Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 29,032 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 |
:: Analytical Ordered Affine Spaces
:: by Henryk Oryszczyszyn and Krzysztof Pra\.zmowski
environ
vocabularies NUMBERS, RLVECT_1, REAL_1, CARD_1, ARYTM_3, RELAT_1, ARYTM_1,
SUPINF_2, STRUCT_0, ZFMISC_1, XBOOLE_0, SUBSET_1, ANALOAF;
notations TARSKI, XBOOLE_0, ZFMISC_1, ORDINAL1, DOMAIN_1, XXREAL_0, XCMPLX_0,
XREAL_0, REAL_1, RELSET_1, NUMBERS, STRUCT_0, RLVECT_1;
constructors XXREAL_0, REAL_1, MEMBERED, DOMAIN_1, RLVECT_1;
registrations SUBSET_1, RELSET_1, XXREAL_0, STRUCT_0, ZFMISC_1, XREAL_0,
ORDINAL1;
requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
equalities RLVECT_1;
theorems RLVECT_1, RELAT_1, FUNCSDOM, RLSUB_2, XCMPLX_0, XCMPLX_1, XREAL_1,
STRUCT_0, XTUPLE_0;
schemes RELSET_1;
begin
reserve V for RealLinearSpace;
reserve p,q,u,v,w,y for VECTOR of V;
reserve a,b,c,d for Real;
definition
let V;
let u,v,w,y;
pred u,v // w,y means
u=v or w=y or ex a,b st 0<a & 0<b & a*(v-u)=b*( y-w);
end;
theorem Th1:
(w-v)+(v-u) = w-u
proof
thus (w-v)+(v-u) = w-(v-(v-u)) by RLVECT_1:29
.= w-((v-v)+u) by RLVECT_1:29
.= w-(0.V+u) by RLVECT_1:15
.= w-u by RLVECT_1:4;
end;
theorem Th2:
y+u = v+w implies y-w = v-u
proof
assume
A1: y+u=v+w;
thus y-w = (y+0.V)-w by RLVECT_1:4
.= (y+(u-u))-w by RLVECT_1:15
.=((v+w)+(-u))-w by A1,RLVECT_1:def 3
.= (-u)+((v+w)-w) by RLVECT_1:def 3
.= v-u by RLSUB_2:61;
end;
theorem Th3:
a*(u-v) = -(a*(v-u))
proof
a*(v-u) + a*(u-v) = a*(v-u) + a*(-(v-u)) by RLVECT_1:33
.= a*(v-u)-a*(v-u) by RLVECT_1:25
.= 0.V by RLVECT_1:15;
hence thesis by RLVECT_1:def 10;
end;
theorem Th4:
(a-b)*(u-v) = (b-a)*(v-u)
proof
thus (a-b)*(u-v)=(-(b-a))*(-(v-u)) by RLVECT_1:33
.=(b-a)*(v-u) by RLVECT_1:26;
end;
theorem Th5:
a<>0 & a*u=v implies u=a"*v
proof
assume that
A1: a<>0 and
A2: a*u=v;
thus u=1*u by RLVECT_1:def 8
.=(a"*a)*u by A1,XCMPLX_0:def 7
.=a"*v by A2,RLVECT_1:def 7;
end;
theorem Th6:
(a<>0 & a*u=v implies u=a"*v) & (a<>0 & u=a"*v implies a*u=v)
proof
now
assume a<>0 & u=a"*v;
hence v=(a")"*u by Th5,XCMPLX_1:202
.=a*u;
end;
hence thesis by Th5;
end;
theorem
u,v // w,y & u<>v & w<>y implies ex a,b st a*(v-u)=b*(y-w) & 0<a & 0<b;
reconsider jj=1 as Real;
theorem Th8:
u,v // u,v
proof
jj*(v-u)=jj*(v-u);
hence thesis;
end;
theorem
u,v // w,w & u,u // v,w;
theorem Th10:
u,v // v,u implies u=v
proof
assume
A1: u,v // v,u;
assume
A2: u<>v;
then consider a,b such that
A3: a*(v-u)=b*(u-v) and
A4: 0<a & 0<b by A1;
a*(v-u)=-b*(v-u) by A3,Th3;
then b*(v-u)+a*(v-u)=0.V by RLVECT_1:5;
then (b+a)*(v-u)=0.V by RLVECT_1:def 6;
then v-u=0.V or b+a=0 by RLVECT_1:11;
then 0.V=(-u)+v by A4;
then v=-(-u) by RLVECT_1:def 10
.=u by RLVECT_1:17;
hence contradiction by A2;
end;
theorem Th11:
p<>q & p,q // u,v & p,q // w,y implies u,v // w,y
proof
assume that
A1: p<>q and
A2: p,q // u,v and
A3: p,q // w,y;
now
assume that
A4: u<>v and
A5: w<>y;
consider a,b such that
A6: a*(q-p)=b*(v-u) and
A7: 0<a and
A8: 0<b by A1,A2,A4;
0<a" by A7;
then
A9: 0<a"*b by A8,XREAL_1:129;
consider c,d such that
A10: c*(q-p)=d*(y-w) and
A11: 0<c and
A12: 0<d by A1,A3,A5;
A13: q-p=(c")*(d*(y-w)) by A10,A11,Th6
.=(c"*d)*(y-w) by RLVECT_1:def 7;
0<c" by A11;
then
A14: 0<c"*d by A12,XREAL_1:129;
q-p=(a")*(b*(v-u)) by A6,A7,Th6
.=(a"*b)*(v-u) by RLVECT_1:def 7;
hence thesis by A13,A9,A14;
end;
hence thesis;
end;
theorem Th12:
u,v // w,y implies v,u // y,w & w,y // u,v
proof
assume
A1: u,v // w,y;
now
assume u<>v & w<>y;
then consider a,b such that
A2: a*(v-u)=b*(y-w) and
A3: 0<a & 0<b by A1;
a*(u-v)=-b*(y-w) by A2,Th3
.=b*(w-y) by Th3;
hence thesis by A2,A3;
end;
hence thesis;
end;
theorem Th13:
u,v // v,w implies u,v // u,w
proof
assume
A1: u,v // v,w;
now
assume u<>v & v<>w;
then consider a,b such that
A2: a*(v-u)=b*(w-v) and
A3: 0<a and
A4: 0<b by A1;
A5: 0<a+b by A3,A4;
b*(w-u)=b*((w-v)+(v-u)) by Th1
.=a*(v-u)+b*(v-u) by A2,RLVECT_1:def 5
.=(a+b)*(v-u) by RLVECT_1:def 6;
hence thesis by A4,A5;
end;
hence thesis by Th8;
end;
theorem Th14:
u,v // u,w implies u,v // v,w or u,w // w,v
proof
assume
A1: u,v // u,w;
now
assume u<>v & u<>w;
then consider a,b such that
A2: a*(v-u)=b*(w-u) and
A3: 0<a and
A4: 0<b by A1;
w-v=(w-u)+(u-v) by Th1
.=(w-u)-(v-u) by RLVECT_1:33;
then
A5: a*(w-v)=a*(w-u)-b*(w-u) by A2,RLVECT_1:34
.=(a-b)*(w-u) by RLVECT_1:35
.=(b-a)*(u-w) by Th4;
v-w=(v-u)+(u-w) by Th1
.=(v-u)-(w-u) by RLVECT_1:33;
then
A6: b*(v-w)=b*(v-u)-a*(v-u) by A2,RLVECT_1:34
.=(b-a)*(v-u) by RLVECT_1:35
.=(a-b)*(u-v) by Th4;
A7: now
assume a<>b;
then 0<a-b or 0<b-a by XREAL_1:55;
then v,u // w,v or w,u // v,w by A3,A4,A6,A5;
hence thesis by Th12;
end;
now
assume a=b;
then (-u)+v= (-u)+w by A2,A3,RLVECT_1:36;
then v=w by RLVECT_1:8;
hence thesis;
end;
hence thesis by A7;
end;
hence thesis;
end;
theorem Th15:
v-u=y-w implies u,v // w,y
proof
assume v-u=y-w;
then jj*(v-u)=jj*(y-w);
hence thesis;
end;
theorem Th16:
y=(v+w)-u implies u,v // w,y & u,w // v,y
proof
set y=(v+w)-u;
y+u=v+w by RLSUB_2:61;
then y-v=w-u & y-w=v-u by Th2;
hence thesis by Th15;
end;
theorem Th17:
(ex p,q st p<>q) implies for u,v,w ex y st u,v // w,y & u,w // v ,y & v<>y
proof
given p,q such that
A1: p<>q;
let u,v,w;
A2: now
assume
A3: u<>w;
take y=(v+w)-u;
A4: now
assume v=y;
then v=v+(w-u) by RLVECT_1:def 3;
then w-u=0.V by RLVECT_1:9;
hence contradiction by A3,RLVECT_1:21;
end;
u,v // w,y & u,w // v,y by Th16;
hence thesis by A4;
end;
now
assume
A5: u=w;
A6: now
assume u=v;
then
A7: u,v // w,p & u,v // w,q;
A8: v<>p or v<>q by A1;
u,w // v,p & u,w // v,q by A5;
hence thesis by A8,A7;
end;
u,v // w,u & u,w // v,u by A5;
hence thesis by A6;
end;
hence thesis by A2;
end;
theorem Th18:
p<>v & v,p // p,w implies ex y st u,p // p,y & u,v // w,y
proof
assume
A1: p<>v & v,p // p,w;
A2: now
assume p<>w;
then consider a,b such that
A3: a*(p-v)=b*(w-p) and
A4: 0<a and
A5: 0<b by A1;
set y=(b"*a)*(p-u)+p;
A6: y-p=(b"*a)*(p-u) by RLSUB_2:61
.=b"*(a*(p-u)) by RLVECT_1:def 7;
A7: y-w=(y-p)+(p-w) by Th1
.=(y-p)-(w-p) by RLVECT_1:33;
v-u=(p-u)+(v-p) by Th1
.=(p-u)-(p-v) by RLVECT_1:33;
then a*(v-u)=a*(p-u)-a*(p-v) by RLVECT_1:34
.=b*(y-p)-b*(w-p) by A3,A5,A6,Th6
.=b*(y-w) by A7,RLVECT_1:34;
then
A8: u,v // w,y by A4,A5;
0<b" by A5;
then
A9: 0<b"*a by A4,XREAL_1:129;
jj*(y-p)=y-p by RLVECT_1:def 8
.=(b"*a)*(p-u) by RLSUB_2:61;
then u,p // p,y by A9;
hence thesis by A8;
end;
now
assume
A10: p=w;
take y=p;
thus u,p // p,y & u,v // w,y by A10;
end;
hence thesis by A2;
end;
theorem Th19:
(for a,b st a*u + b*v=0.V holds a=0 & b=0) implies u<>v & u<>0.V & v<>0.V
proof
assume
A1: for a,b st a*u + b*v=0.V holds a=0 & b=0;
thus u<>v
proof
assume u=v;
then u - v = 0.V by RLVECT_1:15;
then 1*u + (-v) = 0.V by RLVECT_1:def 8;
then 1*u + ((-jj)*v) = 0.V by RLVECT_1:16;
hence contradiction by A1;
end;
thus u<>0.V
proof
assume u=0.V;
then 1*u = 0.V by RLVECT_1:10;
then 1*u + 0.V = 0.V by RLVECT_1:4;
then jj*u + 0*v =0.V by RLVECT_1:10;
hence contradiction by A1;
end;
thus v<>0.V
proof
assume v=0.V;
then 1*v = 0.V by RLVECT_1:10;
then 0.V + 1*v = 0.V by RLVECT_1:4;
then 0*u + jj*v =0.V by RLVECT_1:10;
hence contradiction by A1;
end;
end;
theorem Th20:
(ex u,v st (for a,b st a*u + b*v=0.V holds a=0 & b=0)) implies
ex u,v,w,y st not u,v // w,y & not u,v // y,w
proof
given u,v such that
A1: for a,b st a*u + b*v=0.V holds a=0 & b=0;
A2: u<>0.V & v<>0.V by A1,Th19;
A3: not 0.V,u // v,0.V
proof
A4: now
given a,b such that
A5: 0<a and
0<b and
A6: a*(u-0.V) = b*(0.V-v);
a*u = a*(u-0.V) & b*(0.V-v)=b*(-v) by RLVECT_1:13,14;
then a*u = -(b*v) by A6,RLVECT_1:25;
then a*u + b*v = 0.V by RLVECT_1:5;
hence contradiction by A1,A5;
end;
assume 0.V,u // v,0.V;
hence contradiction by A2,A4;
end;
not 0.V,u // 0.V,v
proof
A7: now
given a,b such that
A8: 0<a and
0<b and
A9: a*(u-0.V) = b*(v-0.V);
a*u = a*(u-0.V) & b*(v-0.V)=b*v by RLVECT_1:13;
then 0.V = a*u - (b*v) by A9,RLVECT_1:15
.= a*u + (b*(-v)) by RLVECT_1:25
.= a*u + ((-b)*v) by RLVECT_1:24;
hence contradiction by A1,A8;
end;
assume 0.V,u // 0.V,v;
hence contradiction by A2,A7;
end;
hence thesis by A3;
end;
Lm1: a*(v-u) = b*(w-y) & (a<>0 or b<>0) implies u,v // w,y or u,v // y,w
proof
assume that
A1: a*(v-u) = b*(w-y) and
A2: a<>0 or b<>0;
A3: now
assume
A4: b=0;
then 0.V = a*(v-u) by A1,RLVECT_1:10;
then v-u = 0.V by A2,A4,RLVECT_1:11;
then u=v by RLVECT_1:21;
hence u,v // w,y;
end;
A5: now
A6: now
A7: a*(v-u) = -(-(b*(w-y))) by A1,RLVECT_1:17
.= -(b*(-(w-y))) by RLVECT_1:25
.= -(b*(y-w)) by RLVECT_1:33
.= b*(-(y-w)) by RLVECT_1:25
.= (-b)*(y-w) by RLVECT_1:24;
assume that
A8: 0<a and
A9: b<0;
0<-b by A9,XREAL_1:58;
hence u,v // w,y by A8,A7;
end;
A10: now
A11: (-a)*(v-u) = a*(-(v-u)) by RLVECT_1:24
.= -(b*(w-y)) by A1,RLVECT_1:25
.=b*(-(w-y)) by RLVECT_1:25
.= b*(y-w) by RLVECT_1:33;
assume that
A12: a<0 and
A13: 0<b;
0<-a by A12,XREAL_1:58;
hence u,v // w,y by A13,A11;
end;
A14: now
assume a<0 & b<0;
then
A15: 0<-a & 0<-b by XREAL_1:58;
(-a)*(v-u) = a*(-(v-u)) by RLVECT_1:24
.= -(b*(w-y)) by A1,RLVECT_1:25
.=b*(-(w-y)) by RLVECT_1:25
.= (-b)*(w-y) by RLVECT_1:24;
hence u,v // y,w by A15;
end;
assume a<>0 & b<>0;
hence thesis by A1,A14,A10,A6;
end;
now
assume
A16: a=0;
then 0.V = b*(w-y) by A1,RLVECT_1:10;
then w-y = 0.V by A2,A16,RLVECT_1:11;
then w=y by RLVECT_1:21;
hence u,v // w,y;
end;
hence thesis by A3,A5;
end;
theorem Th21:
(ex p,q st (for w ex a,b st a*p + b*q=w)) implies for u,v,w,y st
not u,v // w,y & not u,v // y,w ex z being VECTOR of V st (u,v // u,z or u,v //
z,u) & (w,y // w,z or w,y // z,w)
proof
given p,q such that
A1: for w ex a,b st a*p + b*q=w;
let u,v,w,y such that
A2: not u,v // w,y and
A3: not u,v // y,w;
consider r1,s1 being Real such that
A4: r1*p + s1*q = v-u by A1;
consider r2,s2 being Real such that
A5: r2*p + s2*q = y-w by A1;
set r = r1*s2 - r2*s1;
A6: now
assume
A7: r = 0;
A8: now
assume that
A9: r1<>0 and
A10: r2=0;
s2<>0
proof
assume s2=0;
then y-w = 0.V + 0*q by A5,A10,RLVECT_1:10
.= 0.V + 0.V by RLVECT_1:10
.= 0.V by RLVECT_1:4;
then y=w by RLVECT_1:21;
hence contradiction by A2;
end;
hence contradiction by A7,A9,A10,XCMPLX_1:6;
end;
A11: now
assume
A12: r1=0;
A13: s1<>0
proof
assume s1=0;
then v-u = 0.V + 0*q by A4,A12,RLVECT_1:10
.= 0.V + 0.V by RLVECT_1:10
.= 0.V by RLVECT_1:4;
then u=v by RLVECT_1:21;
hence contradiction by A2;
end;
then
A14: r2=0 by A7,A12,XCMPLX_1:6;
A15: s2<>0
proof
assume s2=0;
then y-w = 0.V + 0*q by A5,A14,RLVECT_1:10
.= 0.V + 0.V by RLVECT_1:10
.= 0.V by RLVECT_1:4;
then y=w by RLVECT_1:21;
hence contradiction by A2;
end;
y-w = 0.V + s2*q by A5,A14,RLVECT_1:10
.= s2*q by RLVECT_1:4;
then
A16: (s2)"*(y-w) = ((s2)"*s2)*q by RLVECT_1:def 7
.= 1*q by A15,XCMPLX_0:def 7
.= q by RLVECT_1:def 8;
v-u = 0.V + s1*q by A4,A12,RLVECT_1:10
.= s1*q by RLVECT_1:4;
then
A17: (s1)"*(v-u) = ((s1)"*s1)*q by RLVECT_1:def 7
.= 1*q by A13,XCMPLX_0:def 7
.= q by RLVECT_1:def 8;
s1"<>0 by A13,XCMPLX_1:202;
hence contradiction by A2,A3,A17,A16,Lm1;
end;
A18: now
assume that
A19: r1<>0 and
A20: r2<>0 and
A21: s1 = 0;
v-u = r1*p + 0.V by A4,A21,RLVECT_1:10
.= r1*p by RLVECT_1:4;
then
A22: (r1)"*(v-u) = ((r1)"*r1)*p by RLVECT_1:def 7
.= 1*p by A19,XCMPLX_0:def 7
.= p by RLVECT_1:def 8;
s2 = 0 by A7,A19,A21,XCMPLX_1:6;
then y-w = r2*p + 0.V by A5,RLVECT_1:10
.= r2*p by RLVECT_1:4;
then
A23: (r2)"*(y-w) = ((r2)"*r2)*p by RLVECT_1:def 7
.= 1*p by A20,XCMPLX_0:def 7
.= p by RLVECT_1:def 8;
r1"<>0 by A19,XCMPLX_1:202;
hence contradiction by A2,A3,A22,A23,Lm1;
end;
now
assume that
A24: r1<>0 and
r2<>0 and
s1<>0 and
s2<>0;
r2*(v-u) = r2*(r1*p) + r2*(s1*q) by A4,RLVECT_1:def 5
.=(r2*r1)*p + r2*(s1*q) by RLVECT_1:def 7
.= (r1*r2)*p + (r1*s2)*q by A7,RLVECT_1:def 7
.= r1*(r2*p) + (r1*s2)*q by RLVECT_1:def 7
.= r1*(r2*p) + r1*(s2*q) by RLVECT_1:def 7
.= r1*(y-w) by A5,RLVECT_1:def 5;
hence contradiction by A2,A3,A24,Lm1;
end;
hence contradiction by A7,A11,A8,A18,XCMPLX_1:6;
end;
consider r3,s3 being Real such that
A25: r3*p + s3*q = u-w by A1;
set a= r2*s3 - r3*s2, b= r1*s3 - r3*s1;
A26: b*r2 = r1*a + r3*r;
set z = u + (r"*a)*(v-u);
A27: r*(z-u) = r*z - r*u by RLVECT_1:34
.= r*u + r*((r"*a)*(v-u)) - r*u by RLVECT_1:def 5
.= r*u + (r*(r"*a))*(v-u) - r*u by RLVECT_1:def 7
.= r*u + ((r*r")*a)*(v-u) - r*u
.= r*u + (1*a)*(v-u) - r*u by A6,XCMPLX_0:def 7
.= a*(v-u) + (r*u - r*u) by RLVECT_1:def 3
.= a*(v-u) + 0.V by RLVECT_1:15
.= a*(v-u) by RLVECT_1:4;
A28: r*(z-w) = r*z - r*w by RLVECT_1:34
.= r*u + r*((r"*a)*(v-u)) - r*w by RLVECT_1:def 5
.= r*u + (r*(r"*a))*(v-u) - r*w by RLVECT_1:def 7
.= r*u + ((r*r")*a)*(v-u) - r*w
.= r*u + (1*a)*(v-u) - r*w by A6,XCMPLX_0:def 7
.= a*(v-u) + (r*u - r*w) by RLVECT_1:def 3
.= a*(r1*p + s1*q) + r*(r3*p + s3*q) by A4,A25,RLVECT_1:34
.= a*(r1*p) + a*(s1*q) + r*(r3*p + s3*q) by RLVECT_1:def 5
.= a*(r1*p) + a*(s1*q) + (r*(r3*p) + r*(s3*q)) by RLVECT_1:def 5
.= (a*r1)*p + a*(s1*q) + (r*(r3*p) + r*(s3*q)) by RLVECT_1:def 7
.= (a*r1)*p + (a*s1)*q + (r*(r3*p) + r*(s3*q)) by RLVECT_1:def 7
.= (a*r1)*p + (a*s1)*q + ((r*r3)*p + r*(s3*q)) by RLVECT_1:def 7
.= (a*r1)*p + (a*s1)*q + ((r*s3)*q + (r*r3)*p) by RLVECT_1:def 7
.= (a*r1)*p + (a*s1)*q + (r*s3)*q + (r*r3)*p by RLVECT_1:def 3
.= ((a*s1)*q + (r*s3)*q) + (a*r1)*p + (r*r3)*p by RLVECT_1:def 3
.= ((a*s1)*q + (r*s3)*q) + ((a*r1)*p + (r*r3)*p) by RLVECT_1:def 3
.= (a*s1 + r*s3)*q + ((a*r1)*p + (r*r3)*p) by RLVECT_1:def 6
.= (b*s2)*q + (b*r2)*p by A26,RLVECT_1:def 6
.= b*(s2*q) + (b*r2)*p by RLVECT_1:def 7
.= b*(s2*q) + b*(r2*p) by RLVECT_1:def 7
.= b*(y-w) by A5,RLVECT_1:def 5;
A29: b*s2 = s1*a + s3*r;
per cases;
suppose that
A30: a=0 and
A31: b<>0;
r*(z-u)=0.V by A27,A30,RLVECT_1:10;
then z-u=0.V by A6,RLVECT_1:11;
then z=u by RLVECT_1:21;
then
A32: u,v // u,z;
w,y // w,z or w,y // z,w by A28,A31,Lm1;
hence thesis by A32;
end;
suppose a=0 & b=0;
then r3=0 & s3=0 by A6,A26,A29,XCMPLX_1:6;
then 0.V + 0*q = u-w by A25,RLVECT_1:10;
then 0.V + 0.V = u-w by RLVECT_1:10;
then 0.V=u-w by RLVECT_1:4;
then u=w by RLVECT_1:21;
then
A33: w,y // w,u;
u,v // u,u;
hence thesis by A33;
end;
suppose that
A34: a<>0 and
A35: b=0;
r*(z-w)=0.V by A28,A35,RLVECT_1:10;
then z-w=0.V by A6,RLVECT_1:11;
then z=w by RLVECT_1:21;
then
A36: w,y // w,z;
u,v // u,z or u,v // z,u by A27,A34,Lm1;
hence thesis by A36;
end;
suppose that
A37: a<>0 and
A38: b<>0;
A39: w,y // w,z or w,y // z,w by A28,A38,Lm1;
u,v // u,z or u,v // z,u by A27,A37,Lm1;
hence thesis by A39;
end;
end;
definition
struct(1-sorted) AffinStruct
(#carrier -> set, CONGR -> Relation of [:the carrier,the carrier:]#);
end;
registration
cluster non trivial strict for AffinStruct;
existence
proof
set A = the non trivial set, R = the Relation of [:A,A:];
take AffinStruct(#A,R#);
thus thesis;
end;
end;
reserve AS for non empty AffinStruct;
reserve a,b,c,d for Element of AS;
reserve x,z for object;
definition
let AS,a,b,c,d;
pred a,b // c,d means
[[a,b],[c,d]] in the CONGR of AS;
end;
definition
let V;
func DirPar(V) -> Relation of [:the carrier of V,the carrier of V:] means
:Def3: [x,z] in it iff ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y;
existence
proof
defpred P[object,object] means
ex u,v,w,y st $1=[u,v] & $2=[w,y] & u,v // w,y;
set VV = [:the carrier of V,the carrier of V:];
consider P being Relation of VV,VV such that
A1: for x,z being object holds [x,z] in P iff x in VV & z in VV & P[x,z]
from RELSET_1:sch 1;
take P;
let x,z;
thus [x,z] in P implies ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y by A1;
assume ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y;
hence thesis by A1;
end;
uniqueness
proof
let P,Q be Relation of [:the carrier of V,the carrier of V:] such that
A2: [x,z] in P iff ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y and
A3: [x,z] in Q iff ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y;
for x,z being object holds [x,z] in P iff [x,z] in Q
proof
let x,z be object;
[x,z] in P iff ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y by A2;
hence thesis by A3;
end;
hence thesis by RELAT_1:def 2;
end;
end;
theorem Th22:
[[u,v],[w,y]] in DirPar(V) iff u,v // w,y
proof
thus [[u,v],[w,y]] in DirPar(V) implies u,v // w,y
proof
assume [[u,v],[w,y]] in DirPar(V);
then consider u9,v9,w9,y9 being VECTOR of V such that
A1: [u,v]=[u9,v9] and
A2: [w,y]=[w9,y9] and
A3: u9,v9 // w9,y9 by Def3;
A4: w = w9 by A2,XTUPLE_0:1;
u = u9 & v = v9 by A1,XTUPLE_0:1;
hence thesis by A2,A3,A4,XTUPLE_0:1;
end;
thus thesis by Def3;
end;
definition
let V;
func OASpace(V) -> strict AffinStruct equals
AffinStruct (#the carrier of V,
DirPar(V)#);
correctness;
end;
registration
let V;
cluster OASpace V -> non empty;
coherence;
end;
theorem Th23:
(ex u,v st for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0
) implies (ex a,b being Element of OASpace(V) st a<>b) & (for a,b,c,d,p,q,r,s
being Element of OASpace(V) holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b
& a,b // p,q & a,b // r,s implies p,q // r,s) & (a,b // c,d implies b,a // d,c)
& (a,b // b,c implies a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c // c,
b)) & (ex a,b,c,d being Element of OASpace(V) st not a,b // c,d & not a,b // d,
c) & (for a,b,c being Element of OASpace(V) ex d being Element of OASpace(V) st
a,b // c,d & a,c // b,d & b<>d) & for p,a,b,c being Element of OASpace(V) st p
<>b & b,p // p,c ex d being Element of OASpace(V) st a,p // p,d & a,b // c,d
proof
given u,v such that
A1: for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0;
set S = OASpace(V);
A2: u<>v by A1,Th19;
hence ex a,b being Element of S st a<>b;
thus for a,b,c,d,p,q,r,s being Element of S holds a,b // c,c & (a,b // b,a
implies a=b) & (a<>b & a,b // p,q & a,b // r,s implies p,q // r,s) & (a,b // c,
d implies b,a // d,c) & (a,b // b,c implies a,b // a,c) & (a,b // a,c implies a
,b // b,c or a,c // c,b)
proof
let a,b,c,d,p,q,r,s be Element of S;
reconsider a9=a,b9=b,c9=c,d9=d,p9=p,q9=q,r9=r,s9=s as Element of V;
a9,b9 // c9,c9;
hence [[a,b],[c,c]] in the CONGR of S by Def3;
thus a,b // b,a implies a=b
by Th22,Th10;
thus a<>b & a,b // p,q & a,b // r,s implies p,q // r,s
proof
assume that
A3: a<>b and
A4: [[a,b],[p,q]] in the CONGR of S & [[a,b],[r,s]] in the CONGR of S;
a9,b9 // p9,q9 & a9,b9 // r9,s9 by A4,Th22;
then p9,q9 // r9,s9 by A3,Th11;
then [[p,q],[r,s]] in the CONGR of S by Th22;
hence thesis;
end;
thus a,b // c,d implies b,a // d,c
proof
assume [[a,b],[c,d]] in the CONGR of S;
then a9,b9 // c9,d9 by Th22;
then b9,a9 // d9,c9 by Th12;
then [[b,a],[d,c]] in the CONGR of S by Th22;
hence thesis;
end;
thus a,b // b,c implies a,b // a,c
proof
assume [[a,b],[b,c]] in the CONGR of S;
then a9,b9 // b9,c9 by Th22;
then a9,b9 // a9,c9 by Th13;
then [[a,b],[a,c]] in the CONGR of S by Th22;
hence thesis;
end;
thus a,b // a,c implies a,b // b,c or a,c // c,b
proof
assume [[a,b],[a,c]] in the CONGR of S;
then a9,b9 // a9,c9 by Th22;
then a9,b9 // b9,c9 or a9,c9 // c9,b9 by Th14;
then [[a,b],[b,c]] in the CONGR of S or [[a,c],[c,b]] in the CONGR of S
by Th22;
hence thesis;
end;
end;
thus ex a,b,c,d being Element of S st not a,b // c,d & not a,b // d,c
proof
consider a9,b9,c9,d9 being VECTOR of V such that
A5: not a9,b9 // c9,d9 and
A6: not a9,b9 // d9,c9 by A1,Th20;
reconsider a=a9,b=b9,c = c9,d=d9 as Element of S;
not [[a,b],[d,c]] in the CONGR of S by A6,Th22;
then
A7: not a,b // d,c;
not [[a,b],[c,d]] in the CONGR of S by A5,Th22;
then not a,b // c,d;
hence thesis by A7;
end;
thus for a,b,c being Element of S ex d being Element of S st a,b // c,d & a,
c // b,d & b<>d
proof
let a,b,c be Element of S;
reconsider a9=a,b9=b,c9=c as Element of V;
consider d9 being VECTOR of V such that
A8: a9,b9 // c9,d9 and
A9: a9,c9 // b9,d9 and
A10: b9<>d9 by A2,Th17;
reconsider d=d9 as Element of S;
[[a,c],[b,d]] in the CONGR of S by A9,Th22;
then
A11: a,c // b,d;
[[a,b],[c,d]] in the CONGR of S by A8,Th22;
then a,b // c,d;
hence thesis by A10,A11;
end;
thus for p,a,b,c being Element of S st p<>b & b,p // p,c holds ex d being
Element of S st a,p // p,d & a,b // c,d
proof
let p,a,b,c be Element of S;
assume that
A12: p<>b and
A13: [[b,p],[p,c]] in the CONGR of S;
reconsider p9=p,a9=a,b9=b,c9=c as Element of V;
b9,p9 // p9,c9 by A13,Th22;
then consider d9 being VECTOR of V such that
A14: a9,p9 // p9,d9 and
A15: a9,b9 // c9,d9 by A12,Th18;
reconsider d=d9 as Element of S;
[[a,b],[c,d]] in the CONGR of S by A15,Th22;
then
A16: a,b // c,d;
[[a,p],[p,d]] in the CONGR of S by A14,Th22;
then a,p // p,d;
hence thesis by A16;
end;
end;
theorem Th24:
(ex p,q being VECTOR of V st (for w being VECTOR of V ex a,b
being Real st a*p + b*q=w)) implies
for a,b,c,d being Element of OASpace(V) st
not a,b // c,d & not a,b // d,c ex t being Element of OASpace(V) st (a,b // a,t
or a,b // t,a) & (c,d // c,t or c,d // t,c)
proof
assume
A1: ex p,q being VECTOR of V st for w being VECTOR of V ex a,b being
Real st a*p + b*q=w;
set S = OASpace(V);
let a,b,c,d be Element of OASpace(V);
reconsider a9=a,b9=b,c9 = c,d9=d as Element of V;
assume
( not [[a,b],[c,d]] in the CONGR of S)& not [[a,b],[d,c]] in the CONGR of S;
then ( not a9,b9 // c9,d9)& not a9,b9 // d9,c9 by Th22;
then consider t9 being VECTOR of V such that
A2: a9,b9 // a9,t9 or a9,b9 // t9,a9 and
A3: c9,d9 // c9,t9 or c9,d9 // t9,c9 by A1,Th21;
reconsider t=t9 as Element of S;
[[c,d],[c,t]] in the CONGR of S or [[c,d],[t,c]] in the CONGR of S by A3,Th22
;
then
A4: c,d // c,t or c,d // t,c;
[[a,b],[a,t]] in the CONGR of S or [[a,b],[t,a]] in the CONGR of S by A2,Th22
;
then a,b // a,t or a,b // t,a;
hence thesis by A4;
end;
definition
let IT be non empty AffinStruct;
attr IT is OAffinSpace-like means
:Def5:
(for a,b,c,d,p,q,r,s being Element
of IT holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b & a,b // p,q & a,b //
r,s implies p,q // r,s) & (a,b // c,d implies b,a // d,c) & (a,b // b,c implies
a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c // c,b)) & (ex a,b,c,d
being Element of IT st not a,b // c,d & not a,b // d,c) & (for a,b,c being
Element of IT ex d being Element of IT st a,b // c,d & a,c // b,d & b<>d) & for
p,a,b,c being Element of IT st p<>b & b,p // p,c ex d being Element of IT st a,
p // p,d & a,b // c,d;
end;
registration
cluster strict OAffinSpace-like for non trivial AffinStruct;
existence
proof
consider V,u,v such that
A1: for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0 and
for w ex a,b being Real st w = a*u + b*v by FUNCSDOM:23;
A2: ( ex a,b,c,d being Element of OASpace(V) st not a,b // c,d & not a,b
// d,c)& for a,b,c being Element of OASpace(V) ex d being Element of OASpace(V
) st a,b // c,d & a,c // b,d & b<>d by A1,Th23;
A3: for p,a,b,c being Element of OASpace(V) st p<>b & b,p // p,c ex d
being Element of OASpace(V) st a,p // p,d & a,b // c,d by A1,Th23;
( ex a,b being Element of OASpace(V) st a<>b)& for a,b,c,d,p,q,r,s
being Element of OASpace(V) holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b
& a,b // p,q & a,b // r,s implies p,q // r,s) & (a, b // c,d implies b,a // d,c
) & (a,b // b,c implies a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c //
c,b) by A1,Th23;
then OASpace(V) is non trivial OAffinSpace-like by A2,A3,
STRUCT_0:def 10;
hence thesis;
end;
end;
definition
mode OAffinSpace is OAffinSpace-like non trivial AffinStruct;
end;
theorem
(ex a,b being Element of AS st a<>b) & (for a,b,c,d,p,q,r,s being
Element of AS holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b & a,b // p,q
& a,b // r,s implies p,q // r,s) & (a,b // c,d implies b,a // d,c) & (a,b // b,
c implies a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c // c,b)) & (ex a,
b,c,d being Element of AS st not a,b // c,d & not a,b // d,c) & (for a,b,c
being Element of AS ex d being Element of AS st a,b // c,d & a,c // b,d & b<>d)
& (for p,a,b,c being Element of AS st p<>b & b,p // p,c ex d being Element of
AS st a,p // p,d & a,b // c,d) iff AS is OAffinSpace by Def5,STRUCT_0:def 10;
theorem Th26:
(ex u,v st for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0
) implies OASpace(V) is OAffinSpace
proof
assume
A1: ex u,v st for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0;
then
A2: ( ex a,b,c,d being Element of OASpace(V) st not a,b // c,d & not a,b //
d,c)& for a,b,c being Element of OASpace(V) ex d being Element of OASpace(V)
st a,b // c,d & a,c // b,d & b<>d by Th23;
A3: for p,a,b,c being Element of OASpace(V) st p<>b & b,p // p,c ex d being
Element of OASpace(V) st a,p // p,d & a,b // c,d by A1,Th23;
( ex a,b being Element of OASpace(V) st a<>b)& for a,b,c,d,p,q,r,s being
Element of OASpace(V) holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b & a,b
// p,q & a,b // r,s implies p,q // r,s) & (a, b // c,d implies b,a // d,c) & (a
,b // b,c implies a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c // c,b)
by A1,Th23;
hence thesis by A2,A3,Def5,STRUCT_0:def 10;
end;
definition
let IT be OAffinSpace;
attr IT is 2-dimensional means
:Def6:
for a,b,c,d being Element of IT st not
a,b // c,d & not a,b // d,c holds ex p being Element of IT st (a,b // a,p or a,
b // p,a) & (c,d // c,p or c,d // p,c);
end;
registration
cluster strict 2-dimensional for OAffinSpace;
existence
proof
consider V such that
A1: ex u,v st (for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0)
& for w ex a,b being Real st w = a*u + b*v by FUNCSDOM:23;
reconsider S = OASpace(V) as OAffinSpace by A1,Th26;
for a,b,c,d being Element of S st not a,b // c,d & not a,b // d,c
holds ex p being Element of S st (a,b // a,p or a,b // p,a) & (c,d // c,p or c,
d // p,c) by A1,Th24;
then S is 2-dimensional;
hence thesis;
end;
end;
definition
mode OAffinPlane is 2-dimensional OAffinSpace;
end;
theorem
(ex a,b being Element of AS st a<>b) & (for a,b,c,d,p,q,r,s being
Element of AS holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b & a,b // p,q
& a,b // r,s implies p,q // r,s) & (a,b // c,d implies b,a // d,c) & (a,b // b,
c implies a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c // c,b)) & (ex a,
b,c,d being Element of AS st not a,b // c,d & not a,b // d,c) & (for a,b,c
being Element of AS ex d being Element of AS st a,b // c,d & a,c // b,d & b<>d)
& (for p,a,b,c being Element of AS st p<>b & b,p // p,c ex d being Element of
AS st a,p // p,d & a,b // c,d) & (for a,b,c,d being Element of AS st not a,b //
c,d & not a,b // d,c holds ex p being Element of AS st (a,b // a,p or a,b // p,
a) & (c,d // c,p or c,d // p,c)) iff AS is OAffinPlane by Def5,Def6,
STRUCT_0:def 10;
theorem
(ex u,v st (for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0) &
(for w ex a,b being Real st w = a*u + b*v)) implies
OASpace(V) is OAffinPlane
proof
set S=OASpace(V);
assume
A1: ex u,v st (for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0) &
for w ex a,b being Real st w = a*u + b*v;
then
for a,b,c,d being Element of S st not a,b // c,d & not a,b // d,c holds
ex p being Element of S st (a,b // a,p or a,b // p,a) & (c,d // c,p or c,d // p
,c) by Th24;
hence thesis by A1,Def6,Th26;
end;
|