FunOrder.
Section FunOrder.
Import Order.TTheory.
Variables (aT : Type) (d : unit) (T : porderType d).
Implicit Types f g h : aT -> T.
Lemma fun_display : unit. Proof. exact: tt. Qed.
Definition lef f g := `[< forall x, (f x <= g x)%O >].
Local Notation "f <= g" := (lef f g).
Definition ltf f g := `[< (forall x, (f x <= g x)%O) /\ exists x, f x != g x >].
Local Notation "f < g" := (ltf f g).
Lemma ltf_def f g : (f < g) = (g != f) && (f <= g).
Proof.
apply/idP/andP => [fg|[gf fg]]; [split|apply/asboolP; split; [exact/asboolP|]].
- by apply/eqP => gf; move: fg => /asboolP[fg] [x /eqP]; apply; rewrite gf.
- apply/asboolP => x; rewrite le_eqVlt; move/asboolP : fg => [fg [y gfy]].
by have [//|gfx /=] := boolP (f x == g x); rewrite lt_neqAle gfx /= fg.
- apply/not_existsP => h.
have : f =1 g by move=> x; have /negP/negPn/eqP := h x.
by rewrite -funeqE; apply/nesym/eqP.
Qed.
Fact lef_refl : reflexive lef. Proof. by move=> f; apply/asboolP => x. Qed.
Fact lef_anti : antisymmetric lef.
Proof.
move=> f g => /andP[/asboolP fg /asboolP gf]; rewrite funeqE => x.
by apply/eqP; rewrite eq_le fg gf.
Qed.
Fact lef_trans : transitive lef.
Proof.
move=> g f h /asboolP fg /asboolP gh; apply/asboolP => x.
by rewrite (le_trans (fg x)).
Qed.
Definition porderMixin :=
@LePOrderMixin _ lef ltf ltf_def lef_refl lef_anti lef_trans.
Canonical porderType := POrderType fun_display (aT -> T) porderMixin.
End FunOrder.
Section FunLattice.
Import Order.TTheory.
Variables (aT : Type) (d : unit) (T : latticeType d).
Implicit Types f g h : aT -> T.
Definition meetf f g := fun x => Order.meet (f x) (g x).
Definition joinf f g := fun x => Order.join (f x) (g x).
Lemma meetfC : commutative meetf.
Proof. move=> f g; apply/funext => x; exact: meetC. Qed.
Lemma joinfC : commutative joinf.
Proof. move=> f g; apply/funext => x; exact: joinC. Qed.
Lemma meetfA : associative meetf.
Proof. move=> f g h; apply/funext => x; exact: meetA. Qed.
Lemma joinfA : associative joinf.
Proof. move=> f g h; apply/funext => x; exact: joinA. Qed.
Lemma joinfKI g f : meetf f (joinf f g) = f.
Proof. apply/funext => x; exact: joinKI. Qed.
Lemma meetfKU g f : joinf f (meetf f g) = f.
Proof. apply/funext => x; exact: meetKU. Qed.
Lemma lef_meet f g : (f <= g)%O = (meetf f g == f).
Proof.
apply/idP/idP => [/asboolP f_le_g|/eqP <-].
- apply/eqP/funext => x; exact/meet_l/f_le_g.
- apply/asboolP => x; exact: leIr.
Qed.
Definition latticeMixin :=
LatticeMixin meetfC joinfC meetfA joinfA joinfKI meetfKU lef_meet.
Canonical latticeType := LatticeType (aT -> T) latticeMixin.
End FunLattice.
Module Exports.
Canonical porderType.
Canonical latticeType.
End Exports.
End FunOrder.
Export FunOrder.Exports.
Lemma lefP (aT : Type) d (T : porderType d) (f g : aT -> T) :
reflect (forall x, (f x <= g x)%O) (f <= g)%O.
Proof. by apply: (iffP idP) => [fg|fg]; [exact/asboolP | apply/asboolP]. Qed.
Lemma meetfE (aT : Type) d (T : latticeType d) (f g : aT -> T) x :
((f `&` g) x = f x `&` g x)%O.
Proof. by []. Qed.
Lemma joinfE (aT : Type) d (T : latticeType d) (f g : aT -> T) x :
((f `|` g) x = f x `|` g x)%O.
Proof. by []. Qed.
Lemma iterfS {T} (f : T -> T) (n : nat) : iter n.+1 f = f \o iter n f.
Proof. by []. Qed.
Lemma iterfSr {T} (f : T -> T) (n : nat) : iter n.+1 f = iter n f \o f.
Proof. by apply/funeqP => ?; rewrite iterSr. Qed.
Lemma iter0 {T} (f : T -> T) : iter 0 f = id.
Proof. by []. Qed.