Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 29,329 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C.              *)
(* -------------------------------------------------------------------- *)
(* Copyright (c) - 2015--2016 - IMDEA Software Institute                *)
(* Copyright (c) - 2015--2018 - Inria                                   *)
(* Copyright (c) - 2016--2018 - Polytechnique                           *)
(* -------------------------------------------------------------------- *)

From mathcomp Require Import all_ssreflect.

(******************************************************************************)
(*                              Classical Logic                               *)
(*                                                                            *)
(* This file provides the axioms of classical logic and tools to perform      *)
(* classical reasoning in the Mathematical Compnent framework. The three      *)
(* axioms are taken from the standard library of Coq, more details can be     *)
(* found in Section 5 of                                                      *)
(*   Reynald Affeldt, Cyril Cohen, Damien Rouhling:                          *)
(*   Formalization Techniques for Asymptotic Reasoning in Classical Analysis. *)
(*   Journal of Formalized Reasoning, 2018                                    *)
(*                                                                            *)
(* * Axioms                                                                   *)
(* functional_extensionality_dep == functional extensionality (on dependently *)
(*                     typed functions), i.e., functions that are pointwise   *)
(*                     equal are equal                                        *)
(* propositional_extensionality == propositional extensionality, i.e., iff    *)
(*                     and equality are the same on Prop                      *)
(* constructive_indefinite_description == existential in Prop (ex) implies    *)
(*                     existential in Type (sig)                              *)
(*              cid := constructive_indefinite_description (shortcut)         *)
(* --> A number of properties are derived below from these axioms and are     *)
(* often more pratical to use than directly using the axioms. For instance    *)
(* propext, funext, the excluded middle (EM),...                              *)
(*                                                                            *)
(* * Boolean View of Prop                                                     *)
(*         `[< P >] == boolean view of P : Prop, see all lemmas about asbool  *)
(*                                                                            *)
(* * Mathematical Components Structures                                       *)
(*  {classic T} == Endow T : Type with a canonical eqType/choiceType.         *)
(*                 This is intended for local use.                            *)
(*                 E.g., T : Type |- A : {fset {classic T}}                   *)
(*                 Alternatively one may use elim/Pchoice: T => T in H *.     *)
(*                 to substitute T with T : choiceType once and for all.      *)
(* {eclassic T} == Endow T : eqType with a canonical choiceType.              *)
(*                 On the model of {classic _}.                               *)
(*                 See also the lemmas Peq and eqPchoice.                     *)
(*                                                                            *)
(* --> Functions into a porderType (resp. latticeType) are equipped with      *)
(* a porderType (resp. latticeType), (f <= g)%O when f x <= g x for all x,    *)
(* see lemma lefP.                                                            *)
(******************************************************************************)

Set   Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Declare Scope box_scope.
Declare Scope quant_scope.

(* -------------------------------------------------------------------- *)

Axiom functional_extensionality_dep :
       forall (A : Type) (B : A -> Type) (f g : forall x : A, B x),
       (forall x : A, f x = g x) -> f = g.
Axiom propositional_extensionality :
       forall P Q : Prop, P <-> Q -> P = Q.

Axiom constructive_indefinite_description :
  forall (A : Type) (P : A -> Prop),
  (exists x : A, P x) -> {x : A | P x}.
Notation cid := constructive_indefinite_description.

Lemma cid2 (A : Type) (P Q : A -> Prop) :
  (exists2 x : A, P x & Q x) -> {x : A | P x & Q x}.
Proof.
move=> PQA; suff: {x | P x /\ Q x} by move=> [a [*]]; exists a.
by apply: cid; case: PQA => x; exists x.
Qed.

(* -------------------------------------------------------------------- *)
Record mextentionality := {
  _ : forall (P Q : Prop), (P <-> Q) -> (P = Q);
  _ : forall {T U : Type} (f g : T -> U),
        (forall x, f x = g x) -> f = g;
}.

Fact extentionality : mextentionality.
Proof.
split.
- exact: propositional_extensionality.
- by move=> T U f g; apply: functional_extensionality_dep.
Qed.

Lemma propext (P Q : Prop) : (P <-> Q) -> (P = Q).
Proof. by have [propext _] := extentionality; apply: propext. Qed.

Lemma funext {T U : Type} (f g : T -> U) : (f =1 g) -> f = g.
Proof. by case: extentionality=> _; apply. Qed.

Lemma propeqE (P Q : Prop) : (P = Q) = (P <-> Q).
Proof. by apply: propext; split=> [->|/propext]. Qed.

Lemma propeqP (P Q : Prop) : (P = Q) <-> (P <-> Q).
Proof. by rewrite propeqE. Qed.

Lemma funeqE {T U : Type} (f g : T -> U) : (f = g) = (f =1 g).
Proof. by rewrite propeqE; split=> [->//|/funext]. Qed.

Lemma funeq2E {T U V : Type} (f g : T -> U -> V) : (f = g) = (f =2 g).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite funeqE.
Qed.

Lemma funeq3E {T U V W : Type} (f g : T -> U -> V -> W) :
  (f = g) = (forall x y z, f x y z = g x y z).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> x y; rewrite funeqE.
Qed.

Lemma funeqP {T U : Type} (f g : T -> U) : (f = g) <-> (f =1 g).
Proof. by rewrite funeqE. Qed.

Lemma funeq2P {T U V : Type} (f g : T -> U -> V) : (f = g) <-> (f =2 g).
Proof. by rewrite funeq2E. Qed.

Lemma funeq3P {T U V W : Type} (f g : T -> U -> V -> W) :
  (f = g) <-> (forall x y z, f x y z = g x y z).
Proof. by rewrite funeq3E. Qed.

Lemma predeqE {T} (P Q : T -> Prop) : (P = Q) = (forall x, P x <-> Q x).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite propeqE.
Qed.

Lemma predeq2E {T U} (P Q : T -> U -> Prop) :
   (P = Q) = (forall x y, P x y <-> Q x y).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> ??; rewrite propeqE.
Qed.

Lemma predeq3E {T U V} (P Q : T -> U -> V -> Prop) :
   (P = Q) = (forall x y z, P x y z <-> Q x y z).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq3E=> ???; rewrite propeqE.
Qed.

Lemma predeqP {T} (A B : T -> Prop) : (A = B) <-> (forall x, A x <-> B x).
Proof. by rewrite predeqE. Qed.

Lemma predeq2P {T U} (P Q : T -> U -> Prop) :
   (P = Q) <-> (forall x y, P x y <-> Q x y).
Proof. by rewrite predeq2E. Qed.

Lemma predeq3P {T U V} (P Q : T -> U -> V -> Prop) :
   (P = Q) <-> (forall x y z, P x y z <-> Q x y z).
Proof. by rewrite predeq3E. Qed.

Lemma propT {P : Prop} : P -> P = True.
Proof. by move=> p; rewrite propeqE. Qed.

Lemma Prop_irrelevance (P : Prop) (x y : P) : x = y.
Proof. by move: x (x) y => /propT-> [] []. Qed.
#[global] Hint Resolve Prop_irrelevance : core.

(* -------------------------------------------------------------------- *)
Record mclassic := {
  _ : forall (P : Prop), {P} + {~P};
  _ : forall T, Choice.mixin_of T
}.

Lemma choice X Y (P : X -> Y -> Prop) :
  (forall x, exists y, P x y) -> {f & forall x, P x (f x)}.
Proof. by move=> /(_ _)/constructive_indefinite_description -/all_tag. Qed.

(* Diaconescu Theorem *)
Theorem EM P : P \/ ~ P.
Proof.
pose U val := fun Q : bool => Q = val \/ P.
have Uex val : exists b, U val b by exists val; left.
pose f val := projT1 (cid (Uex val)).
pose Uf val : U val (f val) := projT2 (cid (Uex val)).
have : f true != f false \/ P.
  have [] := (Uf true, Uf false); rewrite /U.
  by move=> [->|?] [->|?] ; do ?[by right]; left.
move=> [/eqP fTFN|]; [right=> p|by left]; apply: fTFN.
have UTF : U true = U false by rewrite predeqE /U => b; split=> _; right.
rewrite /f; move: (Uex true) (Uex false); rewrite UTF => p1 p2.
by congr (projT1 (cid _)).
Qed.

Lemma pselect (P : Prop): {P} + {~P}.
Proof.
have : exists b, if b then P else ~ P.
  by case: (EM P); [exists true|exists false].
by move=> /cid [[]]; [left|right].
Qed.

Lemma pselectT T : (T -> False) + T.
Proof.
have [/cid[]//|NT] := pselect (exists t : T, True); first by right.
by left=> t; case: NT; exists t.
Qed.

Lemma classic : mclassic.
Proof.
split=> [|T]; first exact: pselect.
exists (fun (P : pred T) (n : nat) =>
  if pselect (exists x, P x) isn't left ex then None
  else Some (projT1 (cid ex)))
  => [P n x|P [x Px]|P Q /funext -> //].
  by case: pselect => // ex [<- ]; case: cid.
by exists 0; case: pselect => // -[]; exists x.
Qed.

Lemma gen_choiceMixin {T : Type} : Choice.mixin_of T.
Proof. by case: classic. Qed.

Lemma pdegen (P : Prop): P = True \/ P = False.
Proof. by have [p|Np] := pselect P; [left|right]; rewrite propeqE. Qed.

Lemma lem (P : Prop): P \/ ~P.
Proof. by case: (pselect P); tauto. Qed.

(* -------------------------------------------------------------------- *)
Lemma trueE : true = True :> Prop.
Proof. by rewrite propeqE; split. Qed.

Lemma falseE : false = False :> Prop.
Proof. by rewrite propeqE; split. Qed.

Lemma propF (P : Prop) : ~ P -> P = False.
Proof. by move=> p; rewrite propeqE; tauto. Qed.

Lemma eq_fun T rT (U V : T -> rT) :
  (forall x : T, U x = V x) -> (fun x => U x) = (fun x => V x).
Proof. by move=> /funext->. Qed.

Lemma eq_fun2 T1 T2 rT (U V : T1 -> T2 -> rT) :
  (forall x y, U x y = V x y) -> (fun x y => U x y) = (fun x y => V x y).
Proof. by move=> UV; rewrite funeq2E => x y; rewrite UV. Qed.

Lemma eq_fun3  T1 T2 T3 rT (U V : T1 -> T2 -> T3 -> rT) :
  (forall x y z, U x y z = V x y z) ->
  (fun x y z => U x y z) = (fun x y z => V x y z).
Proof. by move=> UV; rewrite funeq3E => x y z; rewrite UV. Qed.

Lemma eq_forall T (U V : T -> Prop) :
  (forall x : T, U x = V x) -> (forall x, U x) = (forall x, V x).
Proof. by move=> e; rewrite propeqE; split=> ??; rewrite (e,=^~e). Qed.

Lemma eq_forall2 T S (U V : forall x : T, S x -> Prop) :
  (forall x y, U x y = V x y) -> (forall x y, U x y) = (forall x y, V x y).
Proof. by move=> UV; apply/eq_forall => x; apply/eq_forall. Qed.

Lemma eq_forall3 T S R (U V : forall (x : T) (y : S x), R x y -> Prop) :
  (forall x y z, U x y z = V x y z) ->
  (forall x y z, U x y z) = (forall x y z, V x y z).
Proof. by move=> UV; apply/eq_forall2 => x y; apply/eq_forall. Qed.

Lemma eq_exists T (U V : T -> Prop) :
  (forall x : T, U x = V x) -> (exists x, U x) = (exists x, V x).
Proof.
by move=> e; rewrite propeqE; split=> - [] x ?; exists x; rewrite (e,=^~e).
Qed.

Lemma eq_exists2 T S (U V : forall x : T, S x -> Prop) :
  (forall x y, U x y = V x y) -> (exists x y, U x y) = (exists x y, V x y).
Proof. by move=> UV; apply/eq_exists => x; apply/eq_exists. Qed.

Lemma eq_exists3 T S R (U V : forall (x : T) (y : S x), R x y -> Prop) :
  (forall x y z, U x y z = V x y z) ->
  (exists x y z, U x y z) = (exists x y z, V x y z).
Proof. by move=> UV; apply/eq_exists2 => x y; apply/eq_exists. Qed.

Lemma eq_exist T (P : T -> Prop) (s t : T) (p : P s) (q : P t) :
  s = t -> exist P s p = exist P t q.
Proof. by move=> st; case: _ / st in q *; apply/congr1. Qed.

Lemma forall_swap T S (U : forall (x : T) (y : S), Prop) :
   (forall x y, U x y) = (forall y x, U x y).
Proof. by rewrite propeqE; split. Qed.

Lemma exists_swap T S (U : forall (x : T) (y : S), Prop) :
   (exists x y, U x y) = (exists y x, U x y).
Proof. by rewrite propeqE; split => -[x [y]]; exists y, x. Qed.

Lemma reflect_eq (P : Prop) (b : bool) : reflect P b -> P = b.
Proof. by rewrite propeqE; exact: rwP. Qed.

Definition asbool (P : Prop) :=
  if pselect P then true else false.

Notation "`[< P >]" := (asbool P) : bool_scope.

Lemma asboolE (P : Prop) : `[<P>] = P :> Prop.
Proof. by rewrite propeqE /asbool; case: pselect; split. Qed.

Lemma asboolP (P : Prop) : reflect P `[<P>].
Proof. by apply: (equivP idP); rewrite asboolE. Qed.

Lemma asboolb (b : bool) : `[< b >] = b.
Proof. by apply/asboolP/idP. Qed.

Lemma asboolPn (P : Prop) : reflect (~ P) (~~ `[<P>]).
Proof. by rewrite /asbool; case: pselect=> h; constructor. Qed.

Lemma asboolW (P : Prop) : `[<P>] -> P.
Proof. by case: asboolP. Qed.

(* Shall this be a coercion ?*)
Lemma asboolT (P : Prop) : P -> `[<P>].
Proof. by case: asboolP. Qed.

Lemma asboolF (P : Prop) : ~ P -> `[<P>] = false.
Proof. by apply/introF/asboolP. Qed.

Lemma eq_opE (T : eqType) (x y : T) : (x == y : Prop) = (x = y).
Proof. by apply/propext; split=> /eqP. Qed.

Lemma is_true_inj : injective is_true.
Proof. by move=> [] []; rewrite ?(trueE, falseE) ?propeqE; tauto. Qed.

Definition gen_eq (T : Type) (u v : T) := `[<u = v>].
Lemma gen_eqP (T : Type) : Equality.axiom (@gen_eq T).
Proof. by move=> x y; apply: (iffP (asboolP _)). Qed.
Definition gen_eqMixin {T : Type} := EqMixin (@gen_eqP T).

Canonical arrow_eqType (T : Type) (T' : eqType) :=
  EqType (T -> T') gen_eqMixin.
Canonical arrow_choiceType (T : Type) (T' : choiceType) :=
  ChoiceType (T -> T') gen_choiceMixin.

Definition dep_arrow_eqType (T : Type) (T' : T -> eqType) :=
  EqType (forall x : T, T' x) gen_eqMixin.
Definition dep_arrow_choiceClass (T : Type) (T' : T -> choiceType) :=
  Choice.Class (Equality.class (dep_arrow_eqType T')) gen_choiceMixin.
Definition dep_arrow_choiceType (T : Type) (T' : T -> choiceType) :=
  Choice.Pack (dep_arrow_choiceClass T').

Canonical Prop_eqType := EqType Prop gen_eqMixin.
Canonical Prop_choiceType := ChoiceType Prop gen_choiceMixin.

Section classicType.
Variable T : Type.
Definition classicType := T.
Canonical classicType_eqType := EqType classicType gen_eqMixin.
Canonical classicType_choiceType := ChoiceType classicType gen_choiceMixin.
End classicType.
Notation "'{classic' T }" := (classicType T)
 (format "'{classic'  T }") : type_scope.

Section eclassicType.
Variable T : eqType.
Definition eclassicType : Type := T.
Canonical eclassicType_eqType := EqType eclassicType (Equality.class T).
Canonical eclassicType_choiceType := ChoiceType eclassicType gen_choiceMixin.
End eclassicType.
Notation "'{eclassic' T }" := (eclassicType T)
 (format "'{eclassic'  T }") : type_scope.

Definition canonical_of T U (sort : U -> T) := forall (G : T -> Type),
  (forall x', G (sort x')) -> forall x, G x.
Notation canonical_ sort := (@canonical_of _ _ sort).
Notation canonical T E := (@canonical_of T E id).

Lemma canon T U (sort : U -> T) : (forall x, exists y, sort y = x) -> canonical_ sort.
Proof. by move=> + G Gs x => /(_ x)/cid[x' <-]. Qed.
Arguments canon {T U sort} x.

Lemma Peq : canonical Type eqType.
Proof. by apply: canon => T; exists  [eqType of {classic T}]. Qed.
Lemma Pchoice : canonical Type choiceType.
Proof. by apply: canon => T; exists [choiceType of {classic T}]. Qed.
Lemma eqPchoice : canonical eqType choiceType.
Proof. by apply: canon=> T; exists [choiceType of {eclassic T}]; case: T. Qed.

Lemma not_True : (~ True) = False. Proof. exact/propext. Qed.
Lemma not_False : (~ False) = True. Proof. by apply/propext; split=> _. Qed.

(* -------------------------------------------------------------------- *)
Lemma asbool_equiv_eq {P Q : Prop} : (P <-> Q) -> `[<P>] = `[<Q>].
Proof. by rewrite -propeqE => ->. Qed.

Lemma asbool_equiv_eqP {P Q : Prop} b : reflect Q b -> (P <-> Q) -> `[<P>] = b.
Proof. by move=> Q_b [PQ QP]; apply/asboolP/Q_b. Qed.

Lemma asbool_equiv {P Q : Prop} : (P <-> Q) -> (`[<P>] <-> `[<Q>]).
Proof. by move/asbool_equiv_eq->. Qed.

Lemma asbool_eq_equiv {P Q : Prop} : `[<P>] = `[<Q>] -> (P <-> Q).
Proof. by move=> eq; split=> /asboolP; rewrite (eq, =^~ eq) => /asboolP. Qed.

(* -------------------------------------------------------------------- *)
Lemma and_asboolP (P Q : Prop) : reflect (P /\ Q) (`[< P >] && `[< Q >]).
Proof.
apply: (iffP idP); first by case/andP => /asboolP p /asboolP q.
by case=> /asboolP-> /asboolP->.
Qed.

Lemma and3_asboolP (P Q R : Prop) :
  reflect [/\ P, Q & R] [&& `[< P >], `[< Q >] & `[< R >]].
Proof.
apply: (iffP idP); first by case/and3P => /asboolP p /asboolP q /asboolP r.
by case => /asboolP -> /asboolP -> /asboolP ->.
Qed.

Lemma or_asboolP (P Q : Prop) : reflect (P \/ Q) (`[< P >] || `[< Q >]).
Proof.
apply: (iffP idP); first by case/orP=> /asboolP; [left | right].
by case=> /asboolP-> //=; rewrite orbT.
Qed.

Lemma or3_asboolP (P Q R : Prop) :
  reflect [\/ P, Q | R] [|| `[< P >], `[< Q >] | `[< R >]].
Proof.
apply: (iffP idP); last by case=> [| |] /asboolP -> //=; rewrite !orbT.
by case/orP=> [/asboolP p|/orP[]/asboolP]; [exact:Or31|exact:Or32|exact:Or33].
Qed.

Lemma asbool_neg {P : Prop} : `[<~ P>] = ~~ `[<P>].
Proof. by apply/idP/asboolPn=> [/asboolP|/asboolT]. Qed.

Lemma asbool_or {P Q : Prop} : `[<P \/ Q>] = `[<P>] || `[<Q>].
Proof. exact: (asbool_equiv_eqP (or_asboolP _ _)). Qed.

Lemma asbool_and {P Q : Prop} : `[<P /\ Q>] = `[<P>] && `[<Q>].
Proof. exact: (asbool_equiv_eqP (and_asboolP _ _)). Qed.

(* -------------------------------------------------------------------- *)
Lemma imply_asboolP {P Q : Prop} : reflect (P -> Q) (`[<P>] ==> `[<Q>]).
Proof.
apply: (iffP implyP)=> [PQb /asboolP/PQb/asboolW //|].
by move=> PQ /asboolP/PQ/asboolT.
Qed.

Lemma asbool_imply {P Q : Prop} : `[<P -> Q>] = `[<P>] ==> `[<Q>].
Proof. exact: (asbool_equiv_eqP imply_asboolP). Qed.

Lemma imply_asboolPn (P Q : Prop) : reflect (P /\ ~ Q) (~~ `[<P -> Q>]).
Proof.
apply: (iffP idP).
by rewrite asbool_imply negb_imply -asbool_neg => /and_asboolP.
by move/and_asboolP; rewrite asbool_neg -negb_imply asbool_imply.
Qed.

(* -------------------------------------------------------------------- *)
Lemma forall_asboolP {T : Type} (P : T -> Prop) :
  reflect (forall x, `[<P x>]) (`[<forall x, P x>]).
Proof.
apply: (iffP idP); first by move/asboolP=> Px x; apply/asboolP.
by move=> Px; apply/asboolP=> x; apply/asboolP.
Qed.

Lemma exists_asboolP {T : Type} (P : T -> Prop) :
  reflect (exists x, `[<P x>]) (`[<exists x, P x>]).
Proof.
apply: (iffP idP); first by case/asboolP=> x Px; exists x; apply/asboolP.
by case=> x bPx; apply/asboolP; exists x; apply/asboolP.
Qed.

(* -------------------------------------------------------------------- *)

Lemma notT (P : Prop) : P = False -> ~ P. Proof. by move->. Qed.

Lemma contrapT P : ~ ~ P -> P.
Proof.
by move/asboolPn=> nnb; apply/asboolP; apply: contraR nnb => /asboolPn /asboolP.
Qed.

Lemma notTE (P : Prop) : (~ P) -> P = False.
Proof. by case: (pdegen P)=> ->. Qed.

Lemma notFE (P : Prop) : (~ P) = False -> P.
Proof. move/notT; exact: contrapT. Qed.

Lemma notK : involutive not.
Proof.
move=> P; case: (pdegen P)=> ->; last by apply: notTE; intuition.
by rewrite [~ True]notTE //; case: (pdegen (~ False)) => // /notFE.
Qed.

Lemma contra_notP (Q P : Prop) : (~ Q -> P) -> ~ P -> Q.
Proof.
move=> cb /asboolPn nb; apply/asboolP.
by apply: contraR nb => /asboolP /cb /asboolP.
Qed.

Lemma contraPP (Q P : Prop) : (~ Q -> ~ P) -> P -> Q.
Proof.
move=> cb /asboolP hb; apply/asboolP.
by apply: contraLR hb => /asboolP /cb /asboolPn.
Qed.

Lemma contra_notT b (P : Prop) : (~~ b -> P) -> ~ P -> b.
Proof. by move=> bP; apply: contra_notP => /negP. Qed.

Lemma contraPT (P : Prop) b : (~~ b -> ~ P) -> P -> b.
Proof. by move=> /contra_notT; rewrite notK. Qed.

Lemma contraTP b (Q : Prop) : (~ Q -> ~~ b) -> b -> Q.
Proof. by move=> QB; apply: contraPP => /QB/negP. Qed.

Lemma contraNP (P : Prop) (b : bool) : (~ P -> b) -> ~~ b -> P.
Proof. by move=> /contra_notP + /negP => /[apply]. Qed.

Lemma contra_neqP (T : eqType) (x y : T) P : (~ P -> x = y) -> x != y -> P.
Proof. by move=> Pxy; apply: contraNP => /Pxy/eqP. Qed.

Lemma contra_eqP (T : eqType) (x y : T) (Q : Prop) : (~ Q -> x != y) -> x = y -> Q.
Proof. by move=> Qxy /eqP; apply: contraTP. Qed.

Lemma wlog_neg P : (~ P -> P) -> P.
Proof. by move=> ?; case: (pselect P). Qed.

Lemma not_inj : injective not. Proof. exact: can_inj notK. Qed.
Lemma notLR P Q : (P = ~ Q) -> (~ P) = Q. Proof. exact: canLR notK. Qed.

Lemma notRL P Q : (~ P) = Q -> P = ~ Q. Proof. exact: canRL notK. Qed.

Lemma iff_notr (P Q : Prop) : (P <-> ~ Q) <-> (~ P <-> Q).
Proof. by split=> [/propext ->|/propext <-]; rewrite notK. Qed.

Lemma iff_not2 (P Q : Prop) : (~ P <-> ~ Q) <-> (P <-> Q).
Proof. by split=> [/iff_notr|PQ]; [|apply/iff_notr]; rewrite notK. Qed.

(* -------------------------------------------------------------------- *)
(* assia : let's see if we need the simplpred machinery. In any case, we sould
   first try definitions + appropriate Arguments setting to see whether these
   can replace the canonical structures machinery. *)

Definition predp T := T -> Prop.

Identity Coercion fun_of_pred : predp >-> Funclass.

Definition relp T := T -> predp T.

Identity Coercion fun_of_rel : rel >-> Funclass.

Notation xpredp0 := (fun _ => False).
Notation xpredpT := (fun _ => True).
Notation xpredpI := (fun (p1 p2 : predp _) x => p1 x /\ p2 x).
Notation xpredpU := (fun (p1 p2 : predp _) x => p1 x \/ p2 x).
Notation xpredpC := (fun (p : predp _) x => ~ p x).
Notation xpredpD := (fun (p1 p2 : predp _) x => ~ p2 x /\ p1 x).
Notation xpreimp := (fun f (p : predp _) x => p (f x)).
Notation xrelpU := (fun (r1 r2 : relp _) x y => r1 x y \/ r2 x y).

(* -------------------------------------------------------------------- *)
Definition pred0p (T : Type) (P : predp T) : bool := `[<P =1 xpredp0>].
Prenex Implicits pred0p.

Lemma pred0pP  (T : Type) (P : predp T) : reflect (P =1 xpredp0) (pred0p P).
Proof. by apply: (iffP (asboolP _)). Qed.

(* -------------------------------------------------------------------- *)
Lemma forallp_asboolPn {T} {P : T -> Prop} :
  reflect (forall x : T, ~ P x) (~~ `[<exists x : T, P x>]).
Proof.
apply: (iffP idP)=> [/asboolPn NP x Px|NP].
by apply/NP; exists x. by apply/asboolP=> -[x]; apply/NP.
Qed.

Lemma existsp_asboolPn {T} {P : T -> Prop} :
  reflect (exists x : T, ~ P x) (~~ `[<forall x : T, P x>]).
Proof.
apply: (iffP idP); last by case=> x NPx; apply/asboolPn=> /(_ x).
move/asboolPn=> NP; apply/asboolP/negbNE/asboolPn=> h.
by apply/NP=> x; apply/asboolP/negbNE/asboolPn=> NPx; apply/h; exists x.
Qed.

Lemma asbool_forallNb {T : Type} (P : pred T) :
  `[< forall x : T, ~~ (P x) >] = ~~ `[< exists x : T, P x >].
Proof.
apply: (asbool_equiv_eqP forallp_asboolPn);
  by split=> h x; apply/negP/h.
Qed.

Lemma asbool_existsNb {T : Type} (P : pred T) :
  `[< exists x : T, ~~ (P x) >] = ~~ `[< forall x : T, P x >].
Proof.
apply: (asbool_equiv_eqP existsp_asboolPn);
  by split=> -[x h]; exists x; apply/negP.
Qed.

Lemma not_implyP (P Q : Prop) : ~ (P -> Q) <-> P /\ ~ Q.
Proof.
split=> [/asboolP|[p nq pq]]; [|exact/nq/pq].
by rewrite asbool_neg => /imply_asboolPn.
Qed.

Lemma not_andP (P Q : Prop) : ~ (P /\ Q) <-> ~ P \/ ~ Q.
Proof.
split => [/asboolPn|[|]]; try by apply: contra_not => -[].
by rewrite asbool_and negb_and => /orP[]/asboolPn; [left|right].
Qed.

Lemma not_and3P (P Q R : Prop) : ~ [/\ P, Q & R] <-> [\/ ~ P, ~ Q | ~ R].
Proof.
split=> [/and3_asboolP|/or3_asboolP].
by rewrite 2!negb_and -3!asbool_neg => /or3_asboolP.
by rewrite 3!asbool_neg -2!negb_and => /and3_asboolP.
Qed.

Lemma not_orP (P Q : Prop) : ~ (P \/ Q) <-> ~ P /\ ~ Q.
Proof.
split; [apply: contra_notP => /not_andP|apply: contraPnot => AB; apply/not_andP];
  by rewrite 2!notK.
Qed.

Lemma not_implyE (P Q : Prop) : (~ (P -> Q)) = (P /\ ~ Q).
Proof. by rewrite propeqE not_implyP. Qed.

Lemma orC (P Q : Prop) : (P \/ Q) = (Q \/ P).
Proof. by rewrite propeqE; split=> [[]|[]]; [right|left|right|left]. Qed.

Lemma orA : associative or.
Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed.

Lemma andC (P Q : Prop) : (P /\ Q) = (Q /\ P).
Proof. by rewrite propeqE; split=> [[]|[]]. Qed.

Lemma andA : associative and.
Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed.

Lemma forallNE {T} (P : T -> Prop) : (forall x, ~ P x) = ~ exists x, P x.
Proof.
by rewrite propeqE; split => [fP [x /fP]//|nexP x Px]; apply: nexP; exists x.
Qed.

Lemma existsNE {T} (P : T -> Prop) : (exists x, ~ P x) = ~ forall x, P x.
Proof.
rewrite propeqE; split=> [[x Px] aP //|NaP].
by apply: contrapT; rewrite -forallNE => aP; apply: NaP => x; apply: contrapT.
Qed.

Lemma existsNP T (P : T -> Prop) : (exists x, ~ P x) <-> ~ forall x, P x.
Proof. by rewrite existsNE. Qed.

Lemma not_existsP T (P : T -> Prop) : (exists x, P x) <-> ~ forall x, ~ P x.
Proof. by rewrite forallNE notK. Qed.

Lemma forallNP T (P : T -> Prop) : (forall x, ~ P x) <-> ~ exists x, P x.
Proof. by rewrite forallNE. Qed.

Lemma not_forallP T (P : T -> Prop) : (forall x, P x) <-> ~ exists x, ~ P x.
Proof. by rewrite existsNE notK. Qed.

Lemma exists2P T (P Q : T -> Prop) :
  (exists2 x, P x & Q x) <-> exists x, P x /\ Q x.
Proof. by split=> [[x ? ?] | [x []]]; exists x. Qed.

Lemma not_exists2P T (P Q : T -> Prop) :
  (exists2 x, P x & Q x) <-> ~ forall x, ~ P x \/ ~ Q x.
Proof.
rewrite exists2P not_existsP.
by split; apply: contra_not => PQx x;  apply/not_andP; apply: PQx.
Qed.

Lemma forall2NP T (P Q : T -> Prop) :
  (forall x, ~ P x \/ ~ Q x) <-> ~ (exists2 x, P x & Q x).
Proof.
split=> [PQ [t Pt Qt]|PQ t]; first by have [] := PQ t.
by rewrite -not_andP => -[Pt Qt]; apply PQ; exists t.
Qed.

Lemma forallPNP T (P Q : T -> Prop) :
  (forall x, P x -> ~ Q x) <-> ~ (exists2 x, P x & Q x).
Proof.
split=> [PQ [t Pt Qt]|PQ t]; first by have [] := PQ t.
by move=> Pt Qt; apply: PQ; exists t.
Qed.

Lemma existsPNP T (P Q : T -> Prop) :
  (exists2 x, P x & ~ Q x) <-> ~ (forall x, P x -> Q x).
Proof.
split=> [[x Px NQx] /(_ x Px)//|]; apply: contra_notP => + x Px.
by apply: contra_notP => NQx; exists x.
Qed.

Module FunOrder.
Section FunOrder.
Import Order.TTheory.
Variables (aT : Type) (d : unit) (T : porderType d).
Implicit Types f g h : aT -> T.

Lemma fun_display : unit. Proof. exact: tt. Qed.

Definition lef f g := `[< forall x, (f x <= g x)%O >].
Local Notation "f <= g" := (lef f g).

Definition ltf f g := `[< (forall x, (f x <= g x)%O) /\ exists x, f x != g x >].
Local Notation "f < g" := (ltf f g).

Lemma ltf_def f g : (f < g) = (g != f) && (f <= g).
Proof.
apply/idP/andP => [fg|[gf fg]]; [split|apply/asboolP; split; [exact/asboolP|]].
- by apply/eqP => gf; move: fg => /asboolP[fg] [x /eqP]; apply; rewrite gf.
- apply/asboolP => x; rewrite le_eqVlt; move/asboolP : fg => [fg [y gfy]].
  by have [//|gfx /=] := boolP (f x == g x); rewrite lt_neqAle gfx /= fg.
- apply/not_existsP => h.
  have : f =1 g by move=> x; have /negP/negPn/eqP := h x.
  by rewrite -funeqE; apply/nesym/eqP.
Qed.

Fact lef_refl : reflexive lef. Proof. by move=> f; apply/asboolP => x. Qed.

Fact lef_anti : antisymmetric lef.
Proof.
move=> f g => /andP[/asboolP fg /asboolP gf]; rewrite funeqE => x.
by apply/eqP; rewrite eq_le fg gf.
Qed.

Fact lef_trans : transitive lef.
Proof.
move=> g f h /asboolP fg /asboolP gh; apply/asboolP => x.
by rewrite (le_trans (fg x)).
Qed.

Definition porderMixin :=
  @LePOrderMixin _ lef ltf ltf_def lef_refl lef_anti lef_trans.

Canonical porderType := POrderType fun_display (aT -> T) porderMixin.

End FunOrder.

Section FunLattice.
Import Order.TTheory.
Variables (aT : Type) (d : unit) (T : latticeType d).
Implicit Types f g h : aT -> T.

Definition meetf f g := fun x => Order.meet (f x) (g x).
Definition joinf f g := fun x => Order.join (f x) (g x).

Lemma meetfC : commutative meetf.
Proof. move=> f g; apply/funext => x; exact: meetC. Qed.

Lemma joinfC : commutative joinf.
Proof. move=> f g; apply/funext => x; exact: joinC. Qed.

Lemma meetfA : associative meetf.
Proof. move=> f g h; apply/funext => x; exact: meetA. Qed.

Lemma joinfA : associative joinf.
Proof. move=> f g h; apply/funext => x; exact: joinA. Qed.

Lemma joinfKI g f : meetf f (joinf f g) = f.
Proof. apply/funext => x; exact: joinKI. Qed.

Lemma meetfKU g f : joinf f (meetf f g) = f.
Proof. apply/funext => x; exact: meetKU. Qed.

Lemma lef_meet f g : (f <= g)%O = (meetf f g == f).
Proof.
apply/idP/idP => [/asboolP f_le_g|/eqP <-].
- apply/eqP/funext => x; exact/meet_l/f_le_g.
- apply/asboolP => x; exact: leIr.
Qed.

Definition latticeMixin :=
  LatticeMixin meetfC joinfC meetfA joinfA joinfKI meetfKU lef_meet.

Canonical latticeType := LatticeType (aT -> T) latticeMixin.

End FunLattice.
Module Exports.
Canonical porderType.
Canonical latticeType.
End Exports.
End FunOrder.
Export FunOrder.Exports.

Lemma lefP (aT : Type) d (T : porderType d) (f g : aT -> T) :
  reflect (forall x, (f x <= g x)%O) (f <= g)%O.
Proof. by apply: (iffP idP) => [fg|fg]; [exact/asboolP | apply/asboolP]. Qed.

Lemma meetfE (aT : Type) d (T : latticeType d) (f g : aT -> T) x :
  ((f `&` g) x = f x `&` g x)%O.
Proof. by []. Qed.

Lemma joinfE (aT : Type) d (T : latticeType d) (f g : aT -> T) x :
  ((f `|` g) x = f x `|` g x)%O.
Proof. by []. Qed.

Lemma iterfS {T} (f : T -> T) (n : nat) : iter n.+1 f = f \o iter n f.
Proof. by []. Qed.

Lemma iterfSr {T} (f : T -> T) (n : nat) : iter n.+1 f = iter n f \o f.
Proof. by apply/funeqP => ?; rewrite iterSr. Qed.

Lemma iter0 {T} (f : T -> T) : iter 0 f = id.
Proof. by []. Qed.