Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 29,032 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
:: Analytical Ordered Affine Spaces
::  by Henryk Oryszczyszyn and Krzysztof Pra\.zmowski

environ

 vocabularies NUMBERS, RLVECT_1, REAL_1, CARD_1, ARYTM_3, RELAT_1, ARYTM_1,
      SUPINF_2, STRUCT_0, ZFMISC_1, XBOOLE_0, SUBSET_1, ANALOAF;
 notations TARSKI, XBOOLE_0, ZFMISC_1, ORDINAL1, DOMAIN_1, XXREAL_0, XCMPLX_0,
      XREAL_0, REAL_1, RELSET_1, NUMBERS, STRUCT_0, RLVECT_1;
 constructors XXREAL_0, REAL_1, MEMBERED, DOMAIN_1, RLVECT_1;
 registrations SUBSET_1, RELSET_1, XXREAL_0, STRUCT_0, ZFMISC_1, XREAL_0,
      ORDINAL1;
 requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
 equalities RLVECT_1;
 theorems RLVECT_1, RELAT_1, FUNCSDOM, RLSUB_2, XCMPLX_0, XCMPLX_1, XREAL_1,
      STRUCT_0, XTUPLE_0;
 schemes RELSET_1;

begin

reserve V for RealLinearSpace;
reserve p,q,u,v,w,y for VECTOR of V;
reserve a,b,c,d for Real;

definition
  let V;
  let u,v,w,y;
  pred u,v // w,y means

  u=v or w=y or ex a,b st 0<a & 0<b & a*(v-u)=b*( y-w);
end;

theorem Th1:
  (w-v)+(v-u) = w-u
proof
  thus (w-v)+(v-u) = w-(v-(v-u)) by RLVECT_1:29
    .= w-((v-v)+u) by RLVECT_1:29
    .= w-(0.V+u) by RLVECT_1:15
    .= w-u by RLVECT_1:4;
end;

theorem Th2:
  y+u = v+w implies y-w = v-u
proof
  assume
A1: y+u=v+w;
  thus y-w = (y+0.V)-w by RLVECT_1:4
    .= (y+(u-u))-w by RLVECT_1:15
    .=((v+w)+(-u))-w by A1,RLVECT_1:def 3
    .= (-u)+((v+w)-w) by RLVECT_1:def 3
    .= v-u by RLSUB_2:61;
end;

theorem Th3:
  a*(u-v) = -(a*(v-u))
proof
  a*(v-u) + a*(u-v) = a*(v-u) + a*(-(v-u)) by RLVECT_1:33
    .= a*(v-u)-a*(v-u) by RLVECT_1:25
    .= 0.V by RLVECT_1:15;
  hence thesis by RLVECT_1:def 10;
end;

theorem Th4:
  (a-b)*(u-v) = (b-a)*(v-u)
proof
  thus (a-b)*(u-v)=(-(b-a))*(-(v-u)) by RLVECT_1:33
    .=(b-a)*(v-u) by RLVECT_1:26;
end;

theorem Th5:
  a<>0 & a*u=v implies u=a"*v
proof
  assume that
A1: a<>0 and
A2: a*u=v;
  thus u=1*u by RLVECT_1:def 8
    .=(a"*a)*u by A1,XCMPLX_0:def 7
    .=a"*v by A2,RLVECT_1:def 7;
end;

theorem Th6:
  (a<>0 & a*u=v implies u=a"*v) & (a<>0 & u=a"*v implies a*u=v)
proof
  now
    assume a<>0 & u=a"*v;
    hence v=(a")"*u by Th5,XCMPLX_1:202
      .=a*u;
  end;
  hence thesis by Th5;
end;

theorem
  u,v // w,y & u<>v & w<>y implies ex a,b st a*(v-u)=b*(y-w) & 0<a & 0<b;

reconsider jj=1 as Real;

theorem Th8:
  u,v // u,v
proof
  jj*(v-u)=jj*(v-u);
  hence thesis;
end;

theorem
  u,v // w,w & u,u // v,w;

theorem Th10:
  u,v // v,u implies u=v
proof
  assume
A1: u,v // v,u;
  assume
A2: u<>v;
  then consider a,b such that
A3: a*(v-u)=b*(u-v) and
A4: 0<a & 0<b by A1;
  a*(v-u)=-b*(v-u) by A3,Th3;
  then b*(v-u)+a*(v-u)=0.V by RLVECT_1:5;
  then (b+a)*(v-u)=0.V by RLVECT_1:def 6;
  then v-u=0.V or b+a=0 by RLVECT_1:11;
  then 0.V=(-u)+v by A4;
  then v=-(-u) by RLVECT_1:def 10
    .=u by RLVECT_1:17;
  hence contradiction by A2;
end;

theorem Th11:
  p<>q & p,q // u,v & p,q // w,y implies u,v // w,y
proof
  assume that
A1: p<>q and
A2: p,q // u,v and
A3: p,q // w,y;
  now
    assume that
A4: u<>v and
A5: w<>y;
    consider a,b such that
A6: a*(q-p)=b*(v-u) and
A7: 0<a and
A8: 0<b by A1,A2,A4;
    0<a" by A7;
    then
A9: 0<a"*b by A8,XREAL_1:129;
    consider c,d such that
A10: c*(q-p)=d*(y-w) and
A11: 0<c and
A12: 0<d by A1,A3,A5;
A13: q-p=(c")*(d*(y-w)) by A10,A11,Th6
      .=(c"*d)*(y-w) by RLVECT_1:def 7;
    0<c" by A11;
    then
A14: 0<c"*d by A12,XREAL_1:129;
    q-p=(a")*(b*(v-u)) by A6,A7,Th6
      .=(a"*b)*(v-u) by RLVECT_1:def 7;
    hence thesis by A13,A9,A14;
  end;
  hence thesis;
end;

theorem Th12:
  u,v // w,y implies v,u // y,w & w,y // u,v
proof
  assume
A1: u,v // w,y;
  now
    assume u<>v & w<>y;
    then consider a,b such that
A2: a*(v-u)=b*(y-w) and
A3: 0<a & 0<b by A1;
    a*(u-v)=-b*(y-w) by A2,Th3
      .=b*(w-y) by Th3;
    hence thesis by A2,A3;
  end;
  hence thesis;
end;

theorem Th13:
  u,v // v,w implies u,v // u,w
proof
  assume
A1: u,v // v,w;
  now
    assume u<>v & v<>w;
    then consider a,b such that
A2: a*(v-u)=b*(w-v) and
A3: 0<a and
A4: 0<b by A1;
A5: 0<a+b by A3,A4;
    b*(w-u)=b*((w-v)+(v-u)) by Th1
      .=a*(v-u)+b*(v-u) by A2,RLVECT_1:def 5
      .=(a+b)*(v-u) by RLVECT_1:def 6;
    hence thesis by A4,A5;
  end;
  hence thesis by Th8;
end;

theorem Th14:
  u,v // u,w implies u,v // v,w or u,w // w,v
proof
  assume
A1: u,v // u,w;
  now
    assume u<>v & u<>w;
    then consider a,b such that
A2: a*(v-u)=b*(w-u) and
A3: 0<a and
A4: 0<b by A1;
    w-v=(w-u)+(u-v) by Th1
      .=(w-u)-(v-u) by RLVECT_1:33;
    then
A5: a*(w-v)=a*(w-u)-b*(w-u) by A2,RLVECT_1:34
      .=(a-b)*(w-u) by RLVECT_1:35
      .=(b-a)*(u-w) by Th4;
    v-w=(v-u)+(u-w) by Th1
      .=(v-u)-(w-u) by RLVECT_1:33;
    then
A6: b*(v-w)=b*(v-u)-a*(v-u) by A2,RLVECT_1:34
      .=(b-a)*(v-u) by RLVECT_1:35
      .=(a-b)*(u-v) by Th4;
A7: now
      assume a<>b;
      then 0<a-b or 0<b-a by XREAL_1:55;
      then v,u // w,v or w,u // v,w by A3,A4,A6,A5;
      hence thesis by Th12;
    end;
    now
      assume a=b;
      then (-u)+v= (-u)+w by A2,A3,RLVECT_1:36;
      then v=w by RLVECT_1:8;
      hence thesis;
    end;
    hence thesis by A7;
  end;
  hence thesis;
end;

theorem Th15:
  v-u=y-w implies u,v // w,y
proof
  assume v-u=y-w;
  then jj*(v-u)=jj*(y-w);
  hence thesis;
end;

theorem Th16:
  y=(v+w)-u implies u,v // w,y & u,w // v,y
proof
  set y=(v+w)-u;
  y+u=v+w by RLSUB_2:61;
  then y-v=w-u & y-w=v-u by Th2;
  hence thesis by Th15;
end;

theorem Th17:
  (ex p,q st p<>q) implies for u,v,w ex y st u,v // w,y & u,w // v ,y & v<>y
proof
  given p,q such that
A1: p<>q;
  let u,v,w;
A2: now
    assume
A3: u<>w;
    take y=(v+w)-u;
A4: now
      assume v=y;
      then v=v+(w-u) by RLVECT_1:def 3;
      then w-u=0.V by RLVECT_1:9;
      hence contradiction by A3,RLVECT_1:21;
    end;
    u,v // w,y & u,w // v,y by Th16;
    hence thesis by A4;
  end;
  now
    assume
A5: u=w;
A6: now
      assume u=v;
      then
A7:   u,v // w,p & u,v // w,q;
A8:   v<>p or v<>q by A1;
      u,w // v,p & u,w // v,q by A5;
      hence thesis by A8,A7;
    end;
    u,v // w,u & u,w // v,u by A5;
    hence thesis by A6;
  end;
  hence thesis by A2;
end;

theorem Th18:
  p<>v & v,p // p,w implies ex y st u,p // p,y & u,v // w,y
proof
  assume
A1: p<>v & v,p // p,w;
A2: now
    assume p<>w;
    then consider a,b such that
A3: a*(p-v)=b*(w-p) and
A4: 0<a and
A5: 0<b by A1;
    set y=(b"*a)*(p-u)+p;
A6: y-p=(b"*a)*(p-u) by RLSUB_2:61
      .=b"*(a*(p-u)) by RLVECT_1:def 7;
A7: y-w=(y-p)+(p-w) by Th1
      .=(y-p)-(w-p) by RLVECT_1:33;
    v-u=(p-u)+(v-p) by Th1
      .=(p-u)-(p-v) by RLVECT_1:33;
    then a*(v-u)=a*(p-u)-a*(p-v) by RLVECT_1:34
      .=b*(y-p)-b*(w-p) by A3,A5,A6,Th6
      .=b*(y-w) by A7,RLVECT_1:34;
    then
A8: u,v // w,y by A4,A5;
    0<b" by A5;
    then
A9: 0<b"*a by A4,XREAL_1:129;
    jj*(y-p)=y-p by RLVECT_1:def 8
      .=(b"*a)*(p-u) by RLSUB_2:61;
    then u,p // p,y by A9;
    hence thesis by A8;
  end;
  now
    assume
A10: p=w;
    take y=p;
    thus u,p // p,y & u,v // w,y by A10;
  end;
  hence thesis by A2;
end;

theorem Th19:
  (for a,b st a*u + b*v=0.V holds a=0 & b=0) implies u<>v & u<>0.V & v<>0.V
proof
  assume
A1: for a,b st a*u + b*v=0.V holds a=0 & b=0;
  thus u<>v
  proof
    assume u=v;
    then u - v = 0.V by RLVECT_1:15;
    then 1*u + (-v) = 0.V by RLVECT_1:def 8;
    then 1*u + ((-jj)*v) = 0.V by RLVECT_1:16;
    hence contradiction by A1;
  end;
  thus u<>0.V
  proof
    assume u=0.V;
    then 1*u = 0.V by RLVECT_1:10;
    then 1*u + 0.V = 0.V by RLVECT_1:4;
    then jj*u + 0*v =0.V by RLVECT_1:10;
    hence contradiction by A1;
  end;
  thus v<>0.V
  proof
    assume v=0.V;
    then 1*v = 0.V by RLVECT_1:10;
    then 0.V + 1*v = 0.V by RLVECT_1:4;
    then 0*u + jj*v =0.V by RLVECT_1:10;
    hence contradiction by A1;
  end;
end;

theorem Th20:
  (ex u,v st (for a,b st a*u + b*v=0.V holds a=0 & b=0)) implies
  ex u,v,w,y st not u,v // w,y & not u,v // y,w
proof
  given u,v such that
A1: for a,b st a*u + b*v=0.V holds a=0 & b=0;
A2: u<>0.V & v<>0.V by A1,Th19;
A3: not 0.V,u // v,0.V
  proof
A4: now
      given a,b such that
A5:   0<a and
      0<b and
A6:   a*(u-0.V) = b*(0.V-v);
      a*u = a*(u-0.V) & b*(0.V-v)=b*(-v) by RLVECT_1:13,14;
      then a*u = -(b*v) by A6,RLVECT_1:25;
      then a*u + b*v = 0.V by RLVECT_1:5;
      hence contradiction by A1,A5;
    end;
    assume 0.V,u // v,0.V;
    hence contradiction by A2,A4;
  end;
  not 0.V,u // 0.V,v
  proof
A7: now
      given a,b such that
A8:   0<a and
      0<b and
A9:   a*(u-0.V) = b*(v-0.V);
      a*u = a*(u-0.V) & b*(v-0.V)=b*v by RLVECT_1:13;
      then 0.V = a*u - (b*v) by A9,RLVECT_1:15
        .= a*u + (b*(-v)) by RLVECT_1:25
        .= a*u + ((-b)*v) by RLVECT_1:24;
      hence contradiction by A1,A8;
    end;
    assume 0.V,u // 0.V,v;
    hence contradiction by A2,A7;
  end;
  hence thesis by A3;
end;

Lm1: a*(v-u) = b*(w-y) & (a<>0 or b<>0) implies u,v // w,y or u,v // y,w
proof
  assume that
A1: a*(v-u) = b*(w-y) and
A2: a<>0 or b<>0;
A3: now
    assume
A4: b=0;
    then 0.V = a*(v-u) by A1,RLVECT_1:10;
    then v-u = 0.V by A2,A4,RLVECT_1:11;
    then u=v by RLVECT_1:21;
    hence u,v // w,y;
  end;
A5: now
A6: now
A7:   a*(v-u) = -(-(b*(w-y))) by A1,RLVECT_1:17
        .= -(b*(-(w-y))) by RLVECT_1:25
        .= -(b*(y-w)) by RLVECT_1:33
        .= b*(-(y-w)) by RLVECT_1:25
        .= (-b)*(y-w) by RLVECT_1:24;
      assume that
A8:   0<a and
A9:   b<0;
      0<-b by A9,XREAL_1:58;
      hence u,v // w,y by A8,A7;
    end;
A10: now
A11:  (-a)*(v-u) = a*(-(v-u)) by RLVECT_1:24
        .= -(b*(w-y)) by A1,RLVECT_1:25
        .=b*(-(w-y)) by RLVECT_1:25
        .= b*(y-w) by RLVECT_1:33;
      assume that
A12:  a<0 and
A13:  0<b;
      0<-a by A12,XREAL_1:58;
      hence u,v // w,y by A13,A11;
    end;
A14: now
      assume a<0 & b<0;
      then
A15:  0<-a & 0<-b by XREAL_1:58;
      (-a)*(v-u) = a*(-(v-u)) by RLVECT_1:24
        .= -(b*(w-y)) by A1,RLVECT_1:25
        .=b*(-(w-y)) by RLVECT_1:25
        .= (-b)*(w-y) by RLVECT_1:24;
      hence u,v // y,w by A15;
    end;
    assume a<>0 & b<>0;
    hence thesis by A1,A14,A10,A6;
  end;
  now
    assume
A16: a=0;
    then 0.V = b*(w-y) by A1,RLVECT_1:10;
    then w-y = 0.V by A2,A16,RLVECT_1:11;
    then w=y by RLVECT_1:21;
    hence u,v // w,y;
  end;
  hence thesis by A3,A5;
end;

theorem Th21:
  (ex p,q st (for w ex a,b st a*p + b*q=w)) implies for u,v,w,y st
not u,v // w,y & not u,v // y,w ex z being VECTOR of V st (u,v // u,z or u,v //
  z,u) & (w,y // w,z or w,y // z,w)
proof
  given p,q such that
A1: for w ex a,b st a*p + b*q=w;
  let u,v,w,y such that
A2: not u,v // w,y and
A3: not u,v // y,w;
  consider r1,s1 being Real such that
A4: r1*p + s1*q = v-u by A1;
  consider r2,s2 being Real such that
A5: r2*p + s2*q = y-w by A1;
  set r = r1*s2 - r2*s1;
A6: now
    assume
A7: r = 0;
A8: now
      assume that
A9:   r1<>0 and
A10:  r2=0;
      s2<>0
      proof
        assume s2=0;
        then y-w = 0.V + 0*q by A5,A10,RLVECT_1:10
          .= 0.V + 0.V by RLVECT_1:10
          .= 0.V by RLVECT_1:4;
        then y=w by RLVECT_1:21;
        hence contradiction by A2;
      end;
      hence contradiction by A7,A9,A10,XCMPLX_1:6;
    end;
A11: now
      assume
A12:  r1=0;
A13:  s1<>0
      proof
        assume s1=0;
        then v-u = 0.V + 0*q by A4,A12,RLVECT_1:10
          .= 0.V + 0.V by RLVECT_1:10
          .= 0.V by RLVECT_1:4;
        then u=v by RLVECT_1:21;
        hence contradiction by A2;
      end;
      then
A14:  r2=0 by A7,A12,XCMPLX_1:6;
A15:  s2<>0
      proof
        assume s2=0;
        then y-w = 0.V + 0*q by A5,A14,RLVECT_1:10
          .= 0.V + 0.V by RLVECT_1:10
          .= 0.V by RLVECT_1:4;
        then y=w by RLVECT_1:21;
        hence contradiction by A2;
      end;
      y-w = 0.V + s2*q by A5,A14,RLVECT_1:10
        .= s2*q by RLVECT_1:4;
      then
A16:  (s2)"*(y-w) = ((s2)"*s2)*q by RLVECT_1:def 7
        .= 1*q by A15,XCMPLX_0:def 7
        .= q by RLVECT_1:def 8;
      v-u = 0.V + s1*q by A4,A12,RLVECT_1:10
        .= s1*q by RLVECT_1:4;
      then
A17:  (s1)"*(v-u) = ((s1)"*s1)*q by RLVECT_1:def 7
        .= 1*q by A13,XCMPLX_0:def 7
        .= q by RLVECT_1:def 8;
      s1"<>0 by A13,XCMPLX_1:202;
      hence contradiction by A2,A3,A17,A16,Lm1;
    end;
A18: now
      assume that
A19:  r1<>0 and
A20:  r2<>0 and
A21:  s1 = 0;
      v-u = r1*p + 0.V by A4,A21,RLVECT_1:10
        .= r1*p by RLVECT_1:4;
      then
A22:  (r1)"*(v-u) = ((r1)"*r1)*p by RLVECT_1:def 7
        .= 1*p by A19,XCMPLX_0:def 7
        .= p by RLVECT_1:def 8;
      s2 = 0 by A7,A19,A21,XCMPLX_1:6;
      then y-w = r2*p + 0.V by A5,RLVECT_1:10
        .= r2*p by RLVECT_1:4;
      then
A23:  (r2)"*(y-w) = ((r2)"*r2)*p by RLVECT_1:def 7
        .= 1*p by A20,XCMPLX_0:def 7
        .= p by RLVECT_1:def 8;
      r1"<>0 by A19,XCMPLX_1:202;
      hence contradiction by A2,A3,A22,A23,Lm1;
    end;
    now
      assume that
A24:  r1<>0 and
      r2<>0 and
      s1<>0 and
      s2<>0;
      r2*(v-u) = r2*(r1*p) + r2*(s1*q) by A4,RLVECT_1:def 5
        .=(r2*r1)*p + r2*(s1*q) by RLVECT_1:def 7
        .= (r1*r2)*p + (r1*s2)*q by A7,RLVECT_1:def 7
        .= r1*(r2*p) + (r1*s2)*q by RLVECT_1:def 7
        .= r1*(r2*p) + r1*(s2*q) by RLVECT_1:def 7
        .= r1*(y-w) by A5,RLVECT_1:def 5;
      hence contradiction by A2,A3,A24,Lm1;
    end;
    hence contradiction by A7,A11,A8,A18,XCMPLX_1:6;
  end;
  consider r3,s3 being Real such that
A25: r3*p + s3*q = u-w by A1;
  set a= r2*s3 - r3*s2, b= r1*s3 - r3*s1;
A26: b*r2 = r1*a + r3*r;
  set z = u + (r"*a)*(v-u);
A27: r*(z-u) = r*z - r*u by RLVECT_1:34
    .= r*u + r*((r"*a)*(v-u)) - r*u by RLVECT_1:def 5
    .= r*u + (r*(r"*a))*(v-u) - r*u by RLVECT_1:def 7
    .= r*u + ((r*r")*a)*(v-u) - r*u
    .= r*u + (1*a)*(v-u) - r*u by A6,XCMPLX_0:def 7
    .= a*(v-u) + (r*u - r*u) by RLVECT_1:def 3
    .= a*(v-u) + 0.V by RLVECT_1:15
    .= a*(v-u) by RLVECT_1:4;
A28: r*(z-w) = r*z - r*w by RLVECT_1:34
    .= r*u + r*((r"*a)*(v-u)) - r*w by RLVECT_1:def 5
    .= r*u + (r*(r"*a))*(v-u) - r*w by RLVECT_1:def 7
    .= r*u + ((r*r")*a)*(v-u) - r*w
    .= r*u + (1*a)*(v-u) - r*w by A6,XCMPLX_0:def 7
    .= a*(v-u) + (r*u - r*w) by RLVECT_1:def 3
    .= a*(r1*p + s1*q) + r*(r3*p + s3*q) by A4,A25,RLVECT_1:34
    .= a*(r1*p) + a*(s1*q) + r*(r3*p + s3*q) by RLVECT_1:def 5
    .= a*(r1*p) + a*(s1*q) + (r*(r3*p) + r*(s3*q)) by RLVECT_1:def 5
    .= (a*r1)*p + a*(s1*q) + (r*(r3*p) + r*(s3*q)) by RLVECT_1:def 7
    .= (a*r1)*p + (a*s1)*q + (r*(r3*p) + r*(s3*q)) by RLVECT_1:def 7
    .= (a*r1)*p + (a*s1)*q + ((r*r3)*p + r*(s3*q)) by RLVECT_1:def 7
    .= (a*r1)*p + (a*s1)*q + ((r*s3)*q + (r*r3)*p) by RLVECT_1:def 7
    .= (a*r1)*p + (a*s1)*q + (r*s3)*q + (r*r3)*p by RLVECT_1:def 3
    .= ((a*s1)*q + (r*s3)*q) + (a*r1)*p + (r*r3)*p by RLVECT_1:def 3
    .= ((a*s1)*q + (r*s3)*q) + ((a*r1)*p + (r*r3)*p) by RLVECT_1:def 3
    .= (a*s1 + r*s3)*q + ((a*r1)*p + (r*r3)*p) by RLVECT_1:def 6
    .= (b*s2)*q + (b*r2)*p by A26,RLVECT_1:def 6
    .= b*(s2*q) + (b*r2)*p by RLVECT_1:def 7
    .= b*(s2*q) + b*(r2*p) by RLVECT_1:def 7
    .= b*(y-w) by A5,RLVECT_1:def 5;
A29: b*s2 = s1*a + s3*r;
   per cases;
   suppose that
A30: a=0 and
A31: b<>0;
    r*(z-u)=0.V by A27,A30,RLVECT_1:10;
    then z-u=0.V by A6,RLVECT_1:11;
    then z=u by RLVECT_1:21;
    then
A32: u,v // u,z;
    w,y // w,z or w,y // z,w by A28,A31,Lm1;
    hence thesis by A32;
  end;
  suppose a=0 & b=0;
    then r3=0 & s3=0 by A6,A26,A29,XCMPLX_1:6;
    then 0.V + 0*q = u-w by A25,RLVECT_1:10;
    then 0.V + 0.V = u-w by RLVECT_1:10;
    then 0.V=u-w by RLVECT_1:4;
    then u=w by RLVECT_1:21;
    then
A33: w,y // w,u;
    u,v // u,u;
    hence thesis by A33;
  end;
  suppose that
A34: a<>0 and
A35: b=0;
    r*(z-w)=0.V by A28,A35,RLVECT_1:10;
    then z-w=0.V by A6,RLVECT_1:11;
    then z=w by RLVECT_1:21;
    then
A36: w,y // w,z;
    u,v // u,z or u,v // z,u by A27,A34,Lm1;
    hence thesis by A36;
  end;
  suppose that
A37: a<>0 and
A38: b<>0;
A39: w,y // w,z or w,y // z,w by A28,A38,Lm1;
    u,v // u,z or u,v // z,u by A27,A37,Lm1;
    hence thesis by A39;
  end;
end;

definition
  struct(1-sorted) AffinStruct
  (#carrier -> set, CONGR -> Relation of [:the carrier,the carrier:]#);
end;

registration
  cluster non trivial strict for AffinStruct;
  existence
  proof
    set A = the non trivial set, R = the Relation of [:A,A:];
    take AffinStruct(#A,R#);
    thus thesis;
  end;
end;

reserve AS for non empty AffinStruct;
reserve a,b,c,d for Element of AS;
reserve x,z for object;

definition
  let AS,a,b,c,d;
  pred a,b // c,d means

  [[a,b],[c,d]] in the CONGR of AS;
end;

definition
  let V;
  func DirPar(V) -> Relation of [:the carrier of V,the carrier of V:] means
:Def3: [x,z] in it iff ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y;
  existence
  proof
    defpred P[object,object] means
ex u,v,w,y st $1=[u,v] & $2=[w,y] & u,v // w,y;
    set VV = [:the carrier of V,the carrier of V:];
    consider P being Relation of VV,VV such that
A1: for x,z being object holds [x,z] in P iff x in VV & z in VV & P[x,z]
from RELSET_1:sch 1;
    take P;
    let x,z;
    thus [x,z] in P implies ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y by A1;
    assume ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y;
    hence thesis by A1;
  end;
  uniqueness
  proof
    let P,Q be Relation of [:the carrier of V,the carrier of V:] such that
A2: [x,z] in P iff ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y and
A3: [x,z] in Q iff ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y;
    for x,z being object holds [x,z] in P iff [x,z] in Q
    proof
      let x,z be object;
      [x,z] in P iff ex u,v,w,y st x=[u,v] & z=[w,y] & u,v // w,y by A2;
      hence thesis by A3;
    end;
    hence thesis by RELAT_1:def 2;
  end;
end;

theorem Th22:
  [[u,v],[w,y]] in DirPar(V) iff u,v // w,y
proof
  thus [[u,v],[w,y]] in DirPar(V) implies u,v // w,y
  proof
    assume [[u,v],[w,y]] in DirPar(V);
    then consider u9,v9,w9,y9 being VECTOR of V such that
A1: [u,v]=[u9,v9] and
A2: [w,y]=[w9,y9] and
A3: u9,v9 // w9,y9 by Def3;
A4: w = w9 by A2,XTUPLE_0:1;
    u = u9 & v = v9 by A1,XTUPLE_0:1;
    hence thesis by A2,A3,A4,XTUPLE_0:1;
  end;
  thus thesis by Def3;
end;

definition
  let V;
  func OASpace(V) -> strict AffinStruct equals
  AffinStruct (#the carrier of V,
    DirPar(V)#);
  correctness;
end;

registration
  let V;
  cluster OASpace V -> non empty;
  coherence;
end;

theorem Th23:
  (ex u,v st for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0
  ) implies (ex a,b being Element of OASpace(V) st a<>b) & (for a,b,c,d,p,q,r,s
being Element of OASpace(V) holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b
& a,b // p,q & a,b // r,s implies p,q // r,s) & (a,b // c,d implies b,a // d,c)
& (a,b // b,c implies a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c // c,
b)) & (ex a,b,c,d being Element of OASpace(V) st not a,b // c,d & not a,b // d,
c) & (for a,b,c being Element of OASpace(V) ex d being Element of OASpace(V) st
a,b // c,d & a,c // b,d & b<>d) & for p,a,b,c being Element of OASpace(V) st p
  <>b & b,p // p,c ex d being Element of OASpace(V) st a,p // p,d & a,b // c,d
proof
  given u,v such that
A1: for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0;
  set S = OASpace(V);
A2: u<>v by A1,Th19;
  hence ex a,b being Element of S st a<>b;
  thus for a,b,c,d,p,q,r,s being Element of S holds a,b // c,c & (a,b // b,a
implies a=b) & (a<>b & a,b // p,q & a,b // r,s implies p,q // r,s) & (a,b // c,
d implies b,a // d,c) & (a,b // b,c implies a,b // a,c) & (a,b // a,c implies a
  ,b // b,c or a,c // c,b)
  proof
    let a,b,c,d,p,q,r,s be Element of S;
    reconsider a9=a,b9=b,c9=c,d9=d,p9=p,q9=q,r9=r,s9=s as Element of V;
    a9,b9 // c9,c9;
    hence [[a,b],[c,c]] in the CONGR of S by Def3;
    thus a,b // b,a implies a=b
    by Th22,Th10;
    thus a<>b & a,b // p,q & a,b // r,s implies p,q // r,s
    proof
      assume that
A3:   a<>b and
A4:   [[a,b],[p,q]] in the CONGR of S & [[a,b],[r,s]] in the CONGR of S;
      a9,b9 // p9,q9 & a9,b9 // r9,s9 by A4,Th22;
      then p9,q9 // r9,s9 by A3,Th11;
      then [[p,q],[r,s]] in the CONGR of S by Th22;
      hence thesis;
    end;
    thus a,b // c,d implies b,a // d,c
    proof
      assume [[a,b],[c,d]] in the CONGR of S;
      then a9,b9 // c9,d9 by Th22;
      then b9,a9 // d9,c9 by Th12;
      then [[b,a],[d,c]] in the CONGR of S by Th22;
      hence thesis;
    end;
    thus a,b // b,c implies a,b // a,c
    proof
      assume [[a,b],[b,c]] in the CONGR of S;
      then a9,b9 // b9,c9 by Th22;
      then a9,b9 // a9,c9 by Th13;
      then [[a,b],[a,c]] in the CONGR of S by Th22;
      hence thesis;
    end;
    thus a,b // a,c implies a,b // b,c or a,c // c,b
    proof
      assume [[a,b],[a,c]] in the CONGR of S;
      then a9,b9 // a9,c9 by Th22;
      then a9,b9 // b9,c9 or a9,c9 // c9,b9 by Th14;
      then [[a,b],[b,c]] in the CONGR of S or [[a,c],[c,b]] in the CONGR of S
      by Th22;
      hence thesis;
    end;
  end;
  thus ex a,b,c,d being Element of S st not a,b // c,d & not a,b // d,c
  proof
    consider a9,b9,c9,d9 being VECTOR of V such that
A5: not a9,b9 // c9,d9 and
A6: not a9,b9 // d9,c9 by A1,Th20;
    reconsider a=a9,b=b9,c = c9,d=d9 as Element of S;
    not [[a,b],[d,c]] in the CONGR of S by A6,Th22;
    then
A7: not a,b // d,c;
    not [[a,b],[c,d]] in the CONGR of S by A5,Th22;
    then not a,b // c,d;
    hence thesis by A7;
  end;
  thus for a,b,c being Element of S ex d being Element of S st a,b // c,d & a,
  c // b,d & b<>d
  proof
    let a,b,c be Element of S;
    reconsider a9=a,b9=b,c9=c as Element of V;
    consider d9 being VECTOR of V such that
A8: a9,b9 // c9,d9 and
A9: a9,c9 // b9,d9 and
A10: b9<>d9 by A2,Th17;
    reconsider d=d9 as Element of S;
    [[a,c],[b,d]] in the CONGR of S by A9,Th22;
    then
A11: a,c // b,d;
    [[a,b],[c,d]] in the CONGR of S by A8,Th22;
    then a,b // c,d;
    hence thesis by A10,A11;
  end;
  thus for p,a,b,c being Element of S st p<>b & b,p // p,c holds ex d being
  Element of S st a,p // p,d & a,b // c,d
  proof
    let p,a,b,c be Element of S;
    assume that
A12: p<>b and
A13: [[b,p],[p,c]] in the CONGR of S;
    reconsider p9=p,a9=a,b9=b,c9=c as Element of V;
    b9,p9 // p9,c9 by A13,Th22;
    then consider d9 being VECTOR of V such that
A14: a9,p9 // p9,d9 and
A15: a9,b9 // c9,d9 by A12,Th18;
    reconsider d=d9 as Element of S;
    [[a,b],[c,d]] in the CONGR of S by A15,Th22;
    then
A16: a,b // c,d;
    [[a,p],[p,d]] in the CONGR of S by A14,Th22;
    then a,p // p,d;
    hence thesis by A16;
  end;
end;

theorem Th24:
  (ex p,q being VECTOR of V st (for w being VECTOR of V ex a,b
being Real st a*p + b*q=w)) implies
 for a,b,c,d being Element of OASpace(V) st
not a,b // c,d & not a,b // d,c ex t being Element of OASpace(V) st (a,b // a,t
  or a,b // t,a) & (c,d // c,t or c,d // t,c)
proof
  assume
A1: ex p,q being VECTOR of V st for w being VECTOR of V ex a,b being
  Real st a*p + b*q=w;
  set S = OASpace(V);
  let a,b,c,d be Element of OASpace(V);
  reconsider a9=a,b9=b,c9 = c,d9=d as Element of V;
  assume
  ( not [[a,b],[c,d]] in the CONGR of S)& not [[a,b],[d,c]] in the CONGR of S;
  then ( not a9,b9 // c9,d9)& not a9,b9 // d9,c9 by Th22;
  then consider t9 being VECTOR of V such that
A2: a9,b9 // a9,t9 or a9,b9 // t9,a9 and
A3: c9,d9 // c9,t9 or c9,d9 // t9,c9 by A1,Th21;
  reconsider t=t9 as Element of S;
  [[c,d],[c,t]] in the CONGR of S or [[c,d],[t,c]] in the CONGR of S by A3,Th22
;
  then
A4: c,d // c,t or c,d // t,c;
  [[a,b],[a,t]] in the CONGR of S or [[a,b],[t,a]] in the CONGR of S by A2,Th22
;
  then a,b // a,t or a,b // t,a;
  hence thesis by A4;
end;

definition
  let IT be non empty AffinStruct;
  attr IT is OAffinSpace-like means
  :Def5:
  (for a,b,c,d,p,q,r,s being Element
of IT holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b & a,b // p,q & a,b //
r,s implies p,q // r,s) & (a,b // c,d implies b,a // d,c) & (a,b // b,c implies
  a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c // c,b)) & (ex a,b,c,d
  being Element of IT st not a,b // c,d & not a,b // d,c) & (for a,b,c being
Element of IT ex d being Element of IT st a,b // c,d & a,c // b,d & b<>d) & for
p,a,b,c being Element of IT st p<>b & b,p // p,c ex d being Element of IT st a,
  p // p,d & a,b // c,d;
end;

registration
  cluster strict OAffinSpace-like for non trivial AffinStruct;
  existence
  proof
    consider V,u,v such that
A1: for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0 and
    for w ex a,b being Real st w = a*u + b*v by FUNCSDOM:23;
A2: ( ex a,b,c,d being Element of OASpace(V) st not a,b // c,d & not a,b
// d,c)& for a,b,c being Element of OASpace(V) ex d being Element of OASpace(V
    ) st a,b // c,d & a,c // b,d & b<>d by A1,Th23;
A3: for p,a,b,c being Element of OASpace(V) st p<>b & b,p // p,c ex d
    being Element of OASpace(V) st a,p // p,d & a,b // c,d by A1,Th23;
    ( ex a,b being Element of OASpace(V) st a<>b)& for a,b,c,d,p,q,r,s
being Element of OASpace(V) holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b
& a,b // p,q & a,b // r,s implies p,q // r,s) & (a, b // c,d implies b,a // d,c
) & (a,b // b,c implies a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c //
    c,b) by A1,Th23;
    then OASpace(V) is non trivial OAffinSpace-like by A2,A3,
STRUCT_0:def 10;
    hence thesis;
  end;
end;

definition
  mode OAffinSpace is OAffinSpace-like non trivial AffinStruct;
end;

theorem
  (ex a,b being Element of AS st a<>b) & (for a,b,c,d,p,q,r,s being
Element of AS holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b & a,b // p,q
& a,b // r,s implies p,q // r,s) & (a,b // c,d implies b,a // d,c) & (a,b // b,
c implies a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c // c,b)) & (ex a,
  b,c,d being Element of AS st not a,b // c,d & not a,b // d,c) & (for a,b,c
being Element of AS ex d being Element of AS st a,b // c,d & a,c // b,d & b<>d)
  & (for p,a,b,c being Element of AS st p<>b & b,p // p,c ex d being Element of
  AS st a,p // p,d & a,b // c,d) iff AS is OAffinSpace by Def5,STRUCT_0:def 10;

theorem Th26:
  (ex u,v st for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0
  ) implies OASpace(V) is OAffinSpace
proof
  assume
A1: ex u,v st for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0;
  then
A2: ( ex a,b,c,d being Element of OASpace(V) st not a,b // c,d & not a,b //
  d,c)& for a,b,c being Element of OASpace(V) ex d being Element of OASpace(V)
  st a,b // c,d & a,c // b,d & b<>d by Th23;
A3: for p,a,b,c being Element of OASpace(V) st p<>b & b,p // p,c ex d being
  Element of OASpace(V) st a,p // p,d & a,b // c,d by A1,Th23;
  ( ex a,b being Element of OASpace(V) st a<>b)& for a,b,c,d,p,q,r,s being
Element of OASpace(V) holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b & a,b
// p,q & a,b // r,s implies p,q // r,s) & (a, b // c,d implies b,a // d,c) & (a
  ,b // b,c implies a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c // c,b)
  by A1,Th23;
  hence thesis by A2,A3,Def5,STRUCT_0:def 10;
end;

definition
  let IT be OAffinSpace;
  attr IT is 2-dimensional means
  :Def6:
  for a,b,c,d being Element of IT st not
a,b // c,d & not a,b // d,c holds ex p being Element of IT st (a,b // a,p or a,
  b // p,a) & (c,d // c,p or c,d // p,c);
end;

registration
  cluster strict 2-dimensional for OAffinSpace;
  existence
  proof
    consider V such that
A1: ex u,v st (for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0)
    & for w ex a,b being Real st w = a*u + b*v by FUNCSDOM:23;
    reconsider S = OASpace(V) as OAffinSpace by A1,Th26;
    for a,b,c,d being Element of S st not a,b // c,d & not a,b // d,c
holds ex p being Element of S st (a,b // a,p or a,b // p,a) & (c,d // c,p or c,
    d // p,c) by A1,Th24;
    then S is 2-dimensional;
    hence thesis;
  end;
end;

definition
  mode OAffinPlane is 2-dimensional OAffinSpace;
end;

theorem
  (ex a,b being Element of AS st a<>b) & (for a,b,c,d,p,q,r,s being
Element of AS holds a,b // c,c & (a,b // b,a implies a=b) & (a<>b & a,b // p,q
& a,b // r,s implies p,q // r,s) & (a,b // c,d implies b,a // d,c) & (a,b // b,
c implies a,b // a,c) & (a,b // a,c implies a,b // b,c or a,c // c,b)) & (ex a,
  b,c,d being Element of AS st not a,b // c,d & not a,b // d,c) & (for a,b,c
being Element of AS ex d being Element of AS st a,b // c,d & a,c // b,d & b<>d)
  & (for p,a,b,c being Element of AS st p<>b & b,p // p,c ex d being Element of
AS st a,p // p,d & a,b // c,d) & (for a,b,c,d being Element of AS st not a,b //
c,d & not a,b // d,c holds ex p being Element of AS st (a,b // a,p or a,b // p,
  a) & (c,d // c,p or c,d // p,c)) iff AS is OAffinPlane by Def5,Def6,
STRUCT_0:def 10;

theorem
  (ex u,v st (for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0) &
  (for w ex a,b being Real st w = a*u + b*v)) implies
   OASpace(V) is OAffinPlane
proof
  set S=OASpace(V);
  assume
A1: ex u,v st (for a,b being Real st a*u + b*v = 0.V holds a=0 & b=0) &
  for w ex a,b being Real st w = a*u + b*v;
  then
  for a,b,c,d being Element of S st not a,b // c,d & not a,b // d,c holds
ex p being Element of S st (a,b // a,p or a,b // p,a) & (c,d // c,p or c,d // p
  ,c) by Th24;
  hence thesis by A1,Def6,Th26;
end;