(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *) (* -------------------------------------------------------------------- *) (* Copyright (c) - 2015--2016 - IMDEA Software Institute *) (* Copyright (c) - 2015--2018 - Inria *) (* Copyright (c) - 2016--2018 - Polytechnique *) (* -------------------------------------------------------------------- *) From mathcomp Require Import all_ssreflect. (******************************************************************************) (* Classical Logic *) (* *) (* This file provides the axioms of classical logic and tools to perform *) (* classical reasoning in the Mathematical Compnent framework. The three *) (* axioms are taken from the standard library of Coq, more details can be *) (* found in Section 5 of *) (* Reynald Affeldt, Cyril Cohen, Damien Rouhling: *) (* Formalization Techniques for Asymptotic Reasoning in Classical Analysis. *) (* Journal of Formalized Reasoning, 2018 *) (* *) (* * Axioms *) (* functional_extensionality_dep == functional extensionality (on dependently *) (* typed functions), i.e., functions that are pointwise *) (* equal are equal *) (* propositional_extensionality == propositional extensionality, i.e., iff *) (* and equality are the same on Prop *) (* constructive_indefinite_description == existential in Prop (ex) implies *) (* existential in Type (sig) *) (* cid := constructive_indefinite_description (shortcut) *) (* --> A number of properties are derived below from these axioms and are *) (* often more pratical to use than directly using the axioms. For instance *) (* propext, funext, the excluded middle (EM),... *) (* *) (* * Boolean View of Prop *) (* `[< P >] == boolean view of P : Prop, see all lemmas about asbool *) (* *) (* * Mathematical Components Structures *) (* {classic T} == Endow T : Type with a canonical eqType/choiceType. *) (* This is intended for local use. *) (* E.g., T : Type |- A : {fset {classic T}} *) (* Alternatively one may use elim/Pchoice: T => T in H *. *) (* to substitute T with T : choiceType once and for all. *) (* {eclassic T} == Endow T : eqType with a canonical choiceType. *) (* On the model of {classic _}. *) (* See also the lemmas Peq and eqPchoice. *) (* *) (* --> Functions into a porderType (resp. latticeType) are equipped with *) (* a porderType (resp. latticeType), (f <= g)%O when f x <= g x for all x, *) (* see lemma lefP. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Declare Scope box_scope. Declare Scope quant_scope. (* -------------------------------------------------------------------- *) Axiom functional_extensionality_dep : forall (A : Type) (B : A -> Type) (f g : forall x : A, B x), (forall x : A, f x = g x) -> f = g. Axiom propositional_extensionality : forall P Q : Prop, P <-> Q -> P = Q. Axiom constructive_indefinite_description : forall (A : Type) (P : A -> Prop), (exists x : A, P x) -> {x : A | P x}. Notation cid := constructive_indefinite_description. Lemma cid2 (A : Type) (P Q : A -> Prop) : (exists2 x : A, P x & Q x) -> {x : A | P x & Q x}. Proof. move=> PQA; suff: {x | P x /\ Q x} by move=> [a [*]]; exists a. by apply: cid; case: PQA => x; exists x. Qed. (* -------------------------------------------------------------------- *) Record mextentionality := { _ : forall (P Q : Prop), (P <-> Q) -> (P = Q); _ : forall {T U : Type} (f g : T -> U), (forall x, f x = g x) -> f = g; }. Fact extentionality : mextentionality. Proof. split. - exact: propositional_extensionality. - by move=> T U f g; apply: functional_extensionality_dep. Qed. Lemma propext (P Q : Prop) : (P <-> Q) -> (P = Q). Proof. by have [propext _] := extentionality; apply: propext. Qed. Lemma funext {T U : Type} (f g : T -> U) : (f =1 g) -> f = g. Proof. by case: extentionality=> _; apply. Qed. Lemma propeqE (P Q : Prop) : (P = Q) = (P <-> Q). Proof. by apply: propext; split=> [->|/propext]. Qed. Lemma propeqP (P Q : Prop) : (P = Q) <-> (P <-> Q). Proof. by rewrite propeqE. Qed. Lemma funeqE {T U : Type} (f g : T -> U) : (f = g) = (f =1 g). Proof. by rewrite propeqE; split=> [->//|/funext]. Qed. Lemma funeq2E {T U V : Type} (f g : T -> U -> V) : (f = g) = (f =2 g). Proof. by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite funeqE. Qed. Lemma funeq3E {T U V W : Type} (f g : T -> U -> V -> W) : (f = g) = (forall x y z, f x y z = g x y z). Proof. by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> x y; rewrite funeqE. Qed. Lemma funeqP {T U : Type} (f g : T -> U) : (f = g) <-> (f =1 g). Proof. by rewrite funeqE. Qed. Lemma funeq2P {T U V : Type} (f g : T -> U -> V) : (f = g) <-> (f =2 g). Proof. by rewrite funeq2E. Qed. Lemma funeq3P {T U V W : Type} (f g : T -> U -> V -> W) : (f = g) <-> (forall x y z, f x y z = g x y z). Proof. by rewrite funeq3E. Qed. Lemma predeqE {T} (P Q : T -> Prop) : (P = Q) = (forall x, P x <-> Q x). Proof. by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite propeqE. Qed. Lemma predeq2E {T U} (P Q : T -> U -> Prop) : (P = Q) = (forall x y, P x y <-> Q x y). Proof. by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> ??; rewrite propeqE. Qed. Lemma predeq3E {T U V} (P Q : T -> U -> V -> Prop) : (P = Q) = (forall x y z, P x y z <-> Q x y z). Proof. by rewrite propeqE; split=> [->//|?]; rewrite funeq3E=> ???; rewrite propeqE. Qed. Lemma predeqP {T} (A B : T -> Prop) : (A = B) <-> (forall x, A x <-> B x). Proof. by rewrite predeqE. Qed. Lemma predeq2P {T U} (P Q : T -> U -> Prop) : (P = Q) <-> (forall x y, P x y <-> Q x y). Proof. by rewrite predeq2E. Qed. Lemma predeq3P {T U V} (P Q : T -> U -> V -> Prop) : (P = Q) <-> (forall x y z, P x y z <-> Q x y z). Proof. by rewrite predeq3E. Qed. Lemma propT {P : Prop} : P -> P = True. Proof. by move=> p; rewrite propeqE. Qed. Lemma Prop_irrelevance (P : Prop) (x y : P) : x = y. Proof. by move: x (x) y => /propT-> [] []. Qed. #[global] Hint Resolve Prop_irrelevance : core. (* -------------------------------------------------------------------- *) Record mclassic := { _ : forall (P : Prop), {P} + {~P}; _ : forall T, Choice.mixin_of T }. Lemma choice X Y (P : X -> Y -> Prop) : (forall x, exists y, P x y) -> {f & forall x, P x (f x)}. Proof. by move=> /(_ _)/constructive_indefinite_description -/all_tag. Qed. (* Diaconescu Theorem *) Theorem EM P : P \/ ~ P. Proof. pose U val := fun Q : bool => Q = val \/ P. have Uex val : exists b, U val b by exists val; left. pose f val := projT1 (cid (Uex val)). pose Uf val : U val (f val) := projT2 (cid (Uex val)). have : f true != f false \/ P. have [] := (Uf true, Uf false); rewrite /U. by move=> [->|?] [->|?] ; do ?[by right]; left. move=> [/eqP fTFN|]; [right=> p|by left]; apply: fTFN. have UTF : U true = U false by rewrite predeqE /U => b; split=> _; right. rewrite /f; move: (Uex true) (Uex false); rewrite UTF => p1 p2. by congr (projT1 (cid _)). Qed. Lemma pselect (P : Prop): {P} + {~P}. Proof. have : exists b, if b then P else ~ P. by case: (EM P); [exists true|exists false]. by move=> /cid [[]]; [left|right]. Qed. Lemma pselectT T : (T -> False) + T. Proof. have [/cid[]//|NT] := pselect (exists t : T, True); first by right. by left=> t; case: NT; exists t. Qed. Lemma classic : mclassic. Proof. split=> [|T]; first exact: pselect. exists (fun (P : pred T) (n : nat) => if pselect (exists x, P x) isn't left ex then None else Some (projT1 (cid ex))) => [P n x|P [x Px]|P Q /funext -> //]. by case: pselect => // ex [<- ]; case: cid. by exists 0; case: pselect => // -[]; exists x. Qed. Lemma gen_choiceMixin {T : Type} : Choice.mixin_of T. Proof. by case: classic. Qed. Lemma pdegen (P : Prop): P = True \/ P = False. Proof. by have [p|Np] := pselect P; [left|right]; rewrite propeqE. Qed. Lemma lem (P : Prop): P \/ ~P. Proof. by case: (pselect P); tauto. Qed. (* -------------------------------------------------------------------- *) Lemma trueE : true = True :> Prop. Proof. by rewrite propeqE; split. Qed. Lemma falseE : false = False :> Prop. Proof. by rewrite propeqE; split. Qed. Lemma propF (P : Prop) : ~ P -> P = False. Proof. by move=> p; rewrite propeqE; tauto. Qed. Lemma eq_fun T rT (U V : T -> rT) : (forall x : T, U x = V x) -> (fun x => U x) = (fun x => V x). Proof. by move=> /funext->. Qed. Lemma eq_fun2 T1 T2 rT (U V : T1 -> T2 -> rT) : (forall x y, U x y = V x y) -> (fun x y => U x y) = (fun x y => V x y). Proof. by move=> UV; rewrite funeq2E => x y; rewrite UV. Qed. Lemma eq_fun3 T1 T2 T3 rT (U V : T1 -> T2 -> T3 -> rT) : (forall x y z, U x y z = V x y z) -> (fun x y z => U x y z) = (fun x y z => V x y z). Proof. by move=> UV; rewrite funeq3E => x y z; rewrite UV. Qed. Lemma eq_forall T (U V : T -> Prop) : (forall x : T, U x = V x) -> (forall x, U x) = (forall x, V x). Proof. by move=> e; rewrite propeqE; split=> ??; rewrite (e,=^~e). Qed. Lemma eq_forall2 T S (U V : forall x : T, S x -> Prop) : (forall x y, U x y = V x y) -> (forall x y, U x y) = (forall x y, V x y). Proof. by move=> UV; apply/eq_forall => x; apply/eq_forall. Qed. Lemma eq_forall3 T S R (U V : forall (x : T) (y : S x), R x y -> Prop) : (forall x y z, U x y z = V x y z) -> (forall x y z, U x y z) = (forall x y z, V x y z). Proof. by move=> UV; apply/eq_forall2 => x y; apply/eq_forall. Qed. Lemma eq_exists T (U V : T -> Prop) : (forall x : T, U x = V x) -> (exists x, U x) = (exists x, V x). Proof. by move=> e; rewrite propeqE; split=> - [] x ?; exists x; rewrite (e,=^~e). Qed. Lemma eq_exists2 T S (U V : forall x : T, S x -> Prop) : (forall x y, U x y = V x y) -> (exists x y, U x y) = (exists x y, V x y). Proof. by move=> UV; apply/eq_exists => x; apply/eq_exists. Qed. Lemma eq_exists3 T S R (U V : forall (x : T) (y : S x), R x y -> Prop) : (forall x y z, U x y z = V x y z) -> (exists x y z, U x y z) = (exists x y z, V x y z). Proof. by move=> UV; apply/eq_exists2 => x y; apply/eq_exists. Qed. Lemma eq_exist T (P : T -> Prop) (s t : T) (p : P s) (q : P t) : s = t -> exist P s p = exist P t q. Proof. by move=> st; case: _ / st in q *; apply/congr1. Qed. Lemma forall_swap T S (U : forall (x : T) (y : S), Prop) : (forall x y, U x y) = (forall y x, U x y). Proof. by rewrite propeqE; split. Qed. Lemma exists_swap T S (U : forall (x : T) (y : S), Prop) : (exists x y, U x y) = (exists y x, U x y). Proof. by rewrite propeqE; split => -[x [y]]; exists y, x. Qed. Lemma reflect_eq (P : Prop) (b : bool) : reflect P b -> P = b. Proof. by rewrite propeqE; exact: rwP. Qed. Definition asbool (P : Prop) := if pselect P then true else false. Notation "`[< P >]" := (asbool P) : bool_scope. Lemma asboolE (P : Prop) : `[

] = P :> Prop. Proof. by rewrite propeqE /asbool; case: pselect; split. Qed. Lemma asboolP (P : Prop) : reflect P `[

]. Proof. by apply: (equivP idP); rewrite asboolE. Qed. Lemma asboolb (b : bool) : `[< b >] = b. Proof. by apply/asboolP/idP. Qed. Lemma asboolPn (P : Prop) : reflect (~ P) (~~ `[

]). Proof. by rewrite /asbool; case: pselect=> h; constructor. Qed. Lemma asboolW (P : Prop) : `[

] -> P. Proof. by case: asboolP. Qed. (* Shall this be a coercion ?*) Lemma asboolT (P : Prop) : P -> `[

]. Proof. by case: asboolP. Qed. Lemma asboolF (P : Prop) : ~ P -> `[

] = false. Proof. by apply/introF/asboolP. Qed. Lemma eq_opE (T : eqType) (x y : T) : (x == y : Prop) = (x = y). Proof. by apply/propext; split=> /eqP. Qed. Lemma is_true_inj : injective is_true. Proof. by move=> [] []; rewrite ?(trueE, falseE) ?propeqE; tauto. Qed. Definition gen_eq (T : Type) (u v : T) := `[]. Lemma gen_eqP (T : Type) : Equality.axiom (@gen_eq T). Proof. by move=> x y; apply: (iffP (asboolP _)). Qed. Definition gen_eqMixin {T : Type} := EqMixin (@gen_eqP T). Canonical arrow_eqType (T : Type) (T' : eqType) := EqType (T -> T') gen_eqMixin. Canonical arrow_choiceType (T : Type) (T' : choiceType) := ChoiceType (T -> T') gen_choiceMixin. Definition dep_arrow_eqType (T : Type) (T' : T -> eqType) := EqType (forall x : T, T' x) gen_eqMixin. Definition dep_arrow_choiceClass (T : Type) (T' : T -> choiceType) := Choice.Class (Equality.class (dep_arrow_eqType T')) gen_choiceMixin. Definition dep_arrow_choiceType (T : Type) (T' : T -> choiceType) := Choice.Pack (dep_arrow_choiceClass T'). Canonical Prop_eqType := EqType Prop gen_eqMixin. Canonical Prop_choiceType := ChoiceType Prop gen_choiceMixin. Section classicType. Variable T : Type. Definition classicType := T. Canonical classicType_eqType := EqType classicType gen_eqMixin. Canonical classicType_choiceType := ChoiceType classicType gen_choiceMixin. End classicType. Notation "'{classic' T }" := (classicType T) (format "'{classic' T }") : type_scope. Section eclassicType. Variable T : eqType. Definition eclassicType : Type := T. Canonical eclassicType_eqType := EqType eclassicType (Equality.class T). Canonical eclassicType_choiceType := ChoiceType eclassicType gen_choiceMixin. End eclassicType. Notation "'{eclassic' T }" := (eclassicType T) (format "'{eclassic' T }") : type_scope. Definition canonical_of T U (sort : U -> T) := forall (G : T -> Type), (forall x', G (sort x')) -> forall x, G x. Notation canonical_ sort := (@canonical_of _ _ sort). Notation canonical T E := (@canonical_of T E id). Lemma canon T U (sort : U -> T) : (forall x, exists y, sort y = x) -> canonical_ sort. Proof. by move=> + G Gs x => /(_ x)/cid[x' <-]. Qed. Arguments canon {T U sort} x. Lemma Peq : canonical Type eqType. Proof. by apply: canon => T; exists [eqType of {classic T}]. Qed. Lemma Pchoice : canonical Type choiceType. Proof. by apply: canon => T; exists [choiceType of {classic T}]. Qed. Lemma eqPchoice : canonical eqType choiceType. Proof. by apply: canon=> T; exists [choiceType of {eclassic T}]; case: T. Qed. Lemma not_True : (~ True) = False. Proof. exact/propext. Qed. Lemma not_False : (~ False) = True. Proof. by apply/propext; split=> _. Qed. (* -------------------------------------------------------------------- *) Lemma asbool_equiv_eq {P Q : Prop} : (P <-> Q) -> `[

] = `[]. Proof. by rewrite -propeqE => ->. Qed. Lemma asbool_equiv_eqP {P Q : Prop} b : reflect Q b -> (P <-> Q) -> `[

] = b. Proof. by move=> Q_b [PQ QP]; apply/asboolP/Q_b. Qed. Lemma asbool_equiv {P Q : Prop} : (P <-> Q) -> (`[

] <-> `[]). Proof. by move/asbool_equiv_eq->. Qed. Lemma asbool_eq_equiv {P Q : Prop} : `[

] = `[] -> (P <-> Q). Proof. by move=> eq; split=> /asboolP; rewrite (eq, =^~ eq) => /asboolP. Qed. (* -------------------------------------------------------------------- *) Lemma and_asboolP (P Q : Prop) : reflect (P /\ Q) (`[< P >] && `[< Q >]). Proof. apply: (iffP idP); first by case/andP => /asboolP p /asboolP q. by case=> /asboolP-> /asboolP->. Qed. Lemma and3_asboolP (P Q R : Prop) : reflect [/\ P, Q & R] [&& `[< P >], `[< Q >] & `[< R >]]. Proof. apply: (iffP idP); first by case/and3P => /asboolP p /asboolP q /asboolP r. by case => /asboolP -> /asboolP -> /asboolP ->. Qed. Lemma or_asboolP (P Q : Prop) : reflect (P \/ Q) (`[< P >] || `[< Q >]). Proof. apply: (iffP idP); first by case/orP=> /asboolP; [left | right]. by case=> /asboolP-> //=; rewrite orbT. Qed. Lemma or3_asboolP (P Q R : Prop) : reflect [\/ P, Q | R] [|| `[< P >], `[< Q >] | `[< R >]]. Proof. apply: (iffP idP); last by case=> [| |] /asboolP -> //=; rewrite !orbT. by case/orP=> [/asboolP p|/orP[]/asboolP]; [exact:Or31|exact:Or32|exact:Or33]. Qed. Lemma asbool_neg {P : Prop} : `[<~ P>] = ~~ `[

]. Proof. by apply/idP/asboolPn=> [/asboolP|/asboolT]. Qed. Lemma asbool_or {P Q : Prop} : `[

] = `[

] || `[]. Proof. exact: (asbool_equiv_eqP (or_asboolP _ _)). Qed. Lemma asbool_and {P Q : Prop} : `[

] = `[

] && `[]. Proof. exact: (asbool_equiv_eqP (and_asboolP _ _)). Qed. (* -------------------------------------------------------------------- *) Lemma imply_asboolP {P Q : Prop} : reflect (P -> Q) (`[

] ==> `[]). Proof. apply: (iffP implyP)=> [PQb /asboolP/PQb/asboolW //|]. by move=> PQ /asboolP/PQ/asboolT. Qed. Lemma asbool_imply {P Q : Prop} : `[

Q>] = `[

] ==> `[]. Proof. exact: (asbool_equiv_eqP imply_asboolP). Qed. Lemma imply_asboolPn (P Q : Prop) : reflect (P /\ ~ Q) (~~ `[

Q>]). Proof. apply: (iffP idP). by rewrite asbool_imply negb_imply -asbool_neg => /and_asboolP. by move/and_asboolP; rewrite asbool_neg -negb_imply asbool_imply. Qed. (* -------------------------------------------------------------------- *) Lemma forall_asboolP {T : Type} (P : T -> Prop) : reflect (forall x, `[

]) (`[]). Proof. apply: (iffP idP); first by move/asboolP=> Px x; apply/asboolP. by move=> Px; apply/asboolP=> x; apply/asboolP. Qed. Lemma exists_asboolP {T : Type} (P : T -> Prop) : reflect (exists x, `[

]) (`[]). Proof. apply: (iffP idP); first by case/asboolP=> x Px; exists x; apply/asboolP. by case=> x bPx; apply/asboolP; exists x; apply/asboolP. Qed. (* -------------------------------------------------------------------- *) Lemma notT (P : Prop) : P = False -> ~ P. Proof. by move->. Qed. Lemma contrapT P : ~ ~ P -> P. Proof. by move/asboolPn=> nnb; apply/asboolP; apply: contraR nnb => /asboolPn /asboolP. Qed. Lemma notTE (P : Prop) : (~ P) -> P = False. Proof. by case: (pdegen P)=> ->. Qed. Lemma notFE (P : Prop) : (~ P) = False -> P. Proof. move/notT; exact: contrapT. Qed. Lemma notK : involutive not. Proof. move=> P; case: (pdegen P)=> ->; last by apply: notTE; intuition. by rewrite [~ True]notTE //; case: (pdegen (~ False)) => // /notFE. Qed. Lemma contra_notP (Q P : Prop) : (~ Q -> P) -> ~ P -> Q. Proof. move=> cb /asboolPn nb; apply/asboolP. by apply: contraR nb => /asboolP /cb /asboolP. Qed. Lemma contraPP (Q P : Prop) : (~ Q -> ~ P) -> P -> Q. Proof. move=> cb /asboolP hb; apply/asboolP. by apply: contraLR hb => /asboolP /cb /asboolPn. Qed. Lemma contra_notT b (P : Prop) : (~~ b -> P) -> ~ P -> b. Proof. by move=> bP; apply: contra_notP => /negP. Qed. Lemma contraPT (P : Prop) b : (~~ b -> ~ P) -> P -> b. Proof. by move=> /contra_notT; rewrite notK. Qed. Lemma contraTP b (Q : Prop) : (~ Q -> ~~ b) -> b -> Q. Proof. by move=> QB; apply: contraPP => /QB/negP. Qed. Lemma contraNP (P : Prop) (b : bool) : (~ P -> b) -> ~~ b -> P. Proof. by move=> /contra_notP + /negP => /[apply]. Qed. Lemma contra_neqP (T : eqType) (x y : T) P : (~ P -> x = y) -> x != y -> P. Proof. by move=> Pxy; apply: contraNP => /Pxy/eqP. Qed. Lemma contra_eqP (T : eqType) (x y : T) (Q : Prop) : (~ Q -> x != y) -> x = y -> Q. Proof. by move=> Qxy /eqP; apply: contraTP. Qed. Lemma wlog_neg P : (~ P -> P) -> P. Proof. by move=> ?; case: (pselect P). Qed. Lemma not_inj : injective not. Proof. exact: can_inj notK. Qed. Lemma notLR P Q : (P = ~ Q) -> (~ P) = Q. Proof. exact: canLR notK. Qed. Lemma notRL P Q : (~ P) = Q -> P = ~ Q. Proof. exact: canRL notK. Qed. Lemma iff_notr (P Q : Prop) : (P <-> ~ Q) <-> (~ P <-> Q). Proof. by split=> [/propext ->|/propext <-]; rewrite notK. Qed. Lemma iff_not2 (P Q : Prop) : (~ P <-> ~ Q) <-> (P <-> Q). Proof. by split=> [/iff_notr|PQ]; [|apply/iff_notr]; rewrite notK. Qed. (* -------------------------------------------------------------------- *) (* assia : let's see if we need the simplpred machinery. In any case, we sould first try definitions + appropriate Arguments setting to see whether these can replace the canonical structures machinery. *) Definition predp T := T -> Prop. Identity Coercion fun_of_pred : predp >-> Funclass. Definition relp T := T -> predp T. Identity Coercion fun_of_rel : rel >-> Funclass. Notation xpredp0 := (fun _ => False). Notation xpredpT := (fun _ => True). Notation xpredpI := (fun (p1 p2 : predp _) x => p1 x /\ p2 x). Notation xpredpU := (fun (p1 p2 : predp _) x => p1 x \/ p2 x). Notation xpredpC := (fun (p : predp _) x => ~ p x). Notation xpredpD := (fun (p1 p2 : predp _) x => ~ p2 x /\ p1 x). Notation xpreimp := (fun f (p : predp _) x => p (f x)). Notation xrelpU := (fun (r1 r2 : relp _) x y => r1 x y \/ r2 x y). (* -------------------------------------------------------------------- *) Definition pred0p (T : Type) (P : predp T) : bool := `[

]. Prenex Implicits pred0p. Lemma pred0pP (T : Type) (P : predp T) : reflect (P =1 xpredp0) (pred0p P). Proof. by apply: (iffP (asboolP _)). Qed. (* -------------------------------------------------------------------- *) Lemma forallp_asboolPn {T} {P : T -> Prop} : reflect (forall x : T, ~ P x) (~~ `[]). Proof. apply: (iffP idP)=> [/asboolPn NP x Px|NP]. by apply/NP; exists x. by apply/asboolP=> -[x]; apply/NP. Qed. Lemma existsp_asboolPn {T} {P : T -> Prop} : reflect (exists x : T, ~ P x) (~~ `[]). Proof. apply: (iffP idP); last by case=> x NPx; apply/asboolPn=> /(_ x). move/asboolPn=> NP; apply/asboolP/negbNE/asboolPn=> h. by apply/NP=> x; apply/asboolP/negbNE/asboolPn=> NPx; apply/h; exists x. Qed. Lemma asbool_forallNb {T : Type} (P : pred T) : `[< forall x : T, ~~ (P x) >] = ~~ `[< exists x : T, P x >]. Proof. apply: (asbool_equiv_eqP forallp_asboolPn); by split=> h x; apply/negP/h. Qed. Lemma asbool_existsNb {T : Type} (P : pred T) : `[< exists x : T, ~~ (P x) >] = ~~ `[< forall x : T, P x >]. Proof. apply: (asbool_equiv_eqP existsp_asboolPn); by split=> -[x h]; exists x; apply/negP. Qed. Lemma not_implyP (P Q : Prop) : ~ (P -> Q) <-> P /\ ~ Q. Proof. split=> [/asboolP|[p nq pq]]; [|exact/nq/pq]. by rewrite asbool_neg => /imply_asboolPn. Qed. Lemma not_andP (P Q : Prop) : ~ (P /\ Q) <-> ~ P \/ ~ Q. Proof. split => [/asboolPn|[|]]; try by apply: contra_not => -[]. by rewrite asbool_and negb_and => /orP[]/asboolPn; [left|right]. Qed. Lemma not_and3P (P Q R : Prop) : ~ [/\ P, Q & R] <-> [\/ ~ P, ~ Q | ~ R]. Proof. split=> [/and3_asboolP|/or3_asboolP]. by rewrite 2!negb_and -3!asbool_neg => /or3_asboolP. by rewrite 3!asbool_neg -2!negb_and => /and3_asboolP. Qed. Lemma not_orP (P Q : Prop) : ~ (P \/ Q) <-> ~ P /\ ~ Q. Proof. split; [apply: contra_notP => /not_andP|apply: contraPnot => AB; apply/not_andP]; by rewrite 2!notK. Qed. Lemma not_implyE (P Q : Prop) : (~ (P -> Q)) = (P /\ ~ Q). Proof. by rewrite propeqE not_implyP. Qed. Lemma orC (P Q : Prop) : (P \/ Q) = (Q \/ P). Proof. by rewrite propeqE; split=> [[]|[]]; [right|left|right|left]. Qed. Lemma orA : associative or. Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed. Lemma andC (P Q : Prop) : (P /\ Q) = (Q /\ P). Proof. by rewrite propeqE; split=> [[]|[]]. Qed. Lemma andA : associative and. Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed. Lemma forallNE {T} (P : T -> Prop) : (forall x, ~ P x) = ~ exists x, P x. Proof. by rewrite propeqE; split => [fP [x /fP]//|nexP x Px]; apply: nexP; exists x. Qed. Lemma existsNE {T} (P : T -> Prop) : (exists x, ~ P x) = ~ forall x, P x. Proof. rewrite propeqE; split=> [[x Px] aP //|NaP]. by apply: contrapT; rewrite -forallNE => aP; apply: NaP => x; apply: contrapT. Qed. Lemma existsNP T (P : T -> Prop) : (exists x, ~ P x) <-> ~ forall x, P x. Proof. by rewrite existsNE. Qed. Lemma not_existsP T (P : T -> Prop) : (exists x, P x) <-> ~ forall x, ~ P x. Proof. by rewrite forallNE notK. Qed. Lemma forallNP T (P : T -> Prop) : (forall x, ~ P x) <-> ~ exists x, P x. Proof. by rewrite forallNE. Qed. Lemma not_forallP T (P : T -> Prop) : (forall x, P x) <-> ~ exists x, ~ P x. Proof. by rewrite existsNE notK. Qed. Lemma exists2P T (P Q : T -> Prop) : (exists2 x, P x & Q x) <-> exists x, P x /\ Q x. Proof. by split=> [[x ? ?] | [x []]]; exists x. Qed. Lemma not_exists2P T (P Q : T -> Prop) : (exists2 x, P x & Q x) <-> ~ forall x, ~ P x \/ ~ Q x. Proof. rewrite exists2P not_existsP. by split; apply: contra_not => PQx x; apply/not_andP; apply: PQx. Qed. Lemma forall2NP T (P Q : T -> Prop) : (forall x, ~ P x \/ ~ Q x) <-> ~ (exists2 x, P x & Q x). Proof. split=> [PQ [t Pt Qt]|PQ t]; first by have [] := PQ t. by rewrite -not_andP => -[Pt Qt]; apply PQ; exists t. Qed. Lemma forallPNP T (P Q : T -> Prop) : (forall x, P x -> ~ Q x) <-> ~ (exists2 x, P x & Q x). Proof. split=> [PQ [t Pt Qt]|PQ t]; first by have [] := PQ t. by move=> Pt Qt; apply: PQ; exists t. Qed. Lemma existsPNP T (P Q : T -> Prop) : (exists2 x, P x & ~ Q x) <-> ~ (forall x, P x -> Q x). Proof. split=> [[x Px NQx] /(_ x Px)//|]; apply: contra_notP => + x Px. by apply: contra_notP => NQx; exists x. Qed. Module FunOrder. Section FunOrder. Import Order.TTheory. Variables (aT : Type) (d : unit) (T : porderType d). Implicit Types f g h : aT -> T. Lemma fun_display : unit. Proof. exact: tt. Qed. Definition lef f g := `[< forall x, (f x <= g x)%O >]. Local Notation "f <= g" := (lef f g). Definition ltf f g := `[< (forall x, (f x <= g x)%O) /\ exists x, f x != g x >]. Local Notation "f < g" := (ltf f g). Lemma ltf_def f g : (f < g) = (g != f) && (f <= g). Proof. apply/idP/andP => [fg|[gf fg]]; [split|apply/asboolP; split; [exact/asboolP|]]. - by apply/eqP => gf; move: fg => /asboolP[fg] [x /eqP]; apply; rewrite gf. - apply/asboolP => x; rewrite le_eqVlt; move/asboolP : fg => [fg [y gfy]]. by have [//|gfx /=] := boolP (f x == g x); rewrite lt_neqAle gfx /= fg. - apply/not_existsP => h. have : f =1 g by move=> x; have /negP/negPn/eqP := h x. by rewrite -funeqE; apply/nesym/eqP. Qed. Fact lef_refl : reflexive lef. Proof. by move=> f; apply/asboolP => x. Qed. Fact lef_anti : antisymmetric lef. Proof. move=> f g => /andP[/asboolP fg /asboolP gf]; rewrite funeqE => x. by apply/eqP; rewrite eq_le fg gf. Qed. Fact lef_trans : transitive lef. Proof. move=> g f h /asboolP fg /asboolP gh; apply/asboolP => x. by rewrite (le_trans (fg x)). Qed. Definition porderMixin := @LePOrderMixin _ lef ltf ltf_def lef_refl lef_anti lef_trans. Canonical porderType := POrderType fun_display (aT -> T) porderMixin. End FunOrder. Section FunLattice. Import Order.TTheory. Variables (aT : Type) (d : unit) (T : latticeType d). Implicit Types f g h : aT -> T. Definition meetf f g := fun x => Order.meet (f x) (g x). Definition joinf f g := fun x => Order.join (f x) (g x). Lemma meetfC : commutative meetf. Proof. move=> f g; apply/funext => x; exact: meetC. Qed. Lemma joinfC : commutative joinf. Proof. move=> f g; apply/funext => x; exact: joinC. Qed. Lemma meetfA : associative meetf. Proof. move=> f g h; apply/funext => x; exact: meetA. Qed. Lemma joinfA : associative joinf. Proof. move=> f g h; apply/funext => x; exact: joinA. Qed. Lemma joinfKI g f : meetf f (joinf f g) = f. Proof. apply/funext => x; exact: joinKI. Qed. Lemma meetfKU g f : joinf f (meetf f g) = f. Proof. apply/funext => x; exact: meetKU. Qed. Lemma lef_meet f g : (f <= g)%O = (meetf f g == f). Proof. apply/idP/idP => [/asboolP f_le_g|/eqP <-]. - apply/eqP/funext => x; exact/meet_l/f_le_g. - apply/asboolP => x; exact: leIr. Qed. Definition latticeMixin := LatticeMixin meetfC joinfC meetfA joinfA joinfKI meetfKU lef_meet. Canonical latticeType := LatticeType (aT -> T) latticeMixin. End FunLattice. Module Exports. Canonical porderType. Canonical latticeType. End Exports. End FunOrder. Export FunOrder.Exports. Lemma lefP (aT : Type) d (T : porderType d) (f g : aT -> T) : reflect (forall x, (f x <= g x)%O) (f <= g)%O. Proof. by apply: (iffP idP) => [fg|fg]; [exact/asboolP | apply/asboolP]. Qed. Lemma meetfE (aT : Type) d (T : latticeType d) (f g : aT -> T) x : ((f `&` g) x = f x `&` g x)%O. Proof. by []. Qed. Lemma joinfE (aT : Type) d (T : latticeType d) (f g : aT -> T) x : ((f `|` g) x = f x `|` g x)%O. Proof. by []. Qed. Lemma iterfS {T} (f : T -> T) (n : nat) : iter n.+1 f = f \o iter n f. Proof. by []. Qed. Lemma iterfSr {T} (f : T -> T) (n : nat) : iter n.+1 f = iter n f \o f. Proof. by apply/funeqP => ?; rewrite iterSr. Qed. Lemma iter0 {T} (f : T -> T) : iter 0 f = id. Proof. by []. Qed.