Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 29,329 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 |
(* mathcomp analysis (c) 2017 Inria and AIST. License: CeCILL-C. *)
(* -------------------------------------------------------------------- *)
(* Copyright (c) - 2015--2016 - IMDEA Software Institute *)
(* Copyright (c) - 2015--2018 - Inria *)
(* Copyright (c) - 2016--2018 - Polytechnique *)
(* -------------------------------------------------------------------- *)
From mathcomp Require Import all_ssreflect.
(******************************************************************************)
(* Classical Logic *)
(* *)
(* This file provides the axioms of classical logic and tools to perform *)
(* classical reasoning in the Mathematical Compnent framework. The three *)
(* axioms are taken from the standard library of Coq, more details can be *)
(* found in Section 5 of *)
(* Reynald Affeldt, Cyril Cohen, Damien Rouhling: *)
(* Formalization Techniques for Asymptotic Reasoning in Classical Analysis. *)
(* Journal of Formalized Reasoning, 2018 *)
(* *)
(* * Axioms *)
(* functional_extensionality_dep == functional extensionality (on dependently *)
(* typed functions), i.e., functions that are pointwise *)
(* equal are equal *)
(* propositional_extensionality == propositional extensionality, i.e., iff *)
(* and equality are the same on Prop *)
(* constructive_indefinite_description == existential in Prop (ex) implies *)
(* existential in Type (sig) *)
(* cid := constructive_indefinite_description (shortcut) *)
(* --> A number of properties are derived below from these axioms and are *)
(* often more pratical to use than directly using the axioms. For instance *)
(* propext, funext, the excluded middle (EM),... *)
(* *)
(* * Boolean View of Prop *)
(* `[< P >] == boolean view of P : Prop, see all lemmas about asbool *)
(* *)
(* * Mathematical Components Structures *)
(* {classic T} == Endow T : Type with a canonical eqType/choiceType. *)
(* This is intended for local use. *)
(* E.g., T : Type |- A : {fset {classic T}} *)
(* Alternatively one may use elim/Pchoice: T => T in H *. *)
(* to substitute T with T : choiceType once and for all. *)
(* {eclassic T} == Endow T : eqType with a canonical choiceType. *)
(* On the model of {classic _}. *)
(* See also the lemmas Peq and eqPchoice. *)
(* *)
(* --> Functions into a porderType (resp. latticeType) are equipped with *)
(* a porderType (resp. latticeType), (f <= g)%O when f x <= g x for all x, *)
(* see lemma lefP. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope box_scope.
Declare Scope quant_scope.
(* -------------------------------------------------------------------- *)
Axiom functional_extensionality_dep :
forall (A : Type) (B : A -> Type) (f g : forall x : A, B x),
(forall x : A, f x = g x) -> f = g.
Axiom propositional_extensionality :
forall P Q : Prop, P <-> Q -> P = Q.
Axiom constructive_indefinite_description :
forall (A : Type) (P : A -> Prop),
(exists x : A, P x) -> {x : A | P x}.
Notation cid := constructive_indefinite_description.
Lemma cid2 (A : Type) (P Q : A -> Prop) :
(exists2 x : A, P x & Q x) -> {x : A | P x & Q x}.
Proof.
move=> PQA; suff: {x | P x /\ Q x} by move=> [a [*]]; exists a.
by apply: cid; case: PQA => x; exists x.
Qed.
(* -------------------------------------------------------------------- *)
Record mextentionality := {
_ : forall (P Q : Prop), (P <-> Q) -> (P = Q);
_ : forall {T U : Type} (f g : T -> U),
(forall x, f x = g x) -> f = g;
}.
Fact extentionality : mextentionality.
Proof.
split.
- exact: propositional_extensionality.
- by move=> T U f g; apply: functional_extensionality_dep.
Qed.
Lemma propext (P Q : Prop) : (P <-> Q) -> (P = Q).
Proof. by have [propext _] := extentionality; apply: propext. Qed.
Lemma funext {T U : Type} (f g : T -> U) : (f =1 g) -> f = g.
Proof. by case: extentionality=> _; apply. Qed.
Lemma propeqE (P Q : Prop) : (P = Q) = (P <-> Q).
Proof. by apply: propext; split=> [->|/propext]. Qed.
Lemma propeqP (P Q : Prop) : (P = Q) <-> (P <-> Q).
Proof. by rewrite propeqE. Qed.
Lemma funeqE {T U : Type} (f g : T -> U) : (f = g) = (f =1 g).
Proof. by rewrite propeqE; split=> [->//|/funext]. Qed.
Lemma funeq2E {T U V : Type} (f g : T -> U -> V) : (f = g) = (f =2 g).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite funeqE.
Qed.
Lemma funeq3E {T U V W : Type} (f g : T -> U -> V -> W) :
(f = g) = (forall x y z, f x y z = g x y z).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> x y; rewrite funeqE.
Qed.
Lemma funeqP {T U : Type} (f g : T -> U) : (f = g) <-> (f =1 g).
Proof. by rewrite funeqE. Qed.
Lemma funeq2P {T U V : Type} (f g : T -> U -> V) : (f = g) <-> (f =2 g).
Proof. by rewrite funeq2E. Qed.
Lemma funeq3P {T U V W : Type} (f g : T -> U -> V -> W) :
(f = g) <-> (forall x y z, f x y z = g x y z).
Proof. by rewrite funeq3E. Qed.
Lemma predeqE {T} (P Q : T -> Prop) : (P = Q) = (forall x, P x <-> Q x).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite propeqE.
Qed.
Lemma predeq2E {T U} (P Q : T -> U -> Prop) :
(P = Q) = (forall x y, P x y <-> Q x y).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> ??; rewrite propeqE.
Qed.
Lemma predeq3E {T U V} (P Q : T -> U -> V -> Prop) :
(P = Q) = (forall x y z, P x y z <-> Q x y z).
Proof.
by rewrite propeqE; split=> [->//|?]; rewrite funeq3E=> ???; rewrite propeqE.
Qed.
Lemma predeqP {T} (A B : T -> Prop) : (A = B) <-> (forall x, A x <-> B x).
Proof. by rewrite predeqE. Qed.
Lemma predeq2P {T U} (P Q : T -> U -> Prop) :
(P = Q) <-> (forall x y, P x y <-> Q x y).
Proof. by rewrite predeq2E. Qed.
Lemma predeq3P {T U V} (P Q : T -> U -> V -> Prop) :
(P = Q) <-> (forall x y z, P x y z <-> Q x y z).
Proof. by rewrite predeq3E. Qed.
Lemma propT {P : Prop} : P -> P = True.
Proof. by move=> p; rewrite propeqE. Qed.
Lemma Prop_irrelevance (P : Prop) (x y : P) : x = y.
Proof. by move: x (x) y => /propT-> [] []. Qed.
#[global] Hint Resolve Prop_irrelevance : core.
(* -------------------------------------------------------------------- *)
Record mclassic := {
_ : forall (P : Prop), {P} + {~P};
_ : forall T, Choice.mixin_of T
}.
Lemma choice X Y (P : X -> Y -> Prop) :
(forall x, exists y, P x y) -> {f & forall x, P x (f x)}.
Proof. by move=> /(_ _)/constructive_indefinite_description -/all_tag. Qed.
(* Diaconescu Theorem *)
Theorem EM P : P \/ ~ P.
Proof.
pose U val := fun Q : bool => Q = val \/ P.
have Uex val : exists b, U val b by exists val; left.
pose f val := projT1 (cid (Uex val)).
pose Uf val : U val (f val) := projT2 (cid (Uex val)).
have : f true != f false \/ P.
have [] := (Uf true, Uf false); rewrite /U.
by move=> [->|?] [->|?] ; do ?[by right]; left.
move=> [/eqP fTFN|]; [right=> p|by left]; apply: fTFN.
have UTF : U true = U false by rewrite predeqE /U => b; split=> _; right.
rewrite /f; move: (Uex true) (Uex false); rewrite UTF => p1 p2.
by congr (projT1 (cid _)).
Qed.
Lemma pselect (P : Prop): {P} + {~P}.
Proof.
have : exists b, if b then P else ~ P.
by case: (EM P); [exists true|exists false].
by move=> /cid [[]]; [left|right].
Qed.
Lemma pselectT T : (T -> False) + T.
Proof.
have [/cid[]//|NT] := pselect (exists t : T, True); first by right.
by left=> t; case: NT; exists t.
Qed.
Lemma classic : mclassic.
Proof.
split=> [|T]; first exact: pselect.
exists (fun (P : pred T) (n : nat) =>
if pselect (exists x, P x) isn't left ex then None
else Some (projT1 (cid ex)))
=> [P n x|P [x Px]|P Q /funext -> //].
by case: pselect => // ex [<- ]; case: cid.
by exists 0; case: pselect => // -[]; exists x.
Qed.
Lemma gen_choiceMixin {T : Type} : Choice.mixin_of T.
Proof. by case: classic. Qed.
Lemma pdegen (P : Prop): P = True \/ P = False.
Proof. by have [p|Np] := pselect P; [left|right]; rewrite propeqE. Qed.
Lemma lem (P : Prop): P \/ ~P.
Proof. by case: (pselect P); tauto. Qed.
(* -------------------------------------------------------------------- *)
Lemma trueE : true = True :> Prop.
Proof. by rewrite propeqE; split. Qed.
Lemma falseE : false = False :> Prop.
Proof. by rewrite propeqE; split. Qed.
Lemma propF (P : Prop) : ~ P -> P = False.
Proof. by move=> p; rewrite propeqE; tauto. Qed.
Lemma eq_fun T rT (U V : T -> rT) :
(forall x : T, U x = V x) -> (fun x => U x) = (fun x => V x).
Proof. by move=> /funext->. Qed.
Lemma eq_fun2 T1 T2 rT (U V : T1 -> T2 -> rT) :
(forall x y, U x y = V x y) -> (fun x y => U x y) = (fun x y => V x y).
Proof. by move=> UV; rewrite funeq2E => x y; rewrite UV. Qed.
Lemma eq_fun3 T1 T2 T3 rT (U V : T1 -> T2 -> T3 -> rT) :
(forall x y z, U x y z = V x y z) ->
(fun x y z => U x y z) = (fun x y z => V x y z).
Proof. by move=> UV; rewrite funeq3E => x y z; rewrite UV. Qed.
Lemma eq_forall T (U V : T -> Prop) :
(forall x : T, U x = V x) -> (forall x, U x) = (forall x, V x).
Proof. by move=> e; rewrite propeqE; split=> ??; rewrite (e,=^~e). Qed.
Lemma eq_forall2 T S (U V : forall x : T, S x -> Prop) :
(forall x y, U x y = V x y) -> (forall x y, U x y) = (forall x y, V x y).
Proof. by move=> UV; apply/eq_forall => x; apply/eq_forall. Qed.
Lemma eq_forall3 T S R (U V : forall (x : T) (y : S x), R x y -> Prop) :
(forall x y z, U x y z = V x y z) ->
(forall x y z, U x y z) = (forall x y z, V x y z).
Proof. by move=> UV; apply/eq_forall2 => x y; apply/eq_forall. Qed.
Lemma eq_exists T (U V : T -> Prop) :
(forall x : T, U x = V x) -> (exists x, U x) = (exists x, V x).
Proof.
by move=> e; rewrite propeqE; split=> - [] x ?; exists x; rewrite (e,=^~e).
Qed.
Lemma eq_exists2 T S (U V : forall x : T, S x -> Prop) :
(forall x y, U x y = V x y) -> (exists x y, U x y) = (exists x y, V x y).
Proof. by move=> UV; apply/eq_exists => x; apply/eq_exists. Qed.
Lemma eq_exists3 T S R (U V : forall (x : T) (y : S x), R x y -> Prop) :
(forall x y z, U x y z = V x y z) ->
(exists x y z, U x y z) = (exists x y z, V x y z).
Proof. by move=> UV; apply/eq_exists2 => x y; apply/eq_exists. Qed.
Lemma eq_exist T (P : T -> Prop) (s t : T) (p : P s) (q : P t) :
s = t -> exist P s p = exist P t q.
Proof. by move=> st; case: _ / st in q *; apply/congr1. Qed.
Lemma forall_swap T S (U : forall (x : T) (y : S), Prop) :
(forall x y, U x y) = (forall y x, U x y).
Proof. by rewrite propeqE; split. Qed.
Lemma exists_swap T S (U : forall (x : T) (y : S), Prop) :
(exists x y, U x y) = (exists y x, U x y).
Proof. by rewrite propeqE; split => -[x [y]]; exists y, x. Qed.
Lemma reflect_eq (P : Prop) (b : bool) : reflect P b -> P = b.
Proof. by rewrite propeqE; exact: rwP. Qed.
Definition asbool (P : Prop) :=
if pselect P then true else false.
Notation "`[< P >]" := (asbool P) : bool_scope.
Lemma asboolE (P : Prop) : `[<P>] = P :> Prop.
Proof. by rewrite propeqE /asbool; case: pselect; split. Qed.
Lemma asboolP (P : Prop) : reflect P `[<P>].
Proof. by apply: (equivP idP); rewrite asboolE. Qed.
Lemma asboolb (b : bool) : `[< b >] = b.
Proof. by apply/asboolP/idP. Qed.
Lemma asboolPn (P : Prop) : reflect (~ P) (~~ `[<P>]).
Proof. by rewrite /asbool; case: pselect=> h; constructor. Qed.
Lemma asboolW (P : Prop) : `[<P>] -> P.
Proof. by case: asboolP. Qed.
(* Shall this be a coercion ?*)
Lemma asboolT (P : Prop) : P -> `[<P>].
Proof. by case: asboolP. Qed.
Lemma asboolF (P : Prop) : ~ P -> `[<P>] = false.
Proof. by apply/introF/asboolP. Qed.
Lemma eq_opE (T : eqType) (x y : T) : (x == y : Prop) = (x = y).
Proof. by apply/propext; split=> /eqP. Qed.
Lemma is_true_inj : injective is_true.
Proof. by move=> [] []; rewrite ?(trueE, falseE) ?propeqE; tauto. Qed.
Definition gen_eq (T : Type) (u v : T) := `[<u = v>].
Lemma gen_eqP (T : Type) : Equality.axiom (@gen_eq T).
Proof. by move=> x y; apply: (iffP (asboolP _)). Qed.
Definition gen_eqMixin {T : Type} := EqMixin (@gen_eqP T).
Canonical arrow_eqType (T : Type) (T' : eqType) :=
EqType (T -> T') gen_eqMixin.
Canonical arrow_choiceType (T : Type) (T' : choiceType) :=
ChoiceType (T -> T') gen_choiceMixin.
Definition dep_arrow_eqType (T : Type) (T' : T -> eqType) :=
EqType (forall x : T, T' x) gen_eqMixin.
Definition dep_arrow_choiceClass (T : Type) (T' : T -> choiceType) :=
Choice.Class (Equality.class (dep_arrow_eqType T')) gen_choiceMixin.
Definition dep_arrow_choiceType (T : Type) (T' : T -> choiceType) :=
Choice.Pack (dep_arrow_choiceClass T').
Canonical Prop_eqType := EqType Prop gen_eqMixin.
Canonical Prop_choiceType := ChoiceType Prop gen_choiceMixin.
Section classicType.
Variable T : Type.
Definition classicType := T.
Canonical classicType_eqType := EqType classicType gen_eqMixin.
Canonical classicType_choiceType := ChoiceType classicType gen_choiceMixin.
End classicType.
Notation "'{classic' T }" := (classicType T)
(format "'{classic' T }") : type_scope.
Section eclassicType.
Variable T : eqType.
Definition eclassicType : Type := T.
Canonical eclassicType_eqType := EqType eclassicType (Equality.class T).
Canonical eclassicType_choiceType := ChoiceType eclassicType gen_choiceMixin.
End eclassicType.
Notation "'{eclassic' T }" := (eclassicType T)
(format "'{eclassic' T }") : type_scope.
Definition canonical_of T U (sort : U -> T) := forall (G : T -> Type),
(forall x', G (sort x')) -> forall x, G x.
Notation canonical_ sort := (@canonical_of _ _ sort).
Notation canonical T E := (@canonical_of T E id).
Lemma canon T U (sort : U -> T) : (forall x, exists y, sort y = x) -> canonical_ sort.
Proof. by move=> + G Gs x => /(_ x)/cid[x' <-]. Qed.
Arguments canon {T U sort} x.
Lemma Peq : canonical Type eqType.
Proof. by apply: canon => T; exists [eqType of {classic T}]. Qed.
Lemma Pchoice : canonical Type choiceType.
Proof. by apply: canon => T; exists [choiceType of {classic T}]. Qed.
Lemma eqPchoice : canonical eqType choiceType.
Proof. by apply: canon=> T; exists [choiceType of {eclassic T}]; case: T. Qed.
Lemma not_True : (~ True) = False. Proof. exact/propext. Qed.
Lemma not_False : (~ False) = True. Proof. by apply/propext; split=> _. Qed.
(* -------------------------------------------------------------------- *)
Lemma asbool_equiv_eq {P Q : Prop} : (P <-> Q) -> `[<P>] = `[<Q>].
Proof. by rewrite -propeqE => ->. Qed.
Lemma asbool_equiv_eqP {P Q : Prop} b : reflect Q b -> (P <-> Q) -> `[<P>] = b.
Proof. by move=> Q_b [PQ QP]; apply/asboolP/Q_b. Qed.
Lemma asbool_equiv {P Q : Prop} : (P <-> Q) -> (`[<P>] <-> `[<Q>]).
Proof. by move/asbool_equiv_eq->. Qed.
Lemma asbool_eq_equiv {P Q : Prop} : `[<P>] = `[<Q>] -> (P <-> Q).
Proof. by move=> eq; split=> /asboolP; rewrite (eq, =^~ eq) => /asboolP. Qed.
(* -------------------------------------------------------------------- *)
Lemma and_asboolP (P Q : Prop) : reflect (P /\ Q) (`[< P >] && `[< Q >]).
Proof.
apply: (iffP idP); first by case/andP => /asboolP p /asboolP q.
by case=> /asboolP-> /asboolP->.
Qed.
Lemma and3_asboolP (P Q R : Prop) :
reflect [/\ P, Q & R] [&& `[< P >], `[< Q >] & `[< R >]].
Proof.
apply: (iffP idP); first by case/and3P => /asboolP p /asboolP q /asboolP r.
by case => /asboolP -> /asboolP -> /asboolP ->.
Qed.
Lemma or_asboolP (P Q : Prop) : reflect (P \/ Q) (`[< P >] || `[< Q >]).
Proof.
apply: (iffP idP); first by case/orP=> /asboolP; [left | right].
by case=> /asboolP-> //=; rewrite orbT.
Qed.
Lemma or3_asboolP (P Q R : Prop) :
reflect [\/ P, Q | R] [|| `[< P >], `[< Q >] | `[< R >]].
Proof.
apply: (iffP idP); last by case=> [| |] /asboolP -> //=; rewrite !orbT.
by case/orP=> [/asboolP p|/orP[]/asboolP]; [exact:Or31|exact:Or32|exact:Or33].
Qed.
Lemma asbool_neg {P : Prop} : `[<~ P>] = ~~ `[<P>].
Proof. by apply/idP/asboolPn=> [/asboolP|/asboolT]. Qed.
Lemma asbool_or {P Q : Prop} : `[<P \/ Q>] = `[<P>] || `[<Q>].
Proof. exact: (asbool_equiv_eqP (or_asboolP _ _)). Qed.
Lemma asbool_and {P Q : Prop} : `[<P /\ Q>] = `[<P>] && `[<Q>].
Proof. exact: (asbool_equiv_eqP (and_asboolP _ _)). Qed.
(* -------------------------------------------------------------------- *)
Lemma imply_asboolP {P Q : Prop} : reflect (P -> Q) (`[<P>] ==> `[<Q>]).
Proof.
apply: (iffP implyP)=> [PQb /asboolP/PQb/asboolW //|].
by move=> PQ /asboolP/PQ/asboolT.
Qed.
Lemma asbool_imply {P Q : Prop} : `[<P -> Q>] = `[<P>] ==> `[<Q>].
Proof. exact: (asbool_equiv_eqP imply_asboolP). Qed.
Lemma imply_asboolPn (P Q : Prop) : reflect (P /\ ~ Q) (~~ `[<P -> Q>]).
Proof.
apply: (iffP idP).
by rewrite asbool_imply negb_imply -asbool_neg => /and_asboolP.
by move/and_asboolP; rewrite asbool_neg -negb_imply asbool_imply.
Qed.
(* -------------------------------------------------------------------- *)
Lemma forall_asboolP {T : Type} (P : T -> Prop) :
reflect (forall x, `[<P x>]) (`[<forall x, P x>]).
Proof.
apply: (iffP idP); first by move/asboolP=> Px x; apply/asboolP.
by move=> Px; apply/asboolP=> x; apply/asboolP.
Qed.
Lemma exists_asboolP {T : Type} (P : T -> Prop) :
reflect (exists x, `[<P x>]) (`[<exists x, P x>]).
Proof.
apply: (iffP idP); first by case/asboolP=> x Px; exists x; apply/asboolP.
by case=> x bPx; apply/asboolP; exists x; apply/asboolP.
Qed.
(* -------------------------------------------------------------------- *)
Lemma notT (P : Prop) : P = False -> ~ P. Proof. by move->. Qed.
Lemma contrapT P : ~ ~ P -> P.
Proof.
by move/asboolPn=> nnb; apply/asboolP; apply: contraR nnb => /asboolPn /asboolP.
Qed.
Lemma notTE (P : Prop) : (~ P) -> P = False.
Proof. by case: (pdegen P)=> ->. Qed.
Lemma notFE (P : Prop) : (~ P) = False -> P.
Proof. move/notT; exact: contrapT. Qed.
Lemma notK : involutive not.
Proof.
move=> P; case: (pdegen P)=> ->; last by apply: notTE; intuition.
by rewrite [~ True]notTE //; case: (pdegen (~ False)) => // /notFE.
Qed.
Lemma contra_notP (Q P : Prop) : (~ Q -> P) -> ~ P -> Q.
Proof.
move=> cb /asboolPn nb; apply/asboolP.
by apply: contraR nb => /asboolP /cb /asboolP.
Qed.
Lemma contraPP (Q P : Prop) : (~ Q -> ~ P) -> P -> Q.
Proof.
move=> cb /asboolP hb; apply/asboolP.
by apply: contraLR hb => /asboolP /cb /asboolPn.
Qed.
Lemma contra_notT b (P : Prop) : (~~ b -> P) -> ~ P -> b.
Proof. by move=> bP; apply: contra_notP => /negP. Qed.
Lemma contraPT (P : Prop) b : (~~ b -> ~ P) -> P -> b.
Proof. by move=> /contra_notT; rewrite notK. Qed.
Lemma contraTP b (Q : Prop) : (~ Q -> ~~ b) -> b -> Q.
Proof. by move=> QB; apply: contraPP => /QB/negP. Qed.
Lemma contraNP (P : Prop) (b : bool) : (~ P -> b) -> ~~ b -> P.
Proof. by move=> /contra_notP + /negP => /[apply]. Qed.
Lemma contra_neqP (T : eqType) (x y : T) P : (~ P -> x = y) -> x != y -> P.
Proof. by move=> Pxy; apply: contraNP => /Pxy/eqP. Qed.
Lemma contra_eqP (T : eqType) (x y : T) (Q : Prop) : (~ Q -> x != y) -> x = y -> Q.
Proof. by move=> Qxy /eqP; apply: contraTP. Qed.
Lemma wlog_neg P : (~ P -> P) -> P.
Proof. by move=> ?; case: (pselect P). Qed.
Lemma not_inj : injective not. Proof. exact: can_inj notK. Qed.
Lemma notLR P Q : (P = ~ Q) -> (~ P) = Q. Proof. exact: canLR notK. Qed.
Lemma notRL P Q : (~ P) = Q -> P = ~ Q. Proof. exact: canRL notK. Qed.
Lemma iff_notr (P Q : Prop) : (P <-> ~ Q) <-> (~ P <-> Q).
Proof. by split=> [/propext ->|/propext <-]; rewrite notK. Qed.
Lemma iff_not2 (P Q : Prop) : (~ P <-> ~ Q) <-> (P <-> Q).
Proof. by split=> [/iff_notr|PQ]; [|apply/iff_notr]; rewrite notK. Qed.
(* -------------------------------------------------------------------- *)
(* assia : let's see if we need the simplpred machinery. In any case, we sould
first try definitions + appropriate Arguments setting to see whether these
can replace the canonical structures machinery. *)
Definition predp T := T -> Prop.
Identity Coercion fun_of_pred : predp >-> Funclass.
Definition relp T := T -> predp T.
Identity Coercion fun_of_rel : rel >-> Funclass.
Notation xpredp0 := (fun _ => False).
Notation xpredpT := (fun _ => True).
Notation xpredpI := (fun (p1 p2 : predp _) x => p1 x /\ p2 x).
Notation xpredpU := (fun (p1 p2 : predp _) x => p1 x \/ p2 x).
Notation xpredpC := (fun (p : predp _) x => ~ p x).
Notation xpredpD := (fun (p1 p2 : predp _) x => ~ p2 x /\ p1 x).
Notation xpreimp := (fun f (p : predp _) x => p (f x)).
Notation xrelpU := (fun (r1 r2 : relp _) x y => r1 x y \/ r2 x y).
(* -------------------------------------------------------------------- *)
Definition pred0p (T : Type) (P : predp T) : bool := `[<P =1 xpredp0>].
Prenex Implicits pred0p.
Lemma pred0pP (T : Type) (P : predp T) : reflect (P =1 xpredp0) (pred0p P).
Proof. by apply: (iffP (asboolP _)). Qed.
(* -------------------------------------------------------------------- *)
Lemma forallp_asboolPn {T} {P : T -> Prop} :
reflect (forall x : T, ~ P x) (~~ `[<exists x : T, P x>]).
Proof.
apply: (iffP idP)=> [/asboolPn NP x Px|NP].
by apply/NP; exists x. by apply/asboolP=> -[x]; apply/NP.
Qed.
Lemma existsp_asboolPn {T} {P : T -> Prop} :
reflect (exists x : T, ~ P x) (~~ `[<forall x : T, P x>]).
Proof.
apply: (iffP idP); last by case=> x NPx; apply/asboolPn=> /(_ x).
move/asboolPn=> NP; apply/asboolP/negbNE/asboolPn=> h.
by apply/NP=> x; apply/asboolP/negbNE/asboolPn=> NPx; apply/h; exists x.
Qed.
Lemma asbool_forallNb {T : Type} (P : pred T) :
`[< forall x : T, ~~ (P x) >] = ~~ `[< exists x : T, P x >].
Proof.
apply: (asbool_equiv_eqP forallp_asboolPn);
by split=> h x; apply/negP/h.
Qed.
Lemma asbool_existsNb {T : Type} (P : pred T) :
`[< exists x : T, ~~ (P x) >] = ~~ `[< forall x : T, P x >].
Proof.
apply: (asbool_equiv_eqP existsp_asboolPn);
by split=> -[x h]; exists x; apply/negP.
Qed.
Lemma not_implyP (P Q : Prop) : ~ (P -> Q) <-> P /\ ~ Q.
Proof.
split=> [/asboolP|[p nq pq]]; [|exact/nq/pq].
by rewrite asbool_neg => /imply_asboolPn.
Qed.
Lemma not_andP (P Q : Prop) : ~ (P /\ Q) <-> ~ P \/ ~ Q.
Proof.
split => [/asboolPn|[|]]; try by apply: contra_not => -[].
by rewrite asbool_and negb_and => /orP[]/asboolPn; [left|right].
Qed.
Lemma not_and3P (P Q R : Prop) : ~ [/\ P, Q & R] <-> [\/ ~ P, ~ Q | ~ R].
Proof.
split=> [/and3_asboolP|/or3_asboolP].
by rewrite 2!negb_and -3!asbool_neg => /or3_asboolP.
by rewrite 3!asbool_neg -2!negb_and => /and3_asboolP.
Qed.
Lemma not_orP (P Q : Prop) : ~ (P \/ Q) <-> ~ P /\ ~ Q.
Proof.
split; [apply: contra_notP => /not_andP|apply: contraPnot => AB; apply/not_andP];
by rewrite 2!notK.
Qed.
Lemma not_implyE (P Q : Prop) : (~ (P -> Q)) = (P /\ ~ Q).
Proof. by rewrite propeqE not_implyP. Qed.
Lemma orC (P Q : Prop) : (P \/ Q) = (Q \/ P).
Proof. by rewrite propeqE; split=> [[]|[]]; [right|left|right|left]. Qed.
Lemma orA : associative or.
Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed.
Lemma andC (P Q : Prop) : (P /\ Q) = (Q /\ P).
Proof. by rewrite propeqE; split=> [[]|[]]. Qed.
Lemma andA : associative and.
Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed.
Lemma forallNE {T} (P : T -> Prop) : (forall x, ~ P x) = ~ exists x, P x.
Proof.
by rewrite propeqE; split => [fP [x /fP]//|nexP x Px]; apply: nexP; exists x.
Qed.
Lemma existsNE {T} (P : T -> Prop) : (exists x, ~ P x) = ~ forall x, P x.
Proof.
rewrite propeqE; split=> [[x Px] aP //|NaP].
by apply: contrapT; rewrite -forallNE => aP; apply: NaP => x; apply: contrapT.
Qed.
Lemma existsNP T (P : T -> Prop) : (exists x, ~ P x) <-> ~ forall x, P x.
Proof. by rewrite existsNE. Qed.
Lemma not_existsP T (P : T -> Prop) : (exists x, P x) <-> ~ forall x, ~ P x.
Proof. by rewrite forallNE notK. Qed.
Lemma forallNP T (P : T -> Prop) : (forall x, ~ P x) <-> ~ exists x, P x.
Proof. by rewrite forallNE. Qed.
Lemma not_forallP T (P : T -> Prop) : (forall x, P x) <-> ~ exists x, ~ P x.
Proof. by rewrite existsNE notK. Qed.
Lemma exists2P T (P Q : T -> Prop) :
(exists2 x, P x & Q x) <-> exists x, P x /\ Q x.
Proof. by split=> [[x ? ?] | [x []]]; exists x. Qed.
Lemma not_exists2P T (P Q : T -> Prop) :
(exists2 x, P x & Q x) <-> ~ forall x, ~ P x \/ ~ Q x.
Proof.
rewrite exists2P not_existsP.
by split; apply: contra_not => PQx x; apply/not_andP; apply: PQx.
Qed.
Lemma forall2NP T (P Q : T -> Prop) :
(forall x, ~ P x \/ ~ Q x) <-> ~ (exists2 x, P x & Q x).
Proof.
split=> [PQ [t Pt Qt]|PQ t]; first by have [] := PQ t.
by rewrite -not_andP => -[Pt Qt]; apply PQ; exists t.
Qed.
Lemma forallPNP T (P Q : T -> Prop) :
(forall x, P x -> ~ Q x) <-> ~ (exists2 x, P x & Q x).
Proof.
split=> [PQ [t Pt Qt]|PQ t]; first by have [] := PQ t.
by move=> Pt Qt; apply: PQ; exists t.
Qed.
Lemma existsPNP T (P Q : T -> Prop) :
(exists2 x, P x & ~ Q x) <-> ~ (forall x, P x -> Q x).
Proof.
split=> [[x Px NQx] /(_ x Px)//|]; apply: contra_notP => + x Px.
by apply: contra_notP => NQx; exists x.
Qed.
Module FunOrder.
Section FunOrder.
Import Order.TTheory.
Variables (aT : Type) (d : unit) (T : porderType d).
Implicit Types f g h : aT -> T.
Lemma fun_display : unit. Proof. exact: tt. Qed.
Definition lef f g := `[< forall x, (f x <= g x)%O >].
Local Notation "f <= g" := (lef f g).
Definition ltf f g := `[< (forall x, (f x <= g x)%O) /\ exists x, f x != g x >].
Local Notation "f < g" := (ltf f g).
Lemma ltf_def f g : (f < g) = (g != f) && (f <= g).
Proof.
apply/idP/andP => [fg|[gf fg]]; [split|apply/asboolP; split; [exact/asboolP|]].
- by apply/eqP => gf; move: fg => /asboolP[fg] [x /eqP]; apply; rewrite gf.
- apply/asboolP => x; rewrite le_eqVlt; move/asboolP : fg => [fg [y gfy]].
by have [//|gfx /=] := boolP (f x == g x); rewrite lt_neqAle gfx /= fg.
- apply/not_existsP => h.
have : f =1 g by move=> x; have /negP/negPn/eqP := h x.
by rewrite -funeqE; apply/nesym/eqP.
Qed.
Fact lef_refl : reflexive lef. Proof. by move=> f; apply/asboolP => x. Qed.
Fact lef_anti : antisymmetric lef.
Proof.
move=> f g => /andP[/asboolP fg /asboolP gf]; rewrite funeqE => x.
by apply/eqP; rewrite eq_le fg gf.
Qed.
Fact lef_trans : transitive lef.
Proof.
move=> g f h /asboolP fg /asboolP gh; apply/asboolP => x.
by rewrite (le_trans (fg x)).
Qed.
Definition porderMixin :=
@LePOrderMixin _ lef ltf ltf_def lef_refl lef_anti lef_trans.
Canonical porderType := POrderType fun_display (aT -> T) porderMixin.
End FunOrder.
Section FunLattice.
Import Order.TTheory.
Variables (aT : Type) (d : unit) (T : latticeType d).
Implicit Types f g h : aT -> T.
Definition meetf f g := fun x => Order.meet (f x) (g x).
Definition joinf f g := fun x => Order.join (f x) (g x).
Lemma meetfC : commutative meetf.
Proof. move=> f g; apply/funext => x; exact: meetC. Qed.
Lemma joinfC : commutative joinf.
Proof. move=> f g; apply/funext => x; exact: joinC. Qed.
Lemma meetfA : associative meetf.
Proof. move=> f g h; apply/funext => x; exact: meetA. Qed.
Lemma joinfA : associative joinf.
Proof. move=> f g h; apply/funext => x; exact: joinA. Qed.
Lemma joinfKI g f : meetf f (joinf f g) = f.
Proof. apply/funext => x; exact: joinKI. Qed.
Lemma meetfKU g f : joinf f (meetf f g) = f.
Proof. apply/funext => x; exact: meetKU. Qed.
Lemma lef_meet f g : (f <= g)%O = (meetf f g == f).
Proof.
apply/idP/idP => [/asboolP f_le_g|/eqP <-].
- apply/eqP/funext => x; exact/meet_l/f_le_g.
- apply/asboolP => x; exact: leIr.
Qed.
Definition latticeMixin :=
LatticeMixin meetfC joinfC meetfA joinfA joinfKI meetfKU lef_meet.
Canonical latticeType := LatticeType (aT -> T) latticeMixin.
End FunLattice.
Module Exports.
Canonical porderType.
Canonical latticeType.
End Exports.
End FunOrder.
Export FunOrder.Exports.
Lemma lefP (aT : Type) d (T : porderType d) (f g : aT -> T) :
reflect (forall x, (f x <= g x)%O) (f <= g)%O.
Proof. by apply: (iffP idP) => [fg|fg]; [exact/asboolP | apply/asboolP]. Qed.
Lemma meetfE (aT : Type) d (T : latticeType d) (f g : aT -> T) x :
((f `&` g) x = f x `&` g x)%O.
Proof. by []. Qed.
Lemma joinfE (aT : Type) d (T : latticeType d) (f g : aT -> T) x :
((f `|` g) x = f x `|` g x)%O.
Proof. by []. Qed.
Lemma iterfS {T} (f : T -> T) (n : nat) : iter n.+1 f = f \o iter n f.
Proof. by []. Qed.
Lemma iterfSr {T} (f : T -> T) (n : nat) : iter n.+1 f = iter n f \o f.
Proof. by apply/funeqP => ?; rewrite iterSr. Qed.
Lemma iter0 {T} (f : T -> T) : iter 0 f = id.
Proof. by []. Qed.
|