Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 62,445 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
:: Affine Localizations of Desargues Axiom
::  by Eugeniusz Kusak, Henryk Oryszczyszyn and Krzysztof Pra\.zmowski

environ

 vocabularies DIRAF, SUBSET_1, AFF_1, ANALOAF, INCSP_1, AFF_2, AFF_3;
 notations STRUCT_0, ANALOAF, DIRAF, AFF_1, AFF_2;
 constructors AFF_1, AFF_2;
 registrations STRUCT_0;
 definitions AFF_2;
 expansions AFF_2;
 theorems AFF_1, AFF_2;

begin

reserve AP for AffinPlane;
reserve a,a9,b,b9,c,c9,d,x,y,o,p,q for Element of AP;
reserve A,C,D9,M,N,P for Subset of AP;

definition
  let AP;
  attr AP is satisfying_DES1 means

  for A,P,C,o,a,a9,b,b9,c,c9,p,q st A
is being_line & P is being_line & C is being_line & P<>A & P<>C & A<>C & o in A
& a in A & a9 in A & o in P & b in P & b9 in P & o in C & c in C & c9 in C & o
<>a & o<>b & o<>c & p<>q & not LIN b,a,c & not LIN b9,a9,c9 & a<>a9 & LIN b,a,p
  & LIN b9,a9,p & LIN b,c,q & LIN b9,c9,q & a,c // a9,c9 holds a,c // p,q;
end;

definition
  let AP;
  attr AP is satisfying_DES1_1 means

  for A,P,C,o,a,a9,b,b9,c,c9,p,q st
A is being_line & P is being_line & C is being_line & P<>A & P<>C & A<>C & o in
A & a in A & a9 in A & o in P & b in P & b9 in P & o in C & c in C & c9 in C &
o<>a & o<>b & o<>c & p<>q & c <>q & not LIN b,a,c & not LIN b9,a9,c9 & LIN b,a,
  p & LIN b9,a9,p & LIN b,c,q & LIN b9,c9,q & a,c // p,q holds a,c // a9,c9;
end;

definition
  let AP;
  attr AP is satisfying_DES1_2 means

  for A,P,C,o,a,a9,b,b9,c,c9,p,q st
A is being_line & P is being_line & C is being_line & P<>A & P<>C & A<>C & o in
A & a in A & a9 in A & o in P & b in P & b9 in P & c in C & c9 in C & o<>a & o
<>b & o<>c & p<>q & not LIN b,a,c & not LIN b9,a9,c9 & c <>c9 & LIN b,a,p & LIN
  b9,a9,p & LIN b,c,q & LIN b9,c9,q & a,c // a9,c9 & a,c // p,q holds o in C;
end;

definition
  let AP;
  attr AP is satisfying_DES1_3 means

  for A,P,C,o,a,a9,b,b9,c,c9,p,q st
A is being_line & P is being_line & C is being_line & P<>A & P<>C & A<>C & o in
A & a in A & a9 in A & b in P & b9 in P & o in C & c in C & c9 in C & o<>a & o
<>b & o<>c & p<>q & not LIN b,a,c & not LIN b9,a9,c9 & b<>b9 & a<>a9 & LIN b,a,
  p & LIN b9,a9,p & LIN b,c,q & LIN b9,c9,q & a,c // a9,c9 & a,c // p,q holds o
  in P;
end;

definition
  let AP;
  attr AP is satisfying_DES2 means

  for A,P,C,a,a9,b,b9,c,c9,p,q st A is
being_line & P is being_line & C is being_line & A<>P & A<>C & P<>C & a in A &
a9 in A & b in P & b9 in P & c in C & c9 in C & A // P & A // C & not LIN b,a,c
  & not LIN b9,a9,c9 & p<>q & a<>a9 & LIN b,a,p & LIN b9,a9,p & LIN b,c,q & LIN
  b9,c9,q & a,c // a9,c9 holds a,c // p,q;
end;

definition
  let AP;
  attr AP is satisfying_DES2_1 means

  for A,P,C,a,a9,b,b9,c,c9,p,q st A
is being_line & P is being_line & C is being_line & A<>P & A<>C & P<>C & a in A
& a9 in A & b in P & b9 in P & c in C & c9 in C & A // P & A // C & not LIN b,a
,c & not LIN b9,a9,c9 & p<>q & LIN b,a,p & LIN b9,a9,p & LIN b,c,q & LIN b9,c9,
  q & a,c // p,q holds a,c // a9,c9;
end;

definition
  let AP;
  attr AP is satisfying_DES2_2 means

  for A,P,C,a,a9,b,b9,c,c9,p,q st A
is being_line & P is being_line & C is being_line & A<>P & A<>C & P<>C & a in A
& a9 in A & b in P & b9 in P & c in C & c9 in C & A // C & not LIN b,a,c & not
LIN b9,a9,c9 & p<>q & a<>a9 & LIN b,a,p & LIN b9,a9,p & LIN b,c,q & LIN b9,c9,q
  & a,c // a9,c9 & a,c // p,q holds A // P;
end;

definition
  let AP;
  attr AP is satisfying_DES2_3 means

  for A,P,C,a,a9,b,b9,c,c9,p,q st A
is being_line & P is being_line & C is being_line & A<>P & A<>C & P<>C & a in A
& a9 in A & b in P & b9 in P & c in C & c9 in C & A // P & not LIN b,a,c & not
LIN b9,a9,c9 & p<>q & c <>c9 & LIN b,a,p & LIN b9,a9,p & LIN b,c,q & LIN b9,c9,
  q & a,c // a9,c9 & a,c // p,q holds A // C;
end;

theorem
  AP is satisfying_DES1 implies AP is satisfying_DES1_1
proof
  assume
A1: AP is satisfying_DES1;
  let A,P,C,o,a,a9,b,b9,c,c9,p,q;
  assume that
A2: A is being_line and
A3: P is being_line and
A4: C is being_line and
A5: P<>A and
A6: P<>C and
A7: A<>C and
A8: o in A and
A9: a in A and
A10: a9 in A and
A11: o in P and
A12: b in P & b9 in P and
A13: o in C & c in C and
A14: c9 in C and
A15: o<>a and
A16: o<>b and
A17: o<>c and
A18: p<>q and
A19: c <>q and
A20: not LIN b,a,c and
A21: not LIN b9,a9,c9 and
A22: LIN b,a,p and
A23: LIN b9,a9,p and
A24: LIN b,c,q and
A25: LIN b9,c9,q and
A26: a,c // p,q;
A27: LIN o,a,a9 & LIN b9,p,a9 by A2,A8,A9,A10,A23,AFF_1:6,21;
  set K=Line(b,a);
A28: a in K by AFF_1:15;
  then
A29: K<>P by A2,A3,A5,A8,A9,A11,A15,AFF_1:18;
A30: not LIN o,a,c
  proof
    assume LIN o,a,c;
    then c in A by A2,A8,A9,A15,AFF_1:25;
    hence contradiction by A2,A4,A7,A8,A13,A17,AFF_1:18;
  end;
A31: p in K by A22,AFF_1:def 2;
A32: LIN o,c,c9 & LIN b9,q,c9 by A4,A13,A14,A25,AFF_1:6,21;
A33: b<>c & a <> p by A19,A20,A24,A26,AFF_1:7,14;
A34: a9<>c9 & b<>a by A20,A21,AFF_1:7;
  b<>a by A20,AFF_1:7;
  then
A35: K is being_line by AFF_1:def 3;
  set M=Line(b,c);
A36: c in M by AFF_1:15;
  then
A37: M<>P by A3,A4,A6,A11,A13,A17,AFF_1:18;
  b<>c by A20,AFF_1:7;
  then
A38: M is being_line by AFF_1:def 3;
A39: b in M & q in M by A24,AFF_1:15,def 2;
  q<>b
  proof
    assume
A40: q=b;
    ( not LIN b,c,a)& c,a // q,p by A20,A26,AFF_1:4,6;
    hence contradiction by A18,A22,A40,AFF_1:55;
  end;
  then
A41: q<>b9 by A3,A12,A38,A39,A37,AFF_1:18;
A42: b in K by AFF_1:15;
  p<>b by A18,A20,A24,A26,AFF_1:55;
  then
A43: p<>b9 by A3,A12,A35,A42,A31,A29,AFF_1:18;
A44: not LIN b9,p,q
  proof
    set N=Line(p,q);
A45: N is being_line by A18,AFF_1:def 3;
    assume LIN b9,p,q;
    then LIN p,q,b9 by AFF_1:6;
    then
A46: b9 in N by AFF_1:def 2;
    q in N & LIN q,b9,c9 by A25,AFF_1:6,15;
    then
A47: c9 in N by A41,A45,A46,AFF_1:25;
    p in N & LIN p,b9,a9 by A23,AFF_1:6,15;
    then a9 in N by A43,A45,A46,AFF_1:25;
    hence contradiction by A21,A45,A46,A47,AFF_1:21;
  end;
  K<>M by A20,A35,A42,A28,A36,AFF_1:21;
  hence
  thesis by A1,A3,A11,A12,A16,A26,A35,A38,A42,A28,A36,A31,A39,A37,A29,A34,A30
,A44,A33,A27,A32;
end;

theorem
  AP is satisfying_DES1_1 implies AP is satisfying_DES1
proof
  assume
A1: AP is satisfying_DES1_1;
  let A,P,C,o,a,a9,b,b9,c,c9,p,q;
  assume that
A2: A is being_line and
A3: P is being_line and
A4: C is being_line and
A5: P<>A and
A6: P<>C and
A7: A<>C and
A8: o in A and
A9: a in A and
A10: a9 in A and
A11: o in P and
A12: b in P and
A13: b9 in P and
A14: o in C and
A15: c in C and
A16: c9 in C and
A17: o<>a and
A18: o<>b and
A19: o<>c and
A20: p<>q and
A21: not LIN b,a,c and
A22: not LIN b9,a9,c9 and
A23: a<>a9 and
A24: LIN b,a,p and
A25: LIN b9,a9,p and
A26: LIN b,c,q and
A27: LIN b9,c9,q and
A28: a,c // a9,c9;
A29: a9<>b9 by A22,AFF_1:7;
  set M=Line(b,c);
A30: c in M by AFF_1:15;
  then
A31: M<>P by A3,A4,A6,A11,A14,A15,A19,AFF_1:18;
A32: M<>P by A3,A4,A6,A11,A14,A15,A19,A30,AFF_1:18;
A33: b in M by AFF_1:15;
  set K=Line(b,a);
A34: a in K by AFF_1:15;
  then
A35: K<>P by A2,A3,A5,A8,A9,A11,A17,AFF_1:18;
A36: p in K by A24,AFF_1:def 2;
A37: a9<>c9 & b<>a by A21,A22,AFF_1:7;
A38: b<>c by A21,AFF_1:7;
A39: q in M by A26,AFF_1:def 2;
A40: b9<>c9 by A22,AFF_1:7;
A41: b in K by AFF_1:15;
A42: not LIN o,a,c
  proof
    assume LIN o,a,c;
    then c in A by A2,A8,A9,A17,AFF_1:25;
    hence contradiction by A2,A4,A7,A8,A14,A15,A19,AFF_1:18;
  end;
A43: c <>c9
  proof
    assume c =c9;
    then
A44: c,a // c,a9 by A28,AFF_1:4;
    LIN o,a,a9 & not LIN o,c,a by A2,A8,A9,A10,A42,AFF_1:6,21;
    hence contradiction by A23,A44,AFF_1:14;
  end;
  b<>c by A21,AFF_1:7;
  then
A45: M is being_line by AFF_1:def 3;
  b<>a by A21,AFF_1:7;
  then
A46: K is being_line by AFF_1:def 3;
A47: K<>P by A2,A3,A5,A8,A9,A11,A17,A34,AFF_1:18;
A48: now
    set C9=Line(b9,c9);
    set A9=Line(b9,a9);
A49: c9 in C9 by AFF_1:15;
A50: A9 is being_line & b9 in A9 by A29,AFF_1:15,def 3;
A51: a9 in A9 by AFF_1:15;
    then
A52: A9<>C9 by A22,A50,A49,AFF_1:21;
A53: q in C9 by A27,AFF_1:def 2;
A54: p in A9 by A25,AFF_1:def 2;
A55: C9 is being_line & b9 in C9 by A40,AFF_1:15,def 3;
    assume
A56: LIN b9,p,q;
    then
A57: LIN b9,q,p by AFF_1:6;
A58: now
A59:  C9<>M
      proof
        assume C9=M;
        then LIN c,c9,b by A45,A33,A30,A49,AFF_1:21;
        then b in C by A4,A15,A16,A43,AFF_1:25;
        hence contradiction by A3,A4,A6,A11,A12,A14,A18,AFF_1:18;
      end;
      assume b9<>q;
      then
A60:  p in C9 by A57,A55,A53,AFF_1:25;
      then LIN b,a,b9 by A24,A50,A54,A55,A52,AFF_1:18;
      then b9 in K by AFF_1:def 2;
      then
A61:  b=b9 by A3,A12,A13,A46,A41,A47,AFF_1:18;
      p=b9 by A50,A54,A55,A52,A60,AFF_1:18;
      then p=q by A45,A33,A39,A55,A53,A61,A59,AFF_1:18;
      hence thesis by AFF_1:3;
    end;
    now
A62:  A9<>K
      proof
        assume A9=K;
        then LIN a,a9,b by A46,A41,A34,A51,AFF_1:21;
        then b in A by A2,A9,A10,A23,AFF_1:25;
        hence contradiction by A2,A3,A5,A8,A11,A12,A18,AFF_1:18;
      end;
      assume b9<>p;
      then
A63:  q in A9 by A56,A50,A54,AFF_1:25;
      then LIN b,c,b9 by A26,A50,A55,A53,A52,AFF_1:18;
      then b9 in M by AFF_1:def 2;
      then
A64:  b=b9 by A3,A12,A13,A45,A33,A32,AFF_1:18;
      q=b9 by A50,A55,A53,A52,A63,AFF_1:18;
      then p=q by A46,A41,A36,A50,A54,A64,A62,AFF_1:18;
      hence thesis by AFF_1:3;
    end;
    hence thesis by A20,A58;
  end;
A65: K<>M by A21,A46,A41,A34,A30,AFF_1:21;
  now
A66: LIN o,c,c9 & LIN b9,q,c9 by A4,A14,A15,A16,A27,AFF_1:6,21;
    assume
A67: not LIN b9,p,q;
    LIN o,a,a9 & LIN b9,p,a9 by A2,A8,A9,A10,A25,AFF_1:6,21;
    hence
    thesis by A1,A3,A11,A12,A13,A18,A28,A46,A45,A41,A34,A33,A30,A36,A39,A31,A35
,A37,A38,A65,A42,A43,A67,A66;
  end;
  hence thesis by A48;
end;

theorem
  AP is Desarguesian implies AP is satisfying_DES1
proof
  assume
A1: AP is Desarguesian;
  let A,P,C,o,a,a9,b,b9,c,c9,p,q;
  assume that
A2: A is being_line and
A3: P is being_line and
A4: C is being_line and
A5: P<>A and
A6: P<>C and
A7: A<>C and
A8: o in A and
A9: a in A and
A10: a9 in A and
A11: o in P and
A12: b in P and
A13: b9 in P and
A14: o in C and
A15: c in C and
A16: c9 in C and
A17: o<>a and
A18: o<>b and
A19: o<>c and
  p<>q and
A20: not LIN b,a,c and
A21: not LIN b9,a9,c9 and
A22: a<>a9 and
A23: LIN b,a,p and
A24: LIN b9,a9,p and
A25: LIN b,c,q and
A26: LIN b9,c9,q and
A27: a,c // a9,c9;
  set D=Line(b,c);
  b<>c by A20,AFF_1:7;
  then D is being_line by AFF_1:def 3;
  then consider D9 such that
A28: c9 in D9 and
A29: D // D9 by AFF_1:49;
A30: D9 is being_line by A29,AFF_1:36;
  set M=Line(b9,c9);
A31: q in M by A26,AFF_1:def 2;
A32: b in D by AFF_1:15;
A33: c in D by AFF_1:15;
  not D9 // P
  proof
    assume D9 // P;
    then D // P by A29,AFF_1:44;
    then c in P by A12,A32,A33,AFF_1:45;
    hence contradiction by A3,A4,A6,A11,A14,A15,A19,AFF_1:18;
  end;
  then consider d such that
A34: d in D9 and
A35: d in P by A3,A30,AFF_1:58;
A36: q in D by A25,AFF_1:def 2;
  then
A37: d,c9 // b,q by A32,A28,A29,A34,AFF_1:39;
A38: a<>b & b,a // b,p by A20,A23,AFF_1:7,def 1;
A39: c,a // c9,a9 by A27,AFF_1:4;
  c,b // c9,d by A32,A33,A28,A29,A34,AFF_1:39;
  then b,a // d,a9 by A1,A2,A3,A4,A6,A7,A8,A9,A10,A11,A12,A14,A15,A16,A17,A18
,A19,A35,A39;
  then
A40: d,a9 // b,p by A38,AFF_1:5;
  set K=Line(b9,a9);
A41: b9 in K & p in K by A24,AFF_1:15,def 2;
A42: a9<>b9 by A21,AFF_1:7;
  then
A43: K is being_line by AFF_1:def 3;
A44: b9 in M by AFF_1:15;
A45: c9 in M by AFF_1:15;
A46: b9<>c9 by A21,AFF_1:7;
  then
A47: M is being_line by AFF_1:def 3;
A48: not LIN o,a,c
  proof
    assume LIN o,a,c;
    then c in A by A2,A8,A9,A17,AFF_1:25;
    hence contradiction by A2,A4,A7,A8,A14,A15,A19,AFF_1:18;
  end;
A49: c <>c9
  proof
    assume c =c9;
    then
A50: c,a // c,a9 by A27,AFF_1:4;
    LIN o,a,a9 & not LIN o,c,a by A2,A8,A9,A10,A48,AFF_1:6,21;
    hence contradiction by A22,A50,AFF_1:14;
  end;
A51: d<>b9
  proof
    assume d=b9;
    then M=D9 by A46,A47,A44,A45,A28,A30,A34,AFF_1:18;
    then D=M by A31,A36,A29,AFF_1:45;
    then LIN c,c9,b by A47,A45,A32,A33,AFF_1:21;
    then b in C by A4,A15,A16,A49,AFF_1:25;
    hence contradiction by A3,A4,A6,A11,A12,A14,A18,AFF_1:18;
  end;
A52: a9<>c9 by A21,AFF_1:7;
A53: o<>a9 by A4,A14,A15,A16,A27,A52,A48,AFF_1:21,55;
  o<>c9
  proof
A54: not LIN o,c,a by A48,AFF_1:6;
    assume
A55: o=c9;
    LIN o,a,a9 & c,a // c9,a9 by A2,A8,A9,A10,A27,AFF_1:4,21;
    hence contradiction by A53,A55,A54,AFF_1:55;
  end;
  then
A56: M<>P by A3,A4,A6,A11,A14,A16,A45,AFF_1:18;
A57: a9 in K by AFF_1:15;
  then K<>P by A2,A3,A5,A8,A10,A11,A53,AFF_1:18;
  then a9,c9 // p,q by A1,A3,A12,A13,A42,A46,A43,A47,A57,A41,A44,A45,A31,A56
,A35,A51,A40,A37;
  hence thesis by A27,A52,AFF_1:5;
end;

theorem
  AP is Desarguesian implies AP is satisfying_DES1_2
proof
  assume
A1: AP is Desarguesian;
  then
A2: AP is satisfying_DES_1 by AFF_2:2;
  let A,P,C,o,a,a9,b,b9,c,c9,p,q;
  assume that
A3: A is being_line and
A4: P is being_line and
A5: C is being_line and
A6: P<>A and
A7: P<>C and
  A<>C and
A8: o in A and
A9: a in A & a9 in A and
A10: o in P and
A11: b in P and
A12: b9 in P and
A13: c in C and
A14: c9 in C and
A15: o<>a and
A16: o<>b and
  o<>c and
A17: p<>q and
A18: not LIN b,a,c and
A19: not LIN b9,a9,c9 and
A20: c <>c9 and
A21: LIN b,a,p and
A22: LIN b9,a9,p and
A23: LIN b,c,q and
A24: LIN b9,c9,q and
A25: a,c // a9,c9 and
A26: a,c // p,q;
A27: b<>p by A17,A18,A23,A26,AFF_1:55;
  set K=Line(b9,a9);
A28: p in K by A22,AFF_1:def 2;
  a9<>b9 by A19,AFF_1:7;
  then
A29: K is being_line by AFF_1:def 3;
A30: b<>q
  proof
    assume
A31: b=q;
    ( not LIN b,c,a)& c,a // q,p by A18,A26,AFF_1:4,6;
    hence contradiction by A17,A21,A31,AFF_1:55;
  end;
  set M=Line(b9,c9);
A32: q in M by A24,AFF_1:def 2;
A33: c9 in M by AFF_1:15;
A34: a<>c by A18,AFF_1:7;
A35: b9<>p
  proof
    assume
A36: b9=p;
    a9,c9 // p,q by A25,A26,A34,AFF_1:5;
    hence contradiction by A17,A19,A24,A36,AFF_1:55;
  end;
A37: b9<>q
  proof
    a9,c9 // p,q by A25,A26,A34,AFF_1:5;
    then
A38: c9,a9 // q,p by AFF_1:4;
    assume
A39: b9=q;
    not LIN b9,c9,a9 by A19,AFF_1:6;
    hence contradiction by A17,A22,A39,A38,AFF_1:55;
  end;
A40: b<>c by A18,AFF_1:7;
A41: a<>b by A18,AFF_1:7;
A42: b9<>a9 & b9<>c9 by A19,AFF_1:7;
A43: a9 in K by AFF_1:15;
A44: b9 in M by AFF_1:15;
A45: b9<>c9 by A19,AFF_1:7;
  then
A46: M is being_line by AFF_1:def 3;
A47: b9 in K by AFF_1:15;
  then
A48: K<>M by A19,A29,A43,A33,AFF_1:21;
  now
A49: now
      p,q // a9,c9 by A25,A26,A34,AFF_1:5;
      then
A50:  c9,a9 // q,p by AFF_1:4;
A51:  b,a // b,p by A21,AFF_1:def 1;
      set D=Line(b,c);
A52:  b in D by AFF_1:15;
      D is being_line by A40,AFF_1:def 3;
      then consider D9 such that
A53:  c9 in D9 and
A54:  D // D9 by AFF_1:49;
A55:  D9 is being_line by A54,AFF_1:36;
A56:  q in D by A23,AFF_1:def 2;
      assume
A57:  M<>P;
      not D9 // P
      proof
        assume D9 // P;
        then D // P by A54,AFF_1:44;
        then q in P by A11,A52,A56,AFF_1:45;
        hence contradiction by A4,A12,A46,A44,A32,A37,A57,AFF_1:18;
      end;
      then consider d such that
A58:  d in D9 and
A59:  d in P by A4,A55,AFF_1:58;
A60:  c in D by AFF_1:15;
A61:  d<>b9
      proof
        assume d=b9;
        then M=D9 by A45,A46,A44,A33,A53,A55,A58,AFF_1:18;
        then
A62:    D=M by A32,A56,A54,AFF_1:45;
        then LIN c,c9,b by A46,A33,A52,A60,AFF_1:21;
        then
A63:    b in C by A5,A13,A14,A20,AFF_1:25;
        set N=Line(a,c);
        set T=Line(b,a);
A64:    b in T by AFF_1:15;
A65:    c in N by AFF_1:15;
A66:    a in T by AFF_1:15;
A67:    N is being_line by A34,AFF_1:def 3;
A68:    a in N by AFF_1:15;
A69:    a<>a9
        proof
          assume a=a9;
          then LIN a,c,c9 by A25,AFF_1:def 1;
          then c9 in N by AFF_1:def 2;
          then N=C by A5,A13,A14,A20,A67,A65,AFF_1:18;
          hence contradiction by A13,A18,A63,A67,A68,AFF_1:21;
        end;
A70:    T is being_line & p in T by A21,A41,AFF_1:def 2,def 3;
A71:    b<>b9
        proof
A72:      K<>T
          proof
            assume K=T;
            then T=A by A3,A9,A29,A43,A66,A69,AFF_1:18;
            hence contradiction by A3,A4,A6,A8,A10,A11,A16,A64,AFF_1:18;
          end;
          assume b=b9;
          hence contradiction by A29,A47,A28,A35,A64,A70,A72,AFF_1:18;
        end;
        LIN c,c9,b9 by A46,A44,A33,A60,A62,AFF_1:21;
        then b9 in C by A5,A13,A14,A20,AFF_1:25;
        hence contradiction by A4,A5,A7,A11,A12,A63,A71,AFF_1:18;
      end;
      c9,d // q,b by A52,A56,A53,A54,A58,AFF_1:39;
      then d,a9 // b,p by A1,A4,A11,A12,A42,A29,A46,A47,A43,A28,A44,A33,A32,A48
,A57,A59,A61,A50;
      then
A73:  b,a // d,a9 by A27,A51,AFF_1:5;
      b,c // d,c9 by A52,A60,A53,A54,A58,AFF_1:39;
      hence
      thesis by A2,A3,A4,A5,A6,A8,A9,A10,A11,A13,A14,A15,A16,A18,A20,A25,A59
,A73;
    end;
    now
      assume
A74:  M=P;
      LIN b,q,c by A23,AFF_1:6;
      then c in P by A11,A46,A32,A30,A74,AFF_1:25;
      then P=Line(c,c9) by A20,A46,A33,A74,AFF_1:57;
      hence thesis by A5,A10,A13,A14,A20,AFF_1:57;
    end;
    hence thesis by A49;
  end;
  hence thesis;
end;

theorem
  AP is satisfying_DES1_2 implies AP is satisfying_DES1_3
proof
  assume
A1: AP is satisfying_DES1_2;
  let A,P,C,o,a,a9,b,b9,c,c9,p,q;
  assume that
A2: A is being_line and
A3: P is being_line and
A4: C is being_line and
A5: P<>A and
A6: P<>C and
A7: A<>C and
A8: o in A and
A9: a in A and
A10: a9 in A and
A11: b in P and
A12: b9 in P and
A13: o in C and
A14: c in C and
A15: c9 in C and
A16: o<>a and
A17: o<>b and
A18: o<>c and
A19: p<>q and
A20: not LIN b,a,c and
A21: not LIN b9,a9,c9 and
A22: b<>b9 and
A23: a<>a9 and
A24: LIN b,a,p and
A25: LIN b9,a9,p and
A26: LIN b,c,q and
A27: LIN b9,c9,q and
A28: a,c // a9,c9 and
A29: a,c // p,q;
  set D=Line(b,c), K=Line(b9,a9);
  assume
A30: not thesis;
A31: not LIN o,c,a
  proof
    assume LIN o,c,a;
    then a in C by A4,A13,A14,A18,AFF_1:25;
    hence contradiction by A2,A4,A7,A8,A9,A13,A16,AFF_1:18;
  end;
A32: c <>c9
  proof
    assume c =c9;
    then
A33: c,a // c,a9 by A28,AFF_1:4;
    LIN o,a,a9 by A2,A8,A9,A10,AFF_1:21;
    hence contradiction by A23,A31,A33,AFF_1:14;
  end;
  a<>c by A20,AFF_1:7;
  then
A34: a9,c9 // p,q by A28,A29,AFF_1:5;
A35: p<>b & p<>b9 & q<>b & q<>b9
  proof
A36: now
      assume
A37:  b9=q;
      ( not LIN b9,c9,a9)& c9,a9 // q,p by A21,A34,AFF_1:4,6;
      hence contradiction by A19,A25,A37,AFF_1:55;
    end;
A38: now
      assume
A39:  b=q;
      ( not LIN b,c,a)& c,a // q,p by A20,A29,AFF_1:4,6;
      hence contradiction by A19,A24,A39,AFF_1:55;
    end;
    assume not thesis;
    hence contradiction by A20,A21,A26,A27,A29,A34,A38,A36,AFF_1:55;
  end;
A40: b<>c by A20,AFF_1:7;
  then
A41: D is being_line & c in D by AFF_1:24;
A42: b in D by A40,AFF_1:24;
  then
A43: q in D by A26,A40,A41,AFF_1:25;
A44: now
    assume not C // P;
    then consider x such that
A45: x in C and
A46: x in P by A3,A4,AFF_1:58;
A47: x<>c
    proof
A48:  LIN q,b9,c9 & LIN q,b9,b9 by A27,AFF_1:6,7;
      assume
A49:  x=c;
      then LIN b,c,b9 & LIN b,c,c by A3,A11,A12,A46,AFF_1:21;
      then LIN q,b9,c by A26,A40,AFF_1:8;
      then
A50:  b9 in C by A4,A14,A15,A32,A35,A48,AFF_1:8,25;
      then LIN c,c9,q by A3,A4,A6,A12,A14,A27,A46,A49,AFF_1:18;
      then
A51:  q in C by A4,A14,A15,A32,AFF_1:25;
      c =b9 by A3,A4,A6,A12,A14,A46,A49,A50,AFF_1:18;
      then C=D by A4,A14,A35,A41,A43,A51,AFF_1:18;
      hence contradiction by A3,A4,A6,A11,A12,A22,A42,A50,AFF_1:18;
    end;
A52: x<>b
    proof
A53:  LIN q,c9,b9 by A27,AFF_1:6;
      assume
A54:  x=b;
      then q in C by A4,A14,A26,A40,A45,AFF_1:25;
      then q=c9 or b9 in C by A4,A15,A53,AFF_1:25;
      then c9,a9 // c9,p by A3,A4,A6,A11,A12,A22,A34,A45,A54,AFF_1:4,18;
      then LIN c9,a9,p by AFF_1:def 1;
      then
A55:  LIN p,a9,c9 by AFF_1:6;
      LIN p,a9,b9 & LIN p,a9,a9 by A25,AFF_1:6,7;
      then p=a9 by A21,A55,AFF_1:8;
      then LIN a,a9,b by A24,AFF_1:6;
      then b in A by A2,A9,A10,A23,AFF_1:25;
      hence contradiction by A2,A4,A7,A8,A13,A17,A45,A54,AFF_1:18;
    end;
A56: c,a // q,p & c,a // c9,a9 by A28,A29,AFF_1:4;
    ( not LIN b,c,a)& not LIN b9,c9,a9 by A20,A21,AFF_1:6;
    then x in A by A1,A2,A3,A4,A6,A9,A10,A11,A12,A14,A15,A19,A23,A24,A25,A26
,A27,A45,A46,A47,A52,A56;
    hence contradiction by A2,A4,A7,A8,A13,A30,A45,A46,AFF_1:18;
  end;
A57: a<>b by A20,AFF_1:7;
A58: a9<>b9 by A21,AFF_1:7;
  then
A59: a9 in K by AFF_1:24;
A60: K is being_line & b9 in K by A58,AFF_1:24;
  then
A61: p in K by A25,A58,A59,AFF_1:25;
A62: now
    assume not P // A;
    then consider x such that
A63: x in P and
A64: x in A by A2,A3,AFF_1:58;
A65: x<>b
    proof
      assume
A66:  x=b;
      then p in A by A2,A9,A24,A57,A64,AFF_1:25;
      then a9,c9 // a9,q or b9 in A by A2,A10,A34,A60,A59,A61,AFF_1:18;
      then LIN a9,c9,q by A2,A3,A5,A11,A12,A22,A64,A66,AFF_1:18,def 1;
      then
A67:  LIN q,c9,a9 by AFF_1:6;
      LIN q,c9,b9 & LIN q,c9,c9 by A27,AFF_1:6,7;
      then q=c9 by A21,A67,AFF_1:8;
      then LIN c,c9,b by A26,AFF_1:6;
      then b in C by A4,A14,A15,A32,AFF_1:25;
      hence contradiction by A2,A4,A7,A8,A13,A17,A64,A66,AFF_1:18;
    end;
    x<>a
    proof
      assume x=a;
      then p in P & K<>P by A2,A3,A5,A9,A10,A11,A23,A24,A57,A59,A63,AFF_1:18,25
;
      hence contradiction by A3,A12,A35,A60,A61,AFF_1:18;
    end;
    then x in C by A1,A2,A3,A4,A5,A9,A10,A11,A12,A14,A15,A19,A20,A21,A24,A25
,A26,A27,A28,A29,A32,A63,A64,A65;
    hence contradiction by A2,A4,A7,A8,A13,A30,A63,A64,AFF_1:18;
  end;
  not P // A or not C // P
  proof
    assume not thesis;
    then C // A by AFF_1:44;
    hence contradiction by A7,A8,A13,AFF_1:45;
  end;
  hence contradiction by A62,A44;
end;

theorem
  AP is satisfying_DES1_2 implies AP is Desarguesian
proof
  assume
A1: AP is satisfying_DES1_2;
  let A,P,C,o,a,b,c,a9,b9,c9;
  assume that
A2: o in A and
A3: o in P and
A4: o in C and
A5: o<>a and
A6: o<>b and
A7: o<>c and
A8: a in A and
A9: a9 in A and
A10: b in P and
A11: b9 in P and
A12: c in C and
A13: c9 in C and
A14: A is being_line and
A15: P is being_line and
A16: C is being_line and
A17: A<>P and
A18: A<>C and
A19: a,b // a9,b9 and
A20: a,c // a9,c9;
  now
A21: not LIN o,b,a & not LIN o,a,c
    proof
A22:  now
        assume LIN o,a,c;
        then c in A by A2,A5,A8,A14,AFF_1:25;
        hence contradiction by A2,A4,A7,A12,A14,A16,A18,AFF_1:18;
      end;
A23:  now
        assume LIN o,b,a;
        then a in P by A3,A6,A10,A15,AFF_1:25;
        hence contradiction by A2,A3,A5,A8,A14,A15,A17,AFF_1:18;
      end;
      assume not thesis;
      hence thesis by A23,A22;
    end;
A24: b=b9 implies thesis
    proof
A25:  LIN o,c,c9 by A4,A12,A13,A16,AFF_1:21;
A26:  LIN o,a,a9 by A2,A8,A9,A14,AFF_1:21;
      assume
A27:  b=b9;
      then b,a // b,a9 by A19,AFF_1:4;
      then a,c // a,c9 by A20,A21,A26,AFF_1:14;
      then c =c9 by A21,A25,AFF_1:14;
      hence thesis by A27,AFF_1:2;
    end;
A28: a9=o implies thesis
    proof
      assume
A29:  a9=o;
      LIN o,b,b9 & not LIN o,a,b by A3,A10,A11,A15,A21,AFF_1:6,21;
      then
A30:  o=b9 by A19,A29,AFF_1:55;
      LIN o,c,c9 by A4,A12,A13,A16,AFF_1:21;
      then o=c9 by A20,A21,A29,AFF_1:55;
      hence thesis by A30,AFF_1:3;
    end;
A31: c9=o implies thesis
    proof
A32:  c,a // c9,a9 by A20,AFF_1:4;
      assume
A33:  c9=o;
      LIN o,a,a9 & not LIN o,c,a by A2,A8,A9,A14,A21,AFF_1:6,21;
      hence thesis by A28,A33,A32,AFF_1:55;
    end;
    set K=Line(a,c);
A34: a in K by AFF_1:15;
A35: a<>c by A2,A4,A5,A8,A12,A14,A16,A18,AFF_1:18;
    then
A36: K is being_line by AFF_1:def 3;
A37: c in K by AFF_1:15;
A38: a<>b by A2,A3,A5,A8,A10,A14,A15,A17,AFF_1:18;
A39: LIN a,b,c implies thesis
    proof
      consider N such that
A40:  a9 in N and
A41:  K // N by A36,AFF_1:49;
A42:  N is being_line by A41,AFF_1:36;
      a9,c9 // K by A20,A35,AFF_1:29,32;
      then a9,c9 // N by A41,AFF_1:43;
      then
A43:  c9 in N by A40,A42,AFF_1:23;
      assume LIN a,b,c;
      then LIN a,c,b by AFF_1:6;
      then
A44:  b in K by AFF_1:def 2;
      then K=Line(a,b) by A38,A36,A34,AFF_1:57;
      then a9,b9 // K by A19,A38,AFF_1:29,32;
      then a9,b9 // N by A41,AFF_1:43;
      then b9 in N by A40,A42,AFF_1:23;
      hence thesis by A37,A44,A41,A43,AFF_1:39;
    end;
    assume
A45: P<>C;
A46: now
      set T=Line(b9,a9);
      set D=Line(b,a);
      set N=Line(a9,c9);
      assume that
A47:  o<>a9 and
A48:  o<>b9 and
A49:  o<>c9 and
A50:  b<>b9 and
A51:  not LIN a,b,c;
A52:  c9 in N by AFF_1:15;
      assume not b,c // b9,c9;
      then consider q such that
A53:  LIN b,c,q and
A54:  LIN b9,c9,q by AFF_1:60;
      consider M such that
A55:  q in M and
A56:  K // M by A36,AFF_1:49;
A57:  M is being_line by A56,AFF_1:36;
      not a,b // M
      proof
        assume a,b // M;
        then a,b // K by A56,AFF_1:43;
        then b in K by A36,A34,AFF_1:23;
        hence contradiction by A36,A34,A37,A51,AFF_1:21;
      end;
      then consider p such that
A58:  p in M and
A59:  LIN a,b,p by A57,AFF_1:59;
A60:  a9 in N by AFF_1:15;
A61:  p<>q
      proof
A62:    LIN p,b,a & LIN p,b,b by A59,AFF_1:6,7;
        assume
A63:    p=q;
        then LIN p,b,c by A53,AFF_1:6;
        then p=b by A51,A62,AFF_1:8;
        then LIN b,b9,c9 by A54,A63,AFF_1:6;
        then c9 in P by A10,A11,A15,A50,AFF_1:25;
        hence contradiction by A3,A4,A13,A15,A16,A45,A49,AFF_1:18;
      end;
A64:  c,a // q,p by A34,A37,A55,A56,A58,AFF_1:39;
A65:  LIN b,a,p by A59,AFF_1:6;
A66:  b9<>c9 by A3,A4,A11,A13,A15,A16,A45,A48,AFF_1:18;
A67:  a9<>c9 by A2,A4,A9,A13,A14,A16,A18,A47,AFF_1:18;
      then
A68:  N is being_line by AFF_1:def 3;
A69:  K // N by A20,A35,A67,AFF_1:37;
      then
A70:  N // M by A56,AFF_1:44;
A71:  a9<>b9 by A2,A3,A9,A11,A14,A15,A17,A47,AFF_1:18;
A72:  not LIN a9,b9,c9
      proof
        assume LIN a9,b9,c9;
        then LIN a9,c9,b9 by AFF_1:6;
        then b9 in N by AFF_1:def 2;
        then a9,b9 // N by A68,A60,AFF_1:23;
        then
A73:    a9,b9 // K by A69,AFF_1:43;
        a9,b9 // a,b by A19,AFF_1:4;
        then a,b // K by A71,A73,AFF_1:32;
        then b in K by A36,A34,AFF_1:23;
        hence contradiction by A36,A34,A37,A51,AFF_1:21;
      end;
      not b9,p // N
      proof
        assume b9,p // N;
        then b9,p // M by A70,AFF_1:43;
        then p,b9 // M by AFF_1:34;
        then
A74:    b9 in M by A57,A58,AFF_1:23;
A75:    now
          assume
A76:      b9<>q;
          LIN b9,q,c9 by A54,AFF_1:6;
          then c9 in M by A55,A57,A74,A76,AFF_1:25;
          then a9 in N & b9 in N by A52,A70,A74,AFF_1:15,45;
          hence contradiction by A68,A52,A72,AFF_1:21;
        end;
        now
          assume b9=q;
          then LIN b,b9,c by A53,AFF_1:6;
          then c in P by A10,A11,A15,A50,AFF_1:25;
          hence contradiction by A3,A4,A7,A12,A15,A16,A45,AFF_1:18;
        end;
        hence thesis by A75;
      end;
      then consider x such that
A77:  x in N and
A78:  LIN b9,p,x by A68,AFF_1:59;
      set A9=Line(x,a);
A79:  a<>a9
      proof
        assume
A80:    a=a9;
        ( not LIN o,a,b)& LIN o,b,b9 by A3,A10,A11,A15,A21,AFF_1:6,21;
        hence contradiction by A19,A50,A80,AFF_1:14;
      end;
A81:  x<>a
      proof
        assume x=a;
        then a9 in K by A34,A60,A69,A77,AFF_1:45;
        then A=K by A8,A9,A14,A36,A34,A79,AFF_1:18;
        hence contradiction by A2,A4,A7,A12,A14,A16,A18,A37,AFF_1:18;
      end;
      then
A82:  A9 is being_line by AFF_1:def 3;
A83:  c <>c9
      proof
        assume c =c9;
        then
A84:    c,a // c,a9 by A20,AFF_1:4;
        ( not LIN o,c,a)& LIN o,a,a9 by A2,A8,A9,A14,A21,AFF_1:6,21;
        hence contradiction by A79,A84,AFF_1:14;
      end;
A85:  not LIN b9,c9,x
      proof
A86:    now
A87:      now
            assume q=c9;
            then LIN c,c9,b by A53,AFF_1:6;
            then b in C by A12,A13,A16,A83,AFF_1:25;
            hence contradiction by A3,A4,A6,A10,A15,A16,A45,AFF_1:18;
          end;
          assume c9=x;
          then
A88:      LIN b9,c9,p by A78,AFF_1:6;
          LIN b9,c9,c9 by AFF_1:7;
          then c9 in M by A66,A54,A55,A57,A58,A61,A88,AFF_1:8,25;
          then
A89:      q in N by A55,A52,A70,AFF_1:45;
          LIN q,c9,b9 by A54,AFF_1:6;
          then q=c9 or b9 in N by A68,A52,A89,AFF_1:25;
          hence LIN b9,c9,a9 by A68,A60,A52,A87,AFF_1:21;
        end;
        assume LIN b9,c9,x;
        then
A90:    LIN c9,x,b9 by AFF_1:6;
A91:    LIN c9,x,a9 & LIN c9,x,c9 by A68,A60,A52,A77,AFF_1:21;
        then LIN c9,a9,b9 by A90,A86,AFF_1:6,8;
        then c9,a9 // c9,b9 by AFF_1:def 1;
        then a9,c9 // b9,c9 by AFF_1:4;
        then
A92:    a,c // b9,c9 by A20,A67,AFF_1:5;
        c9=x or LIN b9,c9,a9 by A90,A91,AFF_1:8;
        then b9,c9 // b9,a9 by A86,AFF_1:def 1;
        then b9,c9 // a9,b9 by AFF_1:4;
        then b9,c9 // a,b by A19,A71,AFF_1:5;
        then a,c // a,b by A66,A92,AFF_1:5;
        then LIN a,c,b by AFF_1:def 1;
        hence contradiction by A51,AFF_1:6;
      end;
A93:  x in A9 & a in A9 by AFF_1:15;
      A<>K by A2,A4,A7,A12,A14,A16,A18,A37,AFF_1:18;
      then
A94:  A <> N by A8,A34,A69,AFF_1:45;
A95:  not LIN b,c,a by A51,AFF_1:6;
A96:  p in D by A59,AFF_1:def 2;
A97:  D is being_line & b in D by A38,AFF_1:15,def 3;
A98:  LIN b9,x,p by A78,AFF_1:6;
      c,a // c9,x by A34,A37,A52,A69,A77,AFF_1:39;
      then o in A9 by A1,A3,A4,A6,A7,A10,A11,A12,A13,A15,A16,A45,A53,A54,A98
,A81,A82,A93,A61,A85,A64,A95,A65;
      then x in A by A2,A5,A8,A14,A82,A93,AFF_1:18;
      then x=a9 by A9,A14,A68,A60,A77,A94,AFF_1:18;
      then
A99:  a9 in T & p in T by A98,AFF_1:15,def 2;
      D // T by A19,A38,A71,AFF_1:37;
      then a in D & a9 in D by A96,A99,AFF_1:15,45;
      then b in A by A8,A9,A14,A79,A97,AFF_1:18;
      hence contradiction by A2,A3,A6,A10,A14,A15,A17,AFF_1:18;
    end;
    b9=o implies thesis
    proof
      assume
A100: b9=o;
      LIN o,a,a9 & b,a // b9,a9 by A2,A8,A9,A14,A19,AFF_1:4,21;
      hence thesis by A21,A28,A100,AFF_1:55;
    end;
    hence thesis by A28,A31,A39,A24,A46;
  end;
  hence thesis by A10,A11,A12,A13,A15,AFF_1:51;
end;

theorem
  AP is satisfying_DES2_1 implies AP is satisfying_DES2
proof
  assume
A1: AP is satisfying_DES2_1;
  let A,P,C,a,a9,b,b9,c,c9,p,q;
  assume that
A2: A is being_line and
A3: P is being_line and
A4: C is being_line and
A5: A<>P and
A6: A<>C and
A7: P<>C and
A8: a in A and
A9: a9 in A and
A10: b in P and
A11: b9 in P and
A12: c in C and
A13: c9 in C and
A14: A // P and
A15: A // C and
A16: not LIN b,a,c and
A17: not LIN b9,a9,c9 and
A18: p<>q and
A19: a<>a9 and
A20: LIN b,a,p and
A21: LIN b9,a9,p and
A22: LIN b,c,q & LIN b9,c9,q and
A23: a,c // a9,c9;
A24: P // C by A14,A15,AFF_1:44;
  set P9=Line(b9,a9);
A25: p in P9 by A21,AFF_1:def 2;
  a9<>b9 by A17,AFF_1:7;
  then
A26: P9 is being_line by AFF_1:def 3;
  set K=Line(a,c), N=Line(a9,c9), D=Line(b,c), T=Line(b9,c9);
A27: q in D & q in T by A22,AFF_1:def 2;
A28: c9 in N by AFF_1:15;
  b<>c by A16,AFF_1:7;
  then
A29: D is being_line by AFF_1:def 3;
  b9<>c9 by A17,AFF_1:7;
  then
A30: T is being_line by AFF_1:def 3;
A31: a<>c by A16,AFF_1:7;
  then
A32: K is being_line by AFF_1:def 3;
A33: a9<>c9 by A17,AFF_1:7;
  then
A34: N is being_line by AFF_1:def 3;
  then consider M such that
A35: p in M and
A36: N // M by AFF_1:49;
A37: K // N by A23,A31,A33,AFF_1:37;
  then
A38: K // M by A36,AFF_1:44;
A39: c in D by AFF_1:15;
A40: b in D by AFF_1:15;
  set A9=Line(b,a);
A41: p in A9 by A20,AFF_1:def 2;
  a<>b by A16,AFF_1:7;
  then
A42: A9 is being_line by AFF_1:def 3;
A43: c9 in T by AFF_1:15;
A44: b9 in T by AFF_1:15;
A45: a9 in N by AFF_1:15;
A46: a in K by AFF_1:15;
A47: a9 in P9 by AFF_1:15;
A48: b9 in P9 by AFF_1:15;
A49: a in A9 by AFF_1:15;
A50: b in A9 by AFF_1:15;
A51: c in K by AFF_1:15;
  then
A52: K<>A by A6,A12,A15,AFF_1:45;
A53: c <>c9
  proof
    assume c =c9;
    then K=N by A51,A28,A37,AFF_1:45;
    hence contradiction by A2,A8,A9,A19,A32,A46,A45,A52,AFF_1:18;
  end;
A54: D<>T
  proof
    assume D=T;
    then D=C by A4,A12,A13,A29,A39,A43,A53,AFF_1:18;
    hence contradiction by A7,A10,A24,A40,AFF_1:45;
  end;
A55: b<>b9
  proof
A56: A9<>P9
    proof
      assume A9=P9;
      then A9=A by A2,A8,A9,A19,A42,A49,A47,AFF_1:18;
      hence contradiction by A5,A10,A14,A50,AFF_1:45;
    end;
    assume
A57: b=b9;
    then b9=q by A29,A30,A40,A44,A27,A54,AFF_1:18;
    hence contradiction by A18,A42,A26,A50,A41,A48,A25,A57,A56,AFF_1:18;
  end;
A58: M is being_line by A36,AFF_1:36;
A59: now
    assume not T // M;
    then consider x such that
A60: x in T and
A61: x in M by A30,A58,AFF_1:58;
A62: p<>x
    proof
      assume p=x;
      then p=b9 or T=P9 by A30,A44,A26,A48,A25,A60,AFF_1:18;
      then LIN b,b9,a or c9 in P9 by A42,A50,A49,A41,AFF_1:15,21;
      then a in P by A3,A10,A11,A17,A55,AFF_1:25,def 2;
      hence contradiction by A5,A8,A14,AFF_1:45;
    end;
    not b,x // C
    proof
      assume
A63:  b,x // C;
      C // P by A14,A15,AFF_1:44;
      then b,x // P by A63,AFF_1:43;
      then x in P by A3,A10,AFF_1:23;
      then b9 in M or c9 in P by A3,A11,A30,A44,A43,A60,A61,AFF_1:18;
      then b9=p or M=P9 by A7,A13,A24,A26,A48,A25,A35,A58,AFF_1:18,45;
      then LIN b,b9,a or N // P9 by A20,A36,AFF_1:6;
      then a in P or N=P9 by A3,A10,A11,A45,A47,A55,AFF_1:25,45;
      hence contradiction by A5,A8,A14,A17,A28,AFF_1:45,def 2;
    end;
    then consider y such that
A64: y in C and
A65: LIN b,x,y by A4,AFF_1:59;
A66: LIN b,y,x by A65,AFF_1:6;
A67: not LIN b,a,y
    proof
A68:  now
        assume x=p;
        then p=b9 or T=P9 by A30,A44,A26,A48,A25,A60,AFF_1:18;
        then LIN b,b9,a or c9 in P9 by A42,A50,A49,A41,AFF_1:15,21;
        then a in P by A3,A10,A11,A17,A55,AFF_1:25,def 2;
        hence contradiction by A5,A8,A14,AFF_1:45;
      end;
      assume LIN b,a,y;
      then
A69:  LIN b,y,a by AFF_1:6;
      LIN b,y,b by AFF_1:7;
      then b=y or LIN a,b,x by A66,A69,AFF_1:8;
      then x in A9 by A7,A10,A24,A64,AFF_1:45,def 2;
      then x=p or A9=M by A42,A41,A35,A58,A61,AFF_1:18;
      then K=A9 by A46,A49,A38,A68,AFF_1:45;
      hence contradiction by A16,A51,AFF_1:def 2;
    end;
    LIN b9,c9,x & a9,c9 // p,x by A30,A45,A28,A44,A43,A35,A36,A60,A61,AFF_1:21
,39;
    then a9,c9 // a,y by A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A13,A14,A15,A17,A20
,A21,A64,A66,A67,A62;
    then a,c // a,y by A23,A33,AFF_1:5;
    then LIN a,c,y by AFF_1:def 1;
    then y in K by AFF_1:def 2;
    then K=C or y=c by A4,A12,A32,A51,A64,AFF_1:18;
    then a in C or LIN b,c,x by A65,AFF_1:6,15;
    then x in D by A6,A8,A15,AFF_1:45,def 2;
    then q in M or c9 in D by A29,A30,A43,A27,A60,A61,AFF_1:18;
    then a,c // p,q or LIN c,c9,b by A29,A46,A51,A40,A39,A35,A38,AFF_1:21,39;
    then a,c // p,q or b in C by A4,A12,A13,A53,AFF_1:25;
    hence thesis by A7,A10,A24,AFF_1:45;
  end;
A70: now
    assume not M // D;
    then consider x such that
A71: x in M and
A72: x in D by A29,A58,AFF_1:58;
A73: p<>x
    proof
      assume p=x;
      then p=b or D=A9 by A29,A40,A42,A50,A41,A72,AFF_1:18;
      then LIN b,b9,a9 or c in A9 by A26,A48,A47,A25,AFF_1:15,21;
      then a9 in P by A3,A10,A11,A16,A55,AFF_1:25,def 2;
      hence contradiction by A5,A9,A14,AFF_1:45;
    end;
    not b9,x // C
    proof
A74:  now
        assume b=p;
        then LIN b,b9,a9 by A26,A48,A47,A25,AFF_1:21;
        then a9 in P by A3,A10,A11,A55,AFF_1:25;
        hence contradiction by A5,A9,A14,AFF_1:45;
      end;
      assume
A75:  b9,x // C;
      C // P by A14,A15,AFF_1:44;
      then b9,x // P by A75,AFF_1:43;
      then x in P by A3,A11,AFF_1:23;
      then x=b or D=P by A3,A10,A29,A40,A72,AFF_1:18;
      then b=p or M=A9 by A7,A12,A24,A39,A42,A50,A41,A35,A58,A71,AFF_1:18,45;
      then b in K by A46,A50,A49,A38,A74,AFF_1:45;
      hence contradiction by A16,A32,A46,A51,AFF_1:21;
    end;
    then consider y such that
A76: y in C and
A77: LIN b9,x,y by A4,AFF_1:59;
A78: LIN b9,y,x by A77,AFF_1:6;
A79: not LIN b9,a9,y
    proof
A80:  now
        assume x=p;
        then p=b or D=A9 by A29,A40,A42,A50,A41,A72,AFF_1:18;
        then LIN b,b9,a9 or c in A9 by A26,A48,A47,A25,AFF_1:15,21;
        then a9 in P by A3,A10,A11,A16,A55,AFF_1:25,def 2;
        hence contradiction by A5,A9,A14,AFF_1:45;
      end;
      assume LIN b9,a9,y;
      then
A81:  LIN b9,y,a9 by AFF_1:6;
      LIN b9,y,b9 by AFF_1:7;
      then b9=y or LIN a9,b9,x by A78,A81,AFF_1:8;
      then x in P9 by A7,A11,A24,A76,AFF_1:45,def 2;
      then x=p or P9=M by A26,A25,A35,A58,A71,AFF_1:18;
      then N=P9 by A45,A47,A36,A80,AFF_1:45;
      hence contradiction by A17,A28,AFF_1:def 2;
    end;
    LIN b,c,x & a,c // p,x by A29,A46,A51,A40,A39,A35,A38,A71,A72,AFF_1:21,39;
    then a,c // a9,y by A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A14,A15,A16,A20
,A21,A76,A78,A79,A73;
    then a9,y // a9,c9 by A23,A31,AFF_1:5;
    then LIN a9,y,c9 by AFF_1:def 1;
    then LIN a9,c9,y by AFF_1:6;
    then y in N by AFF_1:def 2;
    then N=C or y=c9 by A4,A13,A34,A28,A76,AFF_1:18;
    then a9 in C or LIN b9,c9,x by A77,AFF_1:6,15;
    then x in T by A6,A9,A15,AFF_1:45,def 2;
    then q in M or c9 in D by A29,A30,A43,A27,A71,A72,AFF_1:18;
    then a,c // p,q or LIN c,c9,b by A29,A46,A51,A40,A39,A35,A38,AFF_1:21,39;
    then a,c // p,q or b in C by A4,A12,A13,A53,AFF_1:25;
    hence thesis by A7,A10,A24,AFF_1:45;
  end;
  not M // D or not T // M
  proof
    assume not thesis;
    then T // D by AFF_1:44;
    hence contradiction by A27,A54,AFF_1:45;
  end;
  hence thesis by A70,A59;
end;

theorem
  AP is satisfying_DES2_1 iff AP is satisfying_DES2_3
proof
A1: AP is satisfying_DES2_1 implies AP is satisfying_DES2_3
  proof
    assume
A2: AP is satisfying_DES2_1;
    thus AP is satisfying_DES2_3
    proof
      let A,P,C,a,a9,b,b9,c,c9,p,q;
      assume that
A3:   A is being_line and
A4:   P is being_line and
A5:   C is being_line and
A6:   A<>P and
A7:   A<>C and
A8:   P<>C and
A9:   a in A and
A10:  a9 in A and
A11:  b in P and
A12:  b9 in P and
A13:  c in C and
A14:  c9 in C and
A15:  A // P and
A16:  not LIN b,a,c and
A17:  not LIN b9,a9,c9 and
A18:  p<>q and
A19:  c <>c9 and
A20:  LIN b,a,p and
A21:  LIN b9,a9,p and
A22:  LIN b,c,q and
A23:  LIN b9,c9,q and
A24:  a,c // a9,c9 and
A25:  a,c // p,q;
      now
        set A9=Line(a,c), P9=Line(p,q), C9=Line(a9,c9);
A26:    LIN p,a9,b9 by A21,AFF_1:6;
A27:    a<>c by A16,AFF_1:7;
        then
A28:    A9 is being_line & a in A9 by AFF_1:24;
A29:    q<>c
        proof
          assume
A30:      q=c;
          then c,p // c,a by A25,AFF_1:4;
          then LIN c,p,a by AFF_1:def 1;
          then
A31:      LIN p,a,c by AFF_1:6;
          LIN p,a,b & LIN p,a,a by A20,AFF_1:6,7;
          then a=p by A16,A31,AFF_1:8;
          then LIN a,a9,b9 by A21,AFF_1:6;
          then b9 in A or a=a9 by A3,A9,A10,AFF_1:25;
          then a9,c9 // a9,c by A6,A12,A15,A24,AFF_1:4,45;
          then LIN a9,c9,c by AFF_1:def 1;
          then LIN c,c9,a9 by AFF_1:6;
          then
A32:      a9 in C by A5,A13,A14,A19,AFF_1:25;
          LIN c,c9,b9 by A23,A30,AFF_1:6;
          then b9 in C by A5,A13,A14,A19,AFF_1:25;
          hence contradiction by A5,A14,A17,A32,AFF_1:21;
        end;
A33:    a<>p
        proof
          assume a=p;
          then LIN a,c,q by A25,AFF_1:def 1;
          then
A34:      LIN c,q,a by AFF_1:6;
          LIN c,q,b & LIN c,q,c by A22,AFF_1:6,7;
          hence contradiction by A16,A29,A34,AFF_1:8;
        end;
A35:    a<>a9
        proof
A36:      LIN p,a,b & LIN p,a,a by A20,AFF_1:6,7;
          assume
A37:      a=a9;
          then LIN a,c,c9 by A24,AFF_1:def 1;
          then LIN c,c9,a by AFF_1:6;
          then
A38:      a in C by A5,A13,A14,A19,AFF_1:25;
          LIN p,a,b9 by A21,A37,AFF_1:6;
          then b=b9 or a in P by A4,A11,A12,A33,A36,AFF_1:8,25;
          then
A39:      LIN q,b,c9 by A6,A9,A15,A23,AFF_1:6,45;
          LIN q,b,c & LIN q,b,b by A22,AFF_1:6,7;
          then
A40:      q=b or LIN c,c9,b by A39,AFF_1:8;
          not b in C by A5,A13,A16,A38,AFF_1:21;
          then LIN p,q,a by A5,A13,A14,A19,A20,A40,AFF_1:6,25;
          then p,q // p,a by AFF_1:def 1;
          then a,c // p,a by A18,A25,AFF_1:5;
          then a,c // a,p by AFF_1:4;
          then LIN a,c,p by AFF_1:def 1;
          then
A41:      p in C by A5,A13,A27,A38,AFF_1:25;
          LIN p,a,b by A20,AFF_1:6;
          then b in C by A5,A33,A38,A41,AFF_1:25;
          hence contradiction by A5,A13,A16,A38,AFF_1:21;
        end;
A42:    b<>b9
        proof
A43:      p,q // c,a by A25,AFF_1:4;
A44:      LIN q,b,c & LIN q,b,b by A22,AFF_1:6,7;
A45:      LIN p,b,a & LIN p,b,b by A20,AFF_1:6,7;
          assume
A46:      b=b9;
          then LIN p,b,a9 by A21,AFF_1:6;
          then
A47:      p=b or b in A by A3,A9,A10,A35,A45,AFF_1:8,25;
          LIN q,b,c9 by A23,A46,AFF_1:6;
          then b=q or LIN c,c9,b by A44,AFF_1:8;
          then
A48:      b in C by A5,A6,A11,A13,A14,A15,A18,A19,A47,AFF_1:25,45;
          then q in C by A5,A6,A11,A13,A15,A16,A20,A22,A47,AFF_1:25,45;
          then a in C by A5,A6,A11,A13,A15,A18,A47,A48,A43,AFF_1:45,48;
          hence contradiction by A5,A13,A16,A48,AFF_1:21;
        end;
        then
A49:    a9,a // b9,b by A3,A4,A9,A10,A11,A12,A15,A35,AFF_1:38;
A50:    a9<>c9 by A17,AFF_1:7;
        then
A51:    C9 is being_line by AFF_1:24;
A52:    c9 in C9 by A50,AFF_1:24;
A53:    LIN p,a,b by A20,AFF_1:6;
A54:    not LIN p,a9,a
        proof
          assume LIN p,a9,a;
          then
A55:      LIN p,a,a9 by AFF_1:6;
          LIN p,a,a by AFF_1:7;
          then b in A by A3,A9,A10,A33,A35,A53,A55,AFF_1:8,25;
          hence contradiction by A6,A11,A15,AFF_1:45;
        end;
A56:    LIN q,c9,b9 by A23,AFF_1:6;
A57:    a9 in C9 by A50,AFF_1:24;
A58:    c in A9 by A27,AFF_1:24;
        then
A59:    C9 // A9 by A24,A27,A50,A51,A28,A57,A52,AFF_1:38;
A60:    A9<>C9
        proof
          assume
A61:      A9=C9;
          then LIN a,a9,c9 by A28,A57,A52,AFF_1:21;
          then
A62:      c9 in A by A3,A9,A10,A35,AFF_1:25;
          LIN a,a9,c by A28,A58,A57,A61,AFF_1:21;
          then c in A by A3,A9,A10,A35,AFF_1:25;
          hence contradiction by A3,A5,A7,A13,A14,A19,A62,AFF_1:18;
        end;
A63:    LIN q,c,b by A22,AFF_1:6;
A64:    p in P9 by A18,AFF_1:24;
A65:    A9<>P9
        proof
          assume A9=P9;
          then
A66:      LIN p,a,c & LIN p,a,a by A28,A58,A64,AFF_1:21;
          LIN p,a,b by A20,AFF_1:6;
          hence contradiction by A16,A33,A66,AFF_1:8;
        end;
A67:    P9 is being_line by A18,AFF_1:24;
A68:    P9<>C9
        proof
          assume P9=C9;
          then
A69:      LIN p,a9,c9 & LIN p,a9,a9 by A67,A64,A57,A52,AFF_1:21;
          LIN p,a9,b9 by A21,AFF_1:6;
          then p=a9 by A17,A69,AFF_1:8;
          then LIN a,a9,b by A20,AFF_1:6;
          then b in A by A3,A9,A10,A35,AFF_1:25;
          hence contradiction by A6,A11,A15,AFF_1:45;
        end;
A70:    a9,c9 // p,q by A24,A25,A27,AFF_1:5;
A71:    not LIN q,c9,c
        proof
A72:      now
            assume q=c9;
            then c9,a9 // c9,p by A70,AFF_1:4;
            then LIN c9,a9,p by AFF_1:def 1;
            then p in C9 by A50,A51,A57,A52,AFF_1:25;
            then p=a9 or b9 in C9 by A51,A57,A26,AFF_1:25;
            then LIN a,a9,b by A17,A20,A51,A57,A52,AFF_1:6,21;
            then b in A by A3,A9,A10,A35,AFF_1:25;
            hence contradiction by A6,A11,A15,AFF_1:45;
          end;
          assume
A73:      LIN q,c9,c;
          LIN q,c9,c9 by AFF_1:7;
          then
A74:      b9 in C by A5,A13,A14,A19,A56,A73,A72,AFF_1:8,25;
A75:      LIN q,c,c by AFF_1:7;
          LIN q,c,c9 by A73,AFF_1:6;
          then b in C by A5,A13,A14,A19,A29,A63,A75,AFF_1:8,25;
          hence contradiction by A4,A5,A8,A11,A12,A42,A74,AFF_1:18;
        end;
A76:    q in P9 by A18,AFF_1:24;
        then C9 // P9 by A18,A50,A67,A51,A64,A57,A52,A70,AFF_1:38;
        then a9,a // c9,c by A2,A67,A51,A28,A58,A64,A76,A57,A52,A42,A65,A60,A68
,A59,A49,A53,A26,A63,A56,A54,A71;
        hence thesis by A3,A5,A9,A10,A13,A14,A19,A35,AFF_1:38;
      end;
      hence thesis;
    end;
  end;
  AP is satisfying_DES2_3 implies AP is satisfying_DES2_1
  proof
    assume
A77: AP is satisfying_DES2_3;
    thus AP is satisfying_DES2_1
    proof
      let A,P,C,a,a9,b,b9,c,c9,p,q;
      assume that
A78:  A is being_line and
A79:  P is being_line and
A80:  C is being_line and
A81:  A<>P and
      A<>C and
A82:  P<>C and
A83:  a in A and
A84:  a9 in A and
A85:  b in P and
A86:  b9 in P and
A87:  c in C and
A88:  c9 in C and
A89:  A // P and
A90:  A // C and
A91:  not LIN b,a,c and
A92:  not LIN b9,a9,c9 and
A93:  p<>q and
A94:  LIN b,a,p and
A95:  LIN b9,a9,p and
A96:  LIN b,c,q and
A97:  LIN b9,c9,q and
A98:  a,c // p,q;
A99:  C // P by A89,A90,AFF_1:44;
      then
A100: c,c9 // b,b9 by A85,A86,A87,A88,AFF_1:39;
      assume
A101: not thesis;
A102: q<>c
      proof
        assume
A103:   q=c;
        then c,p // c,a by A98,AFF_1:4;
        then LIN c,p,a by AFF_1:def 1;
        then
A104:   LIN p,a,c by AFF_1:6;
        LIN p,a,b & LIN p,a,a by A94,AFF_1:6,7;
        then a=p by A91,A104,AFF_1:8;
        then LIN a,a9,b9 by A95,AFF_1:6;
        then
A105:   b9 in A or a=a9 by A78,A83,A84,AFF_1:25;
        LIN c,c9,b9 by A97,A103,AFF_1:6;
        then c =c9 or b9 in C by A80,A87,A88,AFF_1:25;
        hence contradiction by A81,A82,A86,A89,A101,A99,A105,AFF_1:2,45;
      end;
A106: a<>p
      proof
        assume a=p;
        then LIN a,c,q by A98,AFF_1:def 1;
        then
A107:   LIN c,q,a by AFF_1:6;
        LIN c,q,b & LIN c,q,c by A96,AFF_1:6,7;
        hence contradiction by A91,A102,A107,AFF_1:8;
      end;
A108: a<>a9
      proof
A109:   LIN p,a,b & LIN p,a,a by A94,AFF_1:6,7;
        assume
A110:   a=a9;
        then LIN p,a,b9 by A95,AFF_1:6;
        then a in P or b=b9 by A79,A85,A86,A106,A109,AFF_1:8,25;
        then
A111:   LIN b,q,c9 by A81,A83,A89,A97,AFF_1:6,45;
        LIN b,q,c & LIN b,q,b by A96,AFF_1:6,7;
        then b=q or c =c9 or b in C by A80,A87,A88,A111,AFF_1:8,25;
        then LIN p,q,a by A82,A85,A94,A101,A99,A110,AFF_1:2,6,45;
        then p,q // p,a by AFF_1:def 1;
        then a,c // p,a by A93,A98,AFF_1:5;
        then a,c // a,p by AFF_1:4;
        then LIN a,c,p by AFF_1:def 1;
        then
A112:   LIN p,a,c by AFF_1:6;
        LIN p,a,b & LIN p,a,a by A94,AFF_1:6,7;
        hence contradiction by A91,A106,A112,AFF_1:8;
      end;
A113: not LIN p,a,a9
      proof
        assume
A114:   LIN p,a,a9;
        LIN p,a,b & LIN p,a,a by A94,AFF_1:6,7;
        then b in A by A78,A83,A84,A106,A108,A114,AFF_1:8,25;
        hence contradiction by A81,A85,A89,AFF_1:45;
      end;
      set A9=Line(a,c), P9=Line(p,q), C9=Line(a9,c9);
A115: a<>c by A91,AFF_1:7;
      then
A116: A9 is being_line by AFF_1:24;
A117: c,c9 // a,a9 & LIN q,c,b by A83,A84,A87,A88,A90,A96,AFF_1:6,39;
A118: LIN p,a9,b9 by A95,AFF_1:6;
A119: a in A9 & c in A9 by A115,AFF_1:24;
A120: b<>b9
      proof
        assume b=b9;
        then
A121:   LIN b,p,a9 by A95,AFF_1:6;
        LIN b,p,a & LIN b,p,b by A94,AFF_1:6,7;
        then
A122:   b=p or b in A by A78,A83,A84,A108,A121,AFF_1:8,25;
        then LIN p,q,c by A81,A85,A89,A96,AFF_1:6,45;
        then p,q // p,c by AFF_1:def 1;
        then a,c // p,c by A93,A98,AFF_1:5;
        then c,a // c,p by AFF_1:4;
        then LIN c,a,p by AFF_1:def 1;
        hence contradiction by A81,A85,A89,A91,A122,AFF_1:6,45;
      end;
A123: not LIN q,c,c9
      proof
        assume
A124:   LIN q,c,c9;
        LIN q,c,b & LIN q,c,c by A96,AFF_1:6,7;
        then c =c9 or b in C by A80,A87,A88,A102,A124,AFF_1:8,25;
        then
A125:   LIN q,c,b9 by A82,A85,A97,A99,AFF_1:6,45;
        LIN q,c,b & LIN q,c,c by A96,AFF_1:6,7;
        then c in P by A79,A85,A86,A102,A120,A125,AFF_1:8,25;
        hence contradiction by A82,A87,A99,AFF_1:45;
      end;
A126: LIN q,c9,b9 & LIN p,a,b by A94,A97,AFF_1:6;
A127: a9<>c9 by A92,AFF_1:7;
      then
A128: C9 is being_line by AFF_1:24;
A129: p in P9 by A93,AFF_1:24;
A130: A9<>P9
      proof
        assume A9=P9;
        then
A131:   LIN p,a,c & LIN p,a,a by A116,A119,A129,AFF_1:21;
        LIN p,a,b by A94,AFF_1:6;
        hence contradiction by A91,A106,A131,AFF_1:8;
      end;
A132: P9 is being_line & q in P9 by A93,AFF_1:24;
      then
A133: A9 // P9 by A93,A98,A115,A116,A119,A129,AFF_1:38;
A134: a9 in C9 & c9 in C9 by A127,AFF_1:24;
      then A9<>C9 by A101,A116,A119,AFF_1:51;
      then A9 // C9 by A77,A127,A116,A128,A119,A129,A132,A134,A100,A133,A130
,A120,A123,A113,A117,A126,A118;
      hence contradiction by A101,A119,A134,AFF_1:39;
    end;
  end;
  hence thesis by A1;
end;

theorem
  AP is satisfying_DES2 iff AP is satisfying_DES2_2
proof
A1: AP is satisfying_DES2 implies AP is satisfying_DES2_2
  proof
    assume
A2: AP is satisfying_DES2;
    thus AP is satisfying_DES2_2
    proof
      let A,P,C,a,a9,b,b9,c,c9,p,q;
      assume that
A3:   A is being_line and
A4:   P is being_line and
A5:   C is being_line and
A6:   A<>P and
A7:   A<>C and
A8:   P<>C and
A9:   a in A & a9 in A and
A10:  b in P & b9 in P and
A11:  c in C and
A12:  c9 in C and
A13:  A // C and
A14:  not LIN b,a,c and
A15:  not LIN b9,a9,c9 and
A16:  p<>q and
A17:  a<>a9 and
A18:  LIN b,a,p and
A19:  LIN b9,a9,p and
A20:  LIN b,c,q and
A21:  LIN b9,c9,q and
A22:  a,c // a9,c9 and
A23:  a,c // p,q;
A24:  LIN q,c9,b9 by A21,AFF_1:6;
A25:  c <>c9
      proof
        assume c =c9;
        then c,a // c,a9 by A22,AFF_1:4;
        then LIN c,a,a9 by AFF_1:def 1;
        then LIN a,a9,c by AFF_1:6;
        then c in A by A3,A9,A17,AFF_1:25;
        hence contradiction by A7,A11,A13,AFF_1:45;
      end;
A26:  b<>b9
      proof
A27:    now
          assume that
A28:      b=p and
          b in C;
          LIN p,q,c by A20,A28,AFF_1:6;
          then p,q // p,c by AFF_1:def 1;
          then a,c // p,c by A16,A23,AFF_1:5;
          then c,a // c,p by AFF_1:4;
          then LIN c,a,p by AFF_1:def 1;
          hence contradiction by A14,A28,AFF_1:6;
        end;
A29:    LIN b,p,a & LIN b,p,b by A18,AFF_1:6,7;
        assume
A30:    b=b9;
        then LIN b,p,a9 by A19,AFF_1:6;
        then
A31:    b=p or b in A by A3,A9,A17,A29,AFF_1:8,25;
A32:    LIN b,q,c & LIN b,q,b by A20,AFF_1:6,7;
        LIN b,q,c9 by A21,A30,AFF_1:6;
        then
A33:    b=q or b in C by A5,A11,A12,A25,A32,AFF_1:8,25;
        then LIN q,p,a by A7,A13,A18,A31,A27,AFF_1:6,45;
        then q,p // q,a by AFF_1:def 1;
        then p,q // q,a by AFF_1:4;
        then a,c // q,a by A16,A23,AFF_1:5;
        then a,c // a,q by AFF_1:4;
        then LIN a,c,q by AFF_1:def 1;
        hence contradiction by A7,A13,A14,A31,A33,A27,AFF_1:6,45;
      end;
A34:  a<>p
      proof
        assume
A35:    a=p;
        then LIN a,c,q by A23,AFF_1:def 1;
        then
A36:    LIN c,q,a by AFF_1:6;
        LIN c,q,b & LIN c,q,c by A20,AFF_1:6,7;
        then q=c by A14,A36,AFF_1:8;
        then LIN c,c9,b9 by A21,AFF_1:6;
        then
A37:    c =c9 or b9 in C by A5,A11,A12,AFF_1:25;
        LIN a,a9,b9 by A19,A35,AFF_1:6;
        then b9 in A by A3,A9,A17,AFF_1:25;
        then c,a // c,a9 by A7,A13,A22,A37,AFF_1:4,45;
        then LIN c,a,a9 by AFF_1:def 1;
        then LIN a,a9,c by AFF_1:6;
        then c in A by A3,A9,A17,AFF_1:25;
        hence contradiction by A7,A11,A13,AFF_1:45;
      end;
A38:  q<>c
      proof
        assume q=c;
        then c,p // c,a by A23,AFF_1:4;
        then LIN c,p,a by AFF_1:def 1;
        then
A39:    LIN p,a,c by AFF_1:6;
        LIN p,a,b & LIN p,a,a by A18,AFF_1:6,7;
        hence contradiction by A14,A34,A39,AFF_1:8;
      end;
A40:  LIN q,c,b by A20,AFF_1:6;
      set A9=Line(a,c), P9=Line(p,q), C9=Line(a9,c9);
A41:  a<>c by A14,AFF_1:7;
      then
A42:  c in A9 by AFF_1:24;
A43:  a9<>p
      proof
        assume
A44:    a9=p;
        a9,c9 // p,q by A22,A23,A41,AFF_1:5;
        then LIN a9,c9,q by A44,AFF_1:def 1;
        then
A45:    LIN c9,q,a9 by AFF_1:6;
        LIN c9,q,b9 & LIN c9,q,c9 by A21,AFF_1:6,7;
        then q=c9 by A15,A45,AFF_1:8;
        then LIN c,c9,b by A20,AFF_1:6;
        then
A46:    b in C by A5,A11,A12,A25,AFF_1:25;
        LIN a,a9,b by A18,A44,AFF_1:6;
        then b in A by A3,A9,A17,AFF_1:25;
        hence contradiction by A7,A13,A46,AFF_1:45;
      end;
A47:  c9<>q
      proof
        assume c9=q;
        then a9,c9 // p,c9 by A22,A23,A41,AFF_1:5;
        then c9,a9 // c9,p by AFF_1:4;
        then LIN c9,a9,p by AFF_1:def 1;
        then
A48:    LIN p,a9,c9 by AFF_1:6;
        LIN p,a9,b9 & LIN p,a9,a9 by A19,AFF_1:6,7;
        hence contradiction by A15,A43,A48,AFF_1:8;
      end;
A49:  not LIN q,c9,c
      proof
A50:    LIN q,c,c by AFF_1:7;
        assume
A51:    LIN q,c9,c;
        LIN q,c9,c9 by AFF_1:7;
        then
A52:    b9 in C by A5,A11,A12,A25,A47,A24,A51,AFF_1:8,25;
        LIN q,c,c9 by A51,AFF_1:6;
        then b in C by A5,A11,A12,A38,A25,A40,A50,AFF_1:8,25;
        hence contradiction by A4,A5,A8,A10,A26,A52,AFF_1:18;
      end;
A53:  LIN p,a,b by A18,AFF_1:6;
A54:  LIN p,a9,b9 by A19,AFF_1:6;
A55:  not LIN p,a9,a
      proof
A56:    LIN p,a,a by AFF_1:7;
        assume
A57:    LIN p,a9,a;
        LIN p,a9,a9 by AFF_1:7;
        then
A58:    b9 in A by A3,A9,A17,A43,A54,A57,AFF_1:8,25;
        LIN p,a,a9 by A57,AFF_1:6;
        then b in A by A3,A9,A17,A34,A53,A56,AFF_1:8,25;
        hence contradiction by A3,A4,A6,A10,A26,A58,AFF_1:18;
      end;
A59:  a9,a // c9,c by A9,A11,A12,A13,AFF_1:39;
A60:  q in P9 by A16,AFF_1:24;
A61:  a9<>c9 by A15,AFF_1:7;
      then
A62:  a9 in C9 by AFF_1:24;
A63:  A9 is being_line & a in A9 by A41,AFF_1:24;
A64:  C9<>A9
      proof
        assume C9=A9;
        then LIN a,a9,c by A63,A42,A62,AFF_1:21;
        then c in A by A3,A9,A17,AFF_1:25;
        hence contradiction by A7,A11,A13,AFF_1:45;
      end;
A65:  p in P9 by A16,AFF_1:24;
A66:  P9<>A9
      proof
        assume P9=A9;
        then
A67:    LIN p,a,c & LIN p,a,a by A63,A42,A65,AFF_1:21;
        LIN p,a,b by A18,AFF_1:6;
        hence contradiction by A14,A34,A67,AFF_1:8;
      end;
A68:  c9 in C9 by A61,AFF_1:24;
A69:  P9 is being_line by A16,AFF_1:24;
A70:  C9<>P9
      proof
        assume C9=P9;
        then
A71:    LIN p,a9,c9 & LIN p,a9,a9 by A69,A65,A62,A68,AFF_1:21;
        LIN p,a9,b9 by A19,AFF_1:6;
        hence contradiction by A15,A43,A71,AFF_1:8;
      end;
A72:  C9 is being_line by A61,AFF_1:24;
      a9,c9 // p,q by A22,A23,A41,AFF_1:5;
      then
A73:  C9 // P9 by A16,A61,A69,A72,A65,A60,A62,A68,AFF_1:38;
      C9 // A9 by A22,A41,A61,A72,A63,A42,A62,A68,AFF_1:38;
      then a9,a // b9,b by A2,A61,A26,A69,A72,A63,A42,A65,A60,A62,A68,A73,A64
,A70,A66,A54,A53,A24,A40,A55,A49,A59;
      hence thesis by A3,A4,A9,A10,A17,A26,AFF_1:38;
    end;
  end;
  AP is satisfying_DES2_2 implies AP is satisfying_DES2
  proof
    assume
A74: AP is satisfying_DES2_2;
    thus AP is satisfying_DES2
    proof
      let A,P,C,a,a9,b,b9,c,c9,p,q;
      assume that
A75:  A is being_line and
      P is being_line and
A76:  C is being_line and
A77:  A<>P and
A78:  A<>C and
A79:  P<>C and
A80:  a in A & a9 in A and
A81:  b in P and
A82:  b9 in P and
A83:  c in C and
A84:  c9 in C and
A85:  A // P and
A86:  A // C and
A87:  not LIN b,a,c and
A88:  not LIN b9,a9,c9 and
A89:  p<>q and
A90:  a<>a9 and
A91:  LIN b,a,p and
A92:  LIN b9,a9,p and
A93:  LIN b,c,q and
A94:  LIN b9,c9,q and
A95:  a,c // a9,c9;
A96:  LIN p,a,b by A91,AFF_1:6;
      set A9=Line(a,c), P9=Line(p,q), C9=Line(a9,c9);
A97:  q in P9 by A89,AFF_1:24;
A98:  a<>p
      proof
        assume a=p;
        then LIN a,a9,b9 by A92,AFF_1:6;
        then b9 in A by A75,A80,A90,AFF_1:25;
        hence contradiction by A77,A82,A85,AFF_1:45;
      end;
A99:  not LIN p,a,a9
      proof
A100:   LIN p,a,a by AFF_1:7;
        assume LIN p,a,a9;
        then b in A by A75,A80,A90,A98,A96,A100,AFF_1:8,25;
        hence contradiction by A77,A81,A85,AFF_1:45;
      end;
A101: LIN q,c9,b9 & LIN p,a9,b9 by A92,A94,AFF_1:6;
A102: a<>c by A87,AFF_1:7;
      then
A103: A9 is being_line by AFF_1:24;
A104: C // P by A85,A86,AFF_1:44;
      then
A105: c,c9 // b,b9 by A81,A82,A83,A84,AFF_1:39;
A106: c <>c9
      proof
        assume c =c9;
        then c,a // c,a9 by A95,AFF_1:4;
        then LIN c,a,a9 by AFF_1:def 1;
        then LIN a,a9,c by AFF_1:6;
        then c in A by A75,A80,A90,AFF_1:25;
        hence contradiction by A78,A83,A86,AFF_1:45;
      end;
A107: b<>b9
      proof
A108:   LIN b,p,a & LIN b,p,b by A91,AFF_1:6,7;
        assume
A109:   b=b9;
        then LIN b,p,a9 by A92,AFF_1:6;
        then
A110:   b=p or b in A by A75,A80,A90,A108,AFF_1:8,25;
A111:   LIN b,q,c & LIN b,q,b by A93,AFF_1:6,7;
        LIN b,q,c9 by A94,A109,AFF_1:6;
        then b=q or b in C by A76,A83,A84,A106,A111,AFF_1:8,25;
        hence contradiction by A77,A79,A81,A85,A89,A104,A110,AFF_1:45;
      end;
A112: a in A9 & c in A9 by A102,AFF_1:24;
A113: P9 is being_line & c,c9 // a,a9 by A80,A83,A84,A86,A89,AFF_1:24,39;
A114: p in P9 by A89,AFF_1:24;
A115: a9<>c9 by A88,AFF_1:7;
      then
A116: a9 in C9 by AFF_1:24;
A117: A9<>C9
      proof
        assume A9=C9;
        then LIN a,a9,c by A103,A112,A116,AFF_1:21;
        then c in A by A75,A80,A90,AFF_1:25;
        hence contradiction by A78,A83,A86,AFF_1:45;
      end;
A118: q<>c
      proof
        assume q=c;
        then LIN c,c9,b9 by A94,AFF_1:6;
        then b9 in C by A76,A83,A84,A106,AFF_1:25;
        hence contradiction by A79,A82,A104,AFF_1:45;
      end;
A119: A9<>P9
      proof
        assume A9=P9;
        then
A120:   LIN c,q,a & LIN c,q,c by A103,A112,A97,AFF_1:21;
        LIN c,q,b by A93,AFF_1:6;
        hence contradiction by A87,A118,A120,AFF_1:8;
      end;
A121: LIN q,c,b by A93,AFF_1:6;
A122: not LIN q,c,c9
      proof
A123:   LIN q,c,c by AFF_1:7;
        assume LIN q,c,c9;
        then b in C by A76,A83,A84,A106,A118,A121,A123,AFF_1:8,25;
        hence contradiction by A79,A81,A104,AFF_1:45;
      end;
A124: C9 is being_line & c9 in C9 by A115,AFF_1:24;
      then A9 // C9 by A95,A102,A115,A103,A112,A116,AFF_1:38;
      then A9 // P9 by A74,A102,A107,A103,A112,A114,A97,A116,A124,A113,A105
,A121,A96,A101,A119,A117,A122,A99;
      hence thesis by A112,A114,A97,AFF_1:39;
    end;
  end;
  hence thesis by A1;
end;

theorem
  AP is satisfying_DES1_3 implies AP is satisfying_DES2_1
proof
  assume
A1: AP is satisfying_DES1_3;
  let A,P,C,a,a9,b,b9,c,c9,p,q such that
A2: A is being_line and
A3: P is being_line and
A4: C is being_line and
A5: A<>P and
A6: A<>C and
A7: P<>C and
A8: a in A and
A9: a9 in A and
A10: b in P and
A11: b9 in P and
A12: c in C and
A13: c9 in C and
A14: A // P and
A15: A // C and
A16: not LIN b,a,c and
A17: not LIN b9,a9,c9 and
A18: p<>q and
A19: LIN b,a,p and
A20: LIN b9,a9,p and
A21: LIN b,c,q and
A22: LIN b9,c9,q and
A23: a,c // p,q;
A24: P // C by A14,A15,AFF_1:44;
  set K=Line(p,q), M=Line(a,c), N=Line(a9,c9);
A25: a<>c by A16,AFF_1:7;
  then
A26: a in M by AFF_1:24;
A27: c,c9 // a,a9 & LIN q,c,b by A8,A9,A12,A13,A15,A21,AFF_1:6,39;
A28: LIN p,a9,b9 by A20,AFF_1:6;
  C // P by A14,A15,AFF_1:44;
  then
A29: c,c9 // b,b9 by A10,A11,A12,A13,AFF_1:39;
A30: LIN q,c9,b9 & LIN p,a,b by A19,A22,AFF_1:6;
A31: c in M by A25,AFF_1:24;
  assume
A32: not thesis;
A33: c <>q
  proof
    assume
A34: c =q;
    then c,a // c,p by A23,AFF_1:4;
    then LIN c,a,p by AFF_1:def 1;
    then
A35: LIN p,a,c by AFF_1:6;
    LIN p,a,b & LIN p,a,a by A19,AFF_1:6,7;
    then p=a by A16,A35,AFF_1:8;
    then LIN a,a9,b9 by A20,AFF_1:6;
    then
A36: a=a9 or b9 in A by A2,A8,A9,AFF_1:25;
    LIN c,c9,b9 by A22,A34,AFF_1:6;
    then c =c9 or b9 in C by A4,A12,A13,AFF_1:25;
    hence contradiction by A5,A7,A11,A14,A32,A24,A36,AFF_1:2,45;
  end;
A37: c <>c9
  proof
A38: now
      assume
A39:  p=b;
      LIN b,q,c by A21,AFF_1:6;
      then b,q // b,c by AFF_1:def 1;
      then a,c // b,c or b=q by A23,A39,AFF_1:5;
      then c,a // c,b by A18,A39,AFF_1:4;
      then LIN c,a,b by AFF_1:def 1;
      hence contradiction by A16,AFF_1:6;
    end;
A40: LIN q,c,b & LIN q,c,c by A21,AFF_1:6,7;
    assume
A41: c =c9;
    then LIN q,c,b9 by A22,AFF_1:6;
    then b=b9 or c in P by A3,A10,A11,A33,A40,AFF_1:8,25;
    then
A42: LIN p,b,a9 by A7,A12,A20,A24,AFF_1:6,45;
    LIN p,b,a & LIN p,b,b by A19,AFF_1:6,7;
    then a=a9 or b in A by A2,A8,A9,A42,A38,AFF_1:8,25;
    hence contradiction by A5,A10,A14,A32,A41,AFF_1:2,45;
  end;
A43: b<>b9
  proof
    assume b=b9;
    then
A44: LIN q,b,c9 by A22,AFF_1:6;
    LIN q,b,c & LIN q,b,b by A21,AFF_1:6,7;
    then
A45: q=b or b in C by A4,A12,A13,A37,A44,AFF_1:8,25;
    b,a // b,p by A19,AFF_1:def 1;
    then a,b // p,b by AFF_1:4;
    then a,c // a,b or p=b by A7,A10,A23,A24,A45,AFF_1:5,45;
    then LIN a,c,b by A7,A10,A18,A24,A45,AFF_1:45,def 1;
    hence contradiction by A16,AFF_1:6;
  end;
A46: not LIN q,c,c9
  proof
    assume
A47: LIN q,c,c9;
    LIN q,c,b & LIN q,c,c by A21,AFF_1:6,7;
    then b in C by A4,A12,A13,A33,A37,A47,AFF_1:8,25;
    hence contradiction by A7,A10,A24,AFF_1:45;
  end;
A48: a9<>c9 by A17,AFF_1:7;
  then
A49: N is being_line by AFF_1:24;
A50: p<>a
  proof
    assume p=a;
    then LIN a,c,q by A23,AFF_1:def 1;
    then
A51: LIN c,q,a by AFF_1:6;
    LIN c,q,b & LIN c,q,c by A21,AFF_1:6,7;
    hence contradiction by A16,A33,A51,AFF_1:8;
  end;
A52: not LIN p,a,a9
  proof
    assume
A53: LIN p,a,a9;
    LIN p,a,b & LIN p,a,a by A19,AFF_1:6,7;
    then a=a9 or b in A by A2,A8,A9,A50,A53,AFF_1:8,25;
    then
A54: LIN p,a,b9 by A5,A10,A14,A20,AFF_1:6,45;
    LIN p,a,b & LIN p,a,a by A19,AFF_1:6,7;
    then a in P by A3,A10,A11,A43,A50,A54,AFF_1:8,25;
    hence contradiction by A5,A8,A14,AFF_1:45;
  end;
A55: M is being_line by A25,AFF_1:24;
A56: K is being_line & q in K by A18,AFF_1:24;
A57: now
    assume M=K;
    then
A58: LIN q,c,a & LIN q,c,c by A56,A26,A31,AFF_1:21;
    LIN q,c,b by A21,AFF_1:6;
    hence contradiction by A16,A33,A58,AFF_1:8;
  end;
A59: c9 in N by A48,AFF_1:24;
A60: a9 in N by A48,AFF_1:24;
  then consider x such that
A61: x in M and
A62: x in N by A32,A55,A49,A26,A31,A59,AFF_1:39,58;
A63: now
    assume x=c;
    then N=C by A4,A12,A13,A37,A49,A59,A62,AFF_1:18;
    hence contradiction by A6,A9,A15,A60,AFF_1:45;
  end;
A64: p in K by A18,AFF_1:24;
  then
A65: M // K by A18,A23,A25,A55,A56,A26,A31,AFF_1:38;
A66: now
    assume x=c9;
    then M=C by A4,A12,A13,A37,A55,A31,A61,AFF_1:18;
    hence contradiction by A6,A8,A15,A26,AFF_1:45;
  end;
  M<>N by A32,A55,A26,A31,A60,A59,AFF_1:51;
  then x in K by A1,A18,A25,A55,A49,A64,A56,A26,A31,A60,A59,A61,A62,A29,A27,A30
,A28,A43,A63,A66,A46,A52;
  hence contradiction by A65,A61,A57,AFF_1:45;
end;