Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 54,315 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 |
(* ========================================================================= *)
(* Computing with finite sets of numerals. *)
(* *)
(* (c) Copyright, Clelia Lomuto, Marco Maggesi, 2009. *)
(* Distributed with HOL Light under same license terms *)
(* *)
(* This file provides some conversions that operate on finite sets of *)
(* numerals represented as a trie-like structure (here called "ntries"). *)
(* *)
(* A concrete syntax for ntries is made available after loading this file. *)
(* *)
(* Examples: *)
(* *)
(* # NTRIE_REDUCE_CONV `%%(10 1001 3) INTER %%(3 7 10) UNION %%(3 100)`;; *)
(* val it : thm = *)
(* |- %%(3 10 1001) INTER %%(3 7 10) UNION %%(3 100) = %%(3 10 100) *)
(* *)
(* NTRIE_REDUCE_CONV *)
(* `%%(10 1001 3) INTER %%(3 7 10) SUBSET %%(10 23) UNION %%(3 33)`;; *)
(* val it : thm = *)
(* |- %%(3 10 1001) INTER %%(3 7 10) SUBSET %%(10 23) UNION %%(3 33) <=> T *)
(* *)
(* The code in this file is divided into three main parts: *)
(* 1. Definitions and theorems. *)
(* 2. Syntax extension for ntries. *)
(* 3. Rules and conversions. *)
(* ========================================================================= *)
(* ========================================================================= *)
(* First part: Definitions and theorems. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Constructors for the ntrie representation of a set of numerals. *)
(* ------------------------------------------------------------------------- *)
let NTRIE = new_definition `NTRIE s:num->bool = s`
and NEMPTY = new_definition `NEMPTY:num->bool = {}`
and NZERO = new_definition `NZERO = {_0}`
and NNODE = new_definition `NNODE s t = IMAGE BIT0 s UNION IMAGE BIT1 t`;;
let NTRIE_RELATIONS = prove
(`NNODE NEMPTY NEMPTY = NEMPTY /\
NNODE NZERO NEMPTY = NZERO`,
REWRITE_TAC[NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Membership. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_IN = prove
(`(!s n. NUMERAL n IN NTRIE s <=> n IN s) /\
(!n. ~(n IN NEMPTY)) /\
(!n. n IN NZERO <=> n = _0) /\
(!s t. _0 IN NNODE s t <=> _0 IN s) /\
(!s t n. BIT0 n IN NNODE s t <=> n IN s) /\
(!s t n. BIT1 n IN NNODE s t <=> n IN t)`,
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Inclusion. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_SUBSET = prove
(`(!s t. NTRIE s SUBSET NTRIE t <=> s SUBSET t) /\
(!s. NEMPTY SUBSET s) /\
(!s:num->bool. s SUBSET s) /\
~(NZERO SUBSET NEMPTY) /\
(!s t. NNODE s t SUBSET NEMPTY <=> s SUBSET NEMPTY /\ t SUBSET NEMPTY) /\
(!s t. NNODE s t SUBSET NZERO <=> s SUBSET NZERO /\ t SUBSET NEMPTY) /\
(!s t. NZERO SUBSET NNODE s t <=> NZERO SUBSET s) /\
(!s1 s2 t1 t2.
NNODE s1 t1 SUBSET NNODE s2 t2 <=> s1 SUBSET s2 /\ t1 SUBSET t2)`,
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE; SUBSET; FORALL_IN_UNION;
FORALL_IN_IMAGE; FORALL_IN_INSERT] THEN
REWRITE_TAC[IN_UNION; IN_IMAGE; IN_INSERT; NOT_IN_EMPTY; ARITH_EQ] THEN
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Equality. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_EQ = prove
(`(!s t. NTRIE s = NTRIE t <=> s = t) /\
~(NZERO = NEMPTY) /\
~(NEMPTY = NZERO) /\
(!s t. NNODE s t = NEMPTY <=> s = NEMPTY /\ t = NEMPTY) /\
(!s t. NEMPTY = NNODE s t <=> s = NEMPTY /\ t = NEMPTY) /\
(!s t. NNODE s t = NZERO <=> s = NZERO /\ t = NEMPTY) /\
(!s t. NZERO = NNODE s t <=> s = NZERO /\ t = NEMPTY) /\
(!s1 s2 t1 t2. NNODE s1 t1 = NNODE s2 t2 <=> s1 = s2 /\ t1 = t2)`,
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; NTRIE_SUBSET; NEMPTY; NZERO] THEN
SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Singleton. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_SING = prove
(`(!n. {NUMERAL n} = NTRIE {n}) /\
{_0} = NZERO /\
(!n. {BIT0 n} = if n = _0 then NZERO else NNODE {n} NEMPTY) /\
(!n. {BIT1 n} = NNODE NEMPTY {n})`,
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN
REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN
ASM_REWRITE_TAC[] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Insertion. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_INSERT = prove
(`(!s n. NUMERAL n INSERT NTRIE s = NTRIE (n INSERT s)) /\
_0 INSERT NEMPTY = NZERO /\
_0 INSERT NZERO = NZERO /\
(!s t. _0 INSERT NNODE s t = NNODE (_0 INSERT s) t) /\
(!n. BIT0 n INSERT NZERO = if n = _0 then NZERO else
NNODE (n INSERT NZERO) NEMPTY) /\
(!n. BIT1 n INSERT NZERO = NNODE NZERO {n}) /\
(!s t n. BIT0 n INSERT NNODE s t = NNODE (n INSERT s) t) /\
(!s t n. BIT1 n INSERT NNODE s t = NNODE s (n INSERT t))`,
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN
REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN
ASM_REWRITE_TAC[] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Union. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_UNION = prove
(`(!s t. NTRIE s UNION NTRIE t = NTRIE (s UNION t)) /\
(!s. s UNION NEMPTY = s) /\
(!s. NEMPTY UNION s = s) /\
NZERO UNION NZERO = NZERO /\
(!s t. NNODE s t UNION NZERO = NNODE (s UNION NZERO) t) /\
(!s t. NZERO UNION NNODE s t = NNODE (s UNION NZERO) t) /\
(!s t r q. NNODE s t UNION NNODE r q = NNODE (s UNION r) (t UNION q))`,
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Intersection. *)
(* Warning: rewriting with this theorem generates ntries which are not *)
(* "reduced". It has to be used in conjuction with NTRIE_RELATIONS. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_INTER = prove
(`(!s t. NTRIE s INTER NTRIE t = NTRIE (s INTER t)) /\
(!s. NEMPTY INTER s = NEMPTY) /\
(!s. s INTER NEMPTY = NEMPTY) /\
NZERO INTER NZERO = NZERO /\
(!s t. NZERO INTER NNODE s t = NZERO INTER s) /\
(!s t. NNODE s t INTER NZERO = NZERO INTER s) /\
(!s1 s2 t1 t2.
NNODE s1 t1 INTER NNODE s2 t2 = NNODE (s1 INTER s2) (t1 INTER t2))`,
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Deletion. *)
(* Warning: rewriting with this theorem generates ntries which are not *)
(* "reduced". It has to be used in conjuction with NTRIE_RELATIONS. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DELETE = prove
(`(!s n. NTRIE s DELETE NUMERAL n = NTRIE (s DELETE n)) /\
(!n. NEMPTY DELETE n = NEMPTY) /\
(!n. NZERO DELETE n = if n = _0 then NEMPTY else NZERO) /\
(!s t. NNODE s t DELETE _0 = NNODE (s DELETE _0) t) /\
(!s t n. NNODE s t DELETE BIT0 n = NNODE (s DELETE n) t) /\
(!s t n. NNODE s t DELETE BIT1 n = NNODE s (t DELETE n))`,
REWRITE_TAC[NUMERAL; NTRIE; NEMPTY; NZERO; NNODE] THEN
REPEAT STRIP_TAC THEN REPEAT COND_CASES_TAC THEN
ASM_REWRITE_TAC[] THEN ASM SET_TAC[ARITH_EQ; ARITH_ZERO]);;
(* ------------------------------------------------------------------------- *)
(* Disjointedness. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DISJOINT = prove
(`(!s t. DISJOINT (NTRIE s) (NTRIE t) <=> DISJOINT s t) /\
(!s. DISJOINT s NEMPTY) /\
(!s. DISJOINT NEMPTY s) /\
~DISJOINT NZERO NZERO /\
(!s t. DISJOINT NZERO (NNODE s t) <=> DISJOINT s NZERO) /\
(!s t. DISJOINT (NNODE s t) NZERO <=> DISJOINT s NZERO) /\
(!s1 s2 t1 t2. DISJOINT (NNODE s1 t1) (NNODE s2 t2) <=>
DISJOINT s1 s2 /\ DISJOINT t1 t2)`,
REWRITE_TAC[NTRIE; DISJOINT; GSYM NEMPTY;
NTRIE_INTER; INTER_ACI; NTRIE_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Difference. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DIFF = prove
(`(!s t. NTRIE s DIFF NTRIE t = NTRIE (s DIFF t)) /\
(!s. NEMPTY DIFF s = NEMPTY) /\
(!s. s DIFF NEMPTY = s) /\
NZERO DIFF NZERO = NEMPTY /\
(!s t. NZERO DIFF NNODE s t = NZERO DIFF s) /\
(!s t. NNODE s t DIFF NZERO = NNODE (s DIFF NZERO) t) /\
(!s1 t1 s2 t2. NNODE s1 t1 DIFF NNODE s2 t2 =
NNODE (s1 DIFF s2) (t1 DIFF t2))`,
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE] THEN SET_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Image. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_IMAGE_DEF = new_definition
`!f:num->A acc s. NTRIE_IMAGE f acc s = IMAGE f s UNION acc`;;
let NTRIE_IMAGE = prove
(`(!f:num->A acc. NTRIE_IMAGE f acc NEMPTY = acc) /\
(!f:num->A acc. NTRIE_IMAGE f acc NZERO = f _0 INSERT acc) /\
(!f:num->A acc s t.
NTRIE_IMAGE f acc (NNODE s t) =
NTRIE_IMAGE (\n. f (BIT1 n)) (NTRIE_IMAGE (\n. f (BIT0 n)) acc s) t)`,
REWRITE_TAC[NTRIE; NEMPTY; NZERO; NNODE; NTRIE_IMAGE_DEF] THEN SET_TAC[]);;
let IMAGE_EQ_NTRIE_IMAGE = prove
(`!f:num->A s. IMAGE f (NTRIE s) = NTRIE_IMAGE (\n. f (NUMERAL n)) {} s`,
REWRITE_TAC [NUMERAL; NTRIE; ETA_AX; NTRIE_IMAGE_DEF; UNION_EMPTY]);;
(* ------------------------------------------------------------------------- *)
(* Constructor and destructor for ntries. *)
(* ------------------------------------------------------------------------- *)
let [NTRIE_tm; NEMPTY_tm; NZERO_tm; NNODE_tm] =
let f = fst o strip_comb o lhs o snd o strip_forall o concl in
map f [NTRIE; NEMPTY; NZERO; NNODE];;
let mk_nnode = mk_binop NNODE_tm;;
let mk_small_ntrie =
let rec mk_sing n =
if n == 0 then NZERO_tm else
let r,d = n mod 2,n / 2 in
let tm = mk_sing d in
if r == 0
then mk_nnode tm NEMPTY_tm
else mk_nnode NEMPTY_tm tm in
let rec part ((el,ol) as acc) =
function
[] -> acc
| h::t -> let acc = let r,d = h mod 2,h / 2 in
if r = 0 then (d::el,ol) else (el,d::ol) in
part acc t in
let rec recur =
function
[] -> NEMPTY_tm
| [n] -> mk_sing n
| m::(n::_ as t) when n == m -> recur t
| s -> let evens,odds = part ([],[]) s in
mk_nnode (recur evens) (recur odds) in
fun tm -> mk_comb(NTRIE_tm,recur tm);;
let mk_ntrie =
let rec mk_sing n =
if n =/ num_0 then NZERO_tm else
let r,d = mod_num n num_2,quo_num n num_2 in
let tm = mk_sing d in
if r =/ num_0
then mk_nnode tm NEMPTY_tm
else mk_nnode NEMPTY_tm tm in
let rec part ((el,ol) as acc) =
function
[] -> acc
| h::t -> let acc = let r,d = mod_num h num_2,quo_num h num_2 in
if r =/ num_0 then (d::el,ol) else (el,d::ol) in
part acc t in
let rec recur =
function
[] -> NEMPTY_tm
| [n] -> mk_sing n
| m::(n::_ as t) when n =/ m -> recur t
| s -> let evens,odds = part ([],[]) s in
mk_nnode (recur evens) (recur odds) in
fun tm -> mk_comb(NTRIE_tm,recur tm);;
(* ========================================================================= *)
(* Second part: Syntax extension for ntries. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Destructor for ntries. *)
(* ------------------------------------------------------------------------- *)
let mk_numset tm = mk_setenum(tm,`:num`);;
let dest_small_ntrie,dest_ntrie =
let ntrie_strip_tag =
function
Comb(Const("NTRIE",_),tm) -> tm
| _ -> failwith "ntrie_strip_tag" in
let dest_small_ntrie tm =
let rec runk n =
function
[] -> n
| h::t -> let d = 2*n in runk (if h then d+1 else d) t in
let rec recur acc k =
function
Const("NEMPTY",_) -> acc
| Const("NZERO",_) -> runk 0 k::acc
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
recur (recur acc (false::k) stm) (true::k) ttm
| _ -> failwith "malformed ntrie" in
recur [] [] (ntrie_strip_tag tm) in
let dest_ntrie tm =
let rec runk n =
function
[] -> n
| h::t -> let d = num_2 */ n in runk (if h then d +/ num_1 else d) t in
let rec recur acc k =
function
Const("NEMPTY",_) -> acc
| Const("NZERO",_) -> runk num_0 k::acc
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
recur (recur acc (false::k) stm) (true::k) ttm
| _ -> failwith "malformed ntrie" in
recur [] [] (ntrie_strip_tag tm) in
dest_small_ntrie,dest_ntrie;;
(* ------------------------------------------------------------------------- *)
(* Printer. *)
(* ------------------------------------------------------------------------- *)
let pp_print_ntrie =
let print_num fmt n = pp_print_string fmt (string_of_num n) in
let print_nums fmt =
let rec loop =
function
[] -> ()
| h::t -> pp_print_space fmt (); print_num fmt h; loop t
in
function
[] -> ()
| h::t -> print_num fmt h; loop t in
let print fmt tm =
let l = sort (</) (dest_ntrie tm) in
pp_open_box fmt 0; pp_print_string fmt "%%(";
pp_open_box fmt 0; print_nums fmt l; pp_close_box fmt ();
pp_print_string fmt ")"; pp_close_box fmt () in
fun fmt ->
function
Comb(Const("NTRIE",_),_) as tm -> print fmt tm
| _ -> failwith "print_ntrie";;
let print_ntrie = pp_print_ntrie std_formatter
and string_of_ntrie = print_to_string pp_print_ntrie;;
install_user_printer("ntrie",pp_print_ntrie);;
(* ------------------------------------------------------------------------- *)
(* Parser. *)
(* ------------------------------------------------------------------------- *)
reserve_words["%%"];;
let preparse_ntrie,parse_ntrie =
let NTRIE_ptm = Varp("NTRIE",dpty)
and NEMPTY_ptm = Varp("NEMPTY",dpty)
and NZERO_ptm = Varp("NZERO",dpty)
and NNODE_ptm = Varp("NNODE",dpty) in
let pmk_nnode ptm1 ptm2 = Combp(Combp(NNODE_ptm,ptm1),ptm2) in
let pmk_ntrie =
let rec pmk_sing n =
if n =/ num_0 then NZERO_ptm else
let r,d = mod_num n num_2,quo_num n num_2 in
let tm = pmk_sing d in
if r =/ num_0
then pmk_nnode tm NEMPTY_ptm
else pmk_nnode NEMPTY_ptm tm in
let rec part ((el,ol) as acc) =
function
[] -> acc
| h::t -> let acc = let r,d = mod_num h num_2,quo_num h num_2 in
if r = num_0 then (d::el,ol) else (el,d::ol) in
part acc t in
let rec recur =
function
[] -> NEMPTY_ptm
| [n] -> pmk_sing n
| m::(n::_ as t) when n =/ m -> recur t
| s -> let evens,odds = part ([],[]) s in
pmk_nnode (recur evens) (recur odds) in
fun tm -> Combp(NTRIE_ptm,recur tm) in
let parse_int =
function
Ident s::rest ->
let n = try num_of_string s with Failure _ -> raise Noparse in
n,rest
| _ -> raise Noparse in
let parse_ints = many parse_int >> pmk_ntrie in
let preparse_ntrie =
((a(Resword "%%") ++ a(Resword "(") ++ parse_ints) >> snd) ++
a(Resword ")") >> fst in
let parse_ntrie s =
let ptm,l = (preparse_ntrie o lex o explode) s in
if l = [] then term_of_preterm (retypecheck [] ptm) else
failwith "Unparsed input following term" in
preparse_ntrie,parse_ntrie;;
install_parser("ntrie",preparse_ntrie);;
(* ========================================================================= *)
(* Third part: Rules and conversions. *)
(* ========================================================================= *)
module Ntrie_conversions = struct
(* ------------------------------------------------------------------------- *)
(* Basic definitions, handy tools and other preliminaries. *)
(* ------------------------------------------------------------------------- *)
let Comb(NUMERAL_tm,(Comb(BIT0_tm,Comb(BIT1_tm,zero_tm)))) =
lhand(concl TWO)
let comb_numeral tm = mk_comb(NUMERAL_tm,tm)
let mk_bit0 tm = if tm = zero_tm then tm else mk_comb(BIT0_tm,tm)
and mk_bit1 tm = mk_comb(BIT1_tm,tm)
and ntrie_ty = type_of NEMPTY_tm
let neg_tm = `(~)`
and eq_tm = `(=):(num->bool)->(num->bool)->bool`
and iff_tm = `(=):bool->bool->bool`
and conj_tm = `(/\):bool->bool->bool`
and IN_tm = `(IN):num->(num->bool)->bool`
and EMPTY_tm = `{}:num->bool`
and SUBSET_tm = `(SUBSET):(num->bool)->(num->bool)->bool`
and PSUBSET_tm = `(PSUBSET):(num->bool)->(num->bool)->bool`
and DISJOINT_tm = `(DISJOINT):(num->bool)->(num->bool)->bool`
and INSERT_tm = `(INSERT):num->(num->bool)->(num->bool)`
and UNION_tm = `(UNION):(num->bool)->(num->bool)->(num->bool)`
and INTER_tm = `(INTER):(num->bool)->(num->bool)->(num->bool)`
and DELETE_tm = `(DELETE):(num->bool)->num->(num->bool)`
and DIFF_tm = `(DIFF):(num->bool)->(num->bool)->(num->bool)`
let [svar;svar1;svar2;tvar;tvar1;tvar2] =
map (fun s -> mk_var(s,ntrie_ty)) ["s";"s1";"s2";"t";"t1";"t2"]
and nvar = `n:num`
let STANDARDIZE =
let ilist =
map (fun x -> x,x)
[NEMPTY_tm; NZERO_tm; NNODE_tm; NTRIE_tm; IN_tm; eq_tm; SUBSET_tm;
PSUBSET_tm; DISJOINT_tm; INSERT_tm; UNION_tm; INTER_tm; DELETE_tm;
DIFF_tm; neg_tm; iff_tm; conj_tm; BIT0_tm; BIT1_tm; zero_tm;
nvar; svar; svar1; svar2; tvar; tvar1; tvar2] in
let rec replace tm =
match tm with
Var(_,_) | Const(_,_) -> rev_assocd tm ilist tm
| Comb(s,t) -> mk_comb(replace s,replace t)
| Abs(_,_) -> failwith "replace" in
fun th -> let tm' = replace (concl th) in EQ_MP (REFL tm') th
(* ------------------------------------------------------------------------- *)
(* Well-formed (and minimal) ntries. *)
(* ------------------------------------------------------------------------- *)
let wellformed =
let rec visit =
function
Const("NEMPTY",_) -> ()
| Const("NZERO",_) -> ()
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
( match stm,ttm with
Const("NEMPTY",_),Const("NEMPTY",_) |
Const("NZERO",_),Const("NEMPTY",_) -> fail()
| _ -> visit stm; visit ttm )
| _ -> fail() in
function
Comb(Const("NTRIE",_),tm) -> can visit tm
| _ -> false
(* ------------------------------------------------------------------------- *)
(* Membership. *)
(* ------------------------------------------------------------------------- *)
let NUM_NZ_RULE,NTRIE_ZERO_IN_RULE,NTRIE_CHOOSE_RULE,NTRIE_IN_CONV =
let rec NUM_NZ_RULE =
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove)
(`~(BIT1 n = _0) /\
(~(n = _0) <=> ~(BIT0 n = _0))`,
REWRITE_TAC[ARITH_EQ]) in
function
Comb(Const("BIT1",_),ntm) -> INST [ntm,nvar] pth1
| Comb(Const("BIT0",_),ntm) ->
let rth = NUM_NZ_RULE ntm
and pth = INST [ntm,nvar] pth2 in
EQ_MP pth rth
| _ -> failwith "NUM_NZ_RULE" in
let [zine_nth;zinx_pth;ine_nth;zinn_pth;pth4;pth5;pth6;pth7] =
(CONJUNCTS o STANDARDIZE o prove)
(`~(_0 IN NEMPTY) /\
_0 IN NZERO /\
~(n IN NEMPTY) /\
(_0 IN s <=> _0 IN NNODE s t) /\
(n IN s <=> BIT0 n IN NNODE s t) /\
(n IN t <=> BIT1 n IN NNODE s t) /\
~(BIT1 n IN NZERO) /\
(~(n = _0) <=> ~(BIT0 n IN NZERO))`,
REWRITE_TAC[NTRIE_IN; ARITH_EQ]) in
let [zinn_nth;npth4;npth5] =
map (AP_TERM neg_tm) [zinn_pth;pth4;pth5] in
let rec NTRIE_ZERO_IN_RULE : term -> bool * thm =
function
Const("NEMPTY",_) -> false,zine_nth
| Const("NZERO",_) -> true,zinx_pth
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
let b,rth = NTRIE_ZERO_IN_RULE stm in
let pth = if b then zinn_pth else zinn_nth in
b,EQ_MP (INST [stm,svar; ttm,tvar] pth) rth
| _ -> failwith "Malformed ntrie" in
let rec NTRIE_CHOOSE_RULE =
function
Const("NEMPTY",_) -> failwith "Empty ntrie"
| Const("NZERO",_) -> zinx_pth
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
( try let rth = NTRIE_CHOOSE_RULE ttm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth5 in
EQ_MP pth rth
with Failure _ ->
let rth = NTRIE_CHOOSE_RULE stm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth4 in
EQ_MP pth rth )
| _ -> failwith "Malformed ntrie" in
let NTRIE_IN_CONV : conv =
let rec NTRIE_IN_RULE : term * term -> bool * thm =
function
Const("_0",_),stm -> NTRIE_ZERO_IN_RULE stm
| ntm,Const("NEMPTY",_) -> false,INST [ntm,nvar] ine_nth
| Comb(Const("BIT1",_),ntm),Const("NZERO",_) ->
false,INST [ntm,nvar] pth6
| Comb(Const("BIT0",_),ntm),Const("NZERO",_) ->
let rth = NUM_NZ_RULE ntm in
false,EQ_MP (INST [ntm,nvar] pth7) rth
| Comb(Const("BIT0",_),ntm),Comb(Comb(Const("NNODE",_),stm),ttm) ->
let b,rth = NTRIE_IN_RULE(ntm,stm) in
let pth = if b then pth4 else npth4 in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth in
b,EQ_MP pth rth
| Comb(Const("BIT1",_),ntm),Comb(Comb(Const("NNODE",_),stm),ttm) ->
let b,rth = NTRIE_IN_RULE(ntm,ttm) in
let pth = if b then pth5 else npth5 in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth in
b,EQ_MP pth rth
| _ -> failwith "NTRIE_IN_RULE" in
let NTRIE_IN_CONV : conv =
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove)
(`(n IN s <=> (NUMERAL n IN NTRIE s <=> T)) /\
(~(n IN s) <=> (NUMERAL n IN NTRIE s <=> F))`,
REWRITE_TAC[NUMERAL;NTRIE]) in
function
Comb(Comb(Const("IN",_),Comb(Const("NUMERAL",_),ntm)),
Comb(Const("NTRIE",_),stm)) ->
let b,rth = NTRIE_IN_RULE(ntm,stm) in
let pth = if b then pth1 else pth2 in
EQ_MP (INST [ntm,nvar; stm,svar] pth) rth
| _ -> failwith "NTRIE_IN_CONV" in
NTRIE_IN_CONV in
NUM_NZ_RULE,NTRIE_ZERO_IN_RULE,NTRIE_CHOOSE_RULE,NTRIE_IN_CONV
(* ------------------------------------------------------------------------- *)
(* Inclusion. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_SUBSET_CONV : conv =
let [sub_refl_pth; esube_pth; xsubx_pth; esubx_pth; esub_pth; xsube_nth;
sube_nth; xsubn_pth; xsubn_nth; nsubx_pth; nsubx_nth1; nsubx_nth2;
nsubn_pth; nsubn_nth1; nsubn_nth2] =
(CONJUNCTS o STANDARDIZE o prove)
(`s SUBSET s /\
NEMPTY SUBSET NEMPTY /\
NZERO SUBSET NZERO /\
NEMPTY SUBSET NZERO /\
NEMPTY SUBSET t /\
~(NZERO SUBSET NEMPTY) /\
(n IN s ==> ~(s SUBSET NEMPTY)) /\
(NZERO SUBSET s <=> NZERO SUBSET NNODE s t) /\
(~(NZERO SUBSET s) <=> ~(NZERO SUBSET NNODE s t)) /\
(s SUBSET NZERO <=> NNODE s NEMPTY SUBSET NZERO) /\
(~(s SUBSET NZERO) <=> ~(NNODE s NEMPTY SUBSET NZERO)) /\
(n IN t ==> ~(NNODE s t SUBSET NZERO)) /\
(s1 SUBSET s2 /\ t1 SUBSET t2 <=> NNODE s1 t1 SUBSET NNODE s2 t2) /\
(~(s1 SUBSET s2) ==> ~(NNODE s1 t1 SUBSET NNODE s2 t2)) /\
(~(t1 SUBSET t2) ==> ~(NNODE s1 t1 SUBSET NNODE s2 t2))`,
SIMP_TAC[NTRIE_SUBSET] THEN REWRITE_TAC[NEMPTY] THEN SET_TAC[]) in
let rec NTRIE_NZERO_SUBSET_RULE =
function
Const("NEMPTY",_) -> false,xsube_nth
| Const("NZERO",_) -> true,xsubx_pth
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
let b,rth = NTRIE_NZERO_SUBSET_RULE stm in
let pth = if b then xsubn_pth else xsubn_nth in
b,EQ_MP (INST [stm,svar; ttm,tvar] pth) rth
| _ -> failwith "Malformed ntrie" in
let rec NTRIE_SUBSET_NZERO_RULE =
function
Const("NEMPTY",_) -> true,esubx_pth
| Const("NZERO",_) -> true,xsubx_pth
| Comb(Comb(Const("NNODE",_),stm),Const("NEMPTY",_)) ->
let b,rth = NTRIE_SUBSET_NZERO_RULE stm in
let pth = if b then nsubx_pth else nsubx_nth1 in
b,EQ_MP (INST [stm,svar] pth) rth
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
let rth = NTRIE_CHOOSE_RULE ttm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] nsubx_nth2 in
false,MP pth rth
| _ -> failwith "Malformed ntrie" in
let rec NTRIE_SUBSET_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> true,esube_pth
| Const("NEMPTY",_),Const("NZERO",_) -> true,esubx_pth
| Const("NEMPTY",_),ttm -> true,INST [ttm,tvar] esub_pth
| stm,Const("NEMPTY",_) ->
let rth = NTRIE_CHOOSE_RULE stm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] sube_nth in
false,MP pth rth
| Const("NZERO",_),ttm -> NTRIE_NZERO_SUBSET_RULE ttm
| stm,Const("NZERO",_) -> NTRIE_SUBSET_NZERO_RULE stm
| stm,ttm when stm = ttm -> true,INST [stm,svar] sub_refl_pth
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let b1,rth1 = NTRIE_SUBSET_RULE (stm1,stm2) in
let pinst = INST[stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in
if not b1 then false,MP (pinst nsubn_nth1) rth1 else
let b2,rth2 = NTRIE_SUBSET_RULE (ttm1,ttm2) in
if not b2 then false,MP (pinst nsubn_nth2) rth2 else
true,EQ_MP (pinst nsubn_pth) (CONJ rth1 rth2)
| _ -> failwith "Malformed ntrie" in
let NTRIE_SUBSET_CONV : conv =
let pth_sub_eqt,pth_sub_eqf = (CONJ_PAIR o STANDARDIZE o prove)
(`(s SUBSET t <=> (NTRIE s SUBSET NTRIE t <=> T)) /\
(~(s SUBSET t) <=> (NTRIE s SUBSET NTRIE t <=> F))`,
REWRITE_TAC[NTRIE]) in
function
Comb(Comb(Const("SUBSET",_),Comb(Const("NTRIE",_),stm)),
Comb(Const("NTRIE",_),ttm)) ->
let b,rth = NTRIE_SUBSET_RULE(stm,ttm) in
let pth = if b then pth_sub_eqt else pth_sub_eqf in
EQ_MP (INST [stm,svar; ttm,tvar] pth) rth
| _ -> failwith "NTRIE_SUBSET_CONV" in
NTRIE_SUBSET_CONV
(* ------------------------------------------------------------------------- *)
(* Equality. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_EQ_CONV : conv =
let [eq_refl_pth;eeqe_pth;xeqx_pth;eeqx_nth;xeqe_nth;eqe_nth;eeq_nth;
eqx_nth1;eqx_nth2;neqn_pth;neqn_nth1;neqn_nth2] =
(CONJUNCTS o STANDARDIZE o prove)
(`s = s /\
NEMPTY = NEMPTY /\
NZERO = NZERO /\
~(NEMPTY = NZERO) /\
~(NZERO = NEMPTY) /\
(n IN s ==> ~(s = NEMPTY)) /\
(n IN t ==> ~(NEMPTY = t)) /\
(~(n = _0) ==> n IN s ==> ~(s = NZERO)) /\
(~(n = _0) ==> n IN t ==> ~(NZERO = t)) /\
(s1 = s2 /\ t1 = t2 <=> NNODE s1 t1 = NNODE s2 t2) /\
(~(s1 = s2) ==> ~(NNODE s1 t1 = NNODE s2 t2)) /\
(~(t1 = t2) ==> ~(NNODE s1 t1 = NNODE s2 t2))`,
SIMP_TAC[NTRIE_EQ] THEN SET_TAC[NEMPTY; NZERO]) in
let rec NTRIE_EQ_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> true,eeqe_pth
| Const("NZERO",_),Const("NZERO",_) -> true,xeqx_pth
| Const("NEMPTY",_),Const("NZERO",_) -> false,eeqx_nth
| Const("NZERO",_),Const("NEMPTY",_) -> false,xeqe_nth
| stm,Const("NEMPTY",_) ->
let rth = NTRIE_CHOOSE_RULE stm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] eqe_nth in
false,MP pth rth
| Const("NEMPTY",_),ttm ->
let rth = NTRIE_CHOOSE_RULE ttm in
let ntm = lhand(concl rth) in
let pth = INST [ntm,nvar; ttm,tvar] eeq_nth in
false,MP pth rth
| stm,Const("NZERO",_) ->
let rth = NTRIE_CHOOSE_RULE stm in
let ntm = lhand(concl rth) in
let zth = NUM_NZ_RULE ntm in
let pth = INST [ntm,nvar; stm,svar] eqx_nth1 in
false,MP (MP pth zth) rth
| Const("NZERO",_),ttm ->
let rth = NTRIE_CHOOSE_RULE ttm in
let ntm = lhand(concl rth) in
let zth = NUM_NZ_RULE ntm in
let pth = INST [ntm,nvar; ttm,tvar] eqx_nth2 in
false,MP (MP pth zth) rth
| stm,ttm when stm = ttm -> true,INST [stm,svar] eq_refl_pth
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let b1,rth1 = NTRIE_EQ_RULE(stm1,stm2) in
let pinst = INST[stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in
if not b1 then false,MP (pinst neqn_nth1) rth1 else
let b2,rth2 = NTRIE_EQ_RULE(ttm1,ttm2) in
if not b2 then false,MP (pinst neqn_nth2) rth2 else
failwith "Malformed ntrie"
| _ -> failwith "Malformed ntrie" in
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove)
(`(s = t <=> (NTRIE s = NTRIE t <=> T)) /\
(~(s = t) <=> (NTRIE s = NTRIE t <=> F))`,
REWRITE_TAC[NTRIE]) in
function
Comb(Comb(Const("=",_),Comb(Const("NTRIE",_),stm)),
Comb(Const("NTRIE",_),ttm)) ->
let b,rth = NTRIE_EQ_RULE(stm,ttm) in
let pth = if b then pth1 else pth2 in
EQ_MP (INST [stm,svar; ttm,tvar] pth) rth
| _ -> failwith "NTRIE_SUBSET_CONV"
(* ------------------------------------------------------------------------- *)
(* Singleton. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_SING_RULE,NTRIE_SING_CONV =
let [pth0;pth1;pth2;pth3] = (CONJUNCTS o STANDARDIZE o prove)
(`({n} = s <=> ({NUMERAL n} = NTRIE s)) /\
({_0} = NZERO) /\
({n} = s ==> {BIT0 n} = NNODE s NEMPTY) /\
({n} = s <=> {BIT1 n} = NNODE NEMPTY s)`,
REWRITE_TAC[NTRIE_SING; NTRIE; NTRIE_EQ] THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[NTRIE_EQ] THEN MESON_TAC[NZERO]) in
let rec NTRIE_SING_RULE =
function
Const("_0",_) -> pth1
| Comb(Const("BIT0",_),ntm) ->
let rth = NTRIE_SING_RULE ntm in
let stm = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] pth2 in
MP pth rth
| Comb(Const("BIT1",_),ntm) ->
let rth = NTRIE_SING_RULE ntm in
let stm = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] pth3 in
EQ_MP pth rth
| _ -> failwith "Malformed numeral" in
let NTRIE_SING_CONV : conv =
function
Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)),
Const("EMPTY",_)) ->
let rth = NTRIE_SING_RULE ntm in
let stm = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] pth0 in
EQ_MP pth rth
| _ -> failwith "NTRIE_SING_CONV" in
NTRIE_SING_RULE,NTRIE_SING_CONV
(* ------------------------------------------------------------------------- *)
(* Insertion. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_INSERT_RULE,NTRIE_INSERT_CONV =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8] =
(CONJUNCTS o STANDARDIZE o prove)
(`(n INSERT s = t <=> NUMERAL n INSERT NTRIE s = NTRIE t) /\
({n} = s <=> n INSERT NEMPTY = s) /\
(_0 INSERT NEMPTY = NZERO) /\
(_0 INSERT NZERO = NZERO) /\
(_0 INSERT s = s1 <=> _0 INSERT NNODE s t = NNODE s1 t) /\
(n INSERT NZERO = t <=> BIT0 n INSERT NZERO = NNODE t NEMPTY) /\
({n} = t <=> BIT1 n INSERT NZERO = NNODE NZERO t) /\
(n INSERT s = s1 <=> BIT0 n INSERT NNODE s t = NNODE s1 t) /\
(n INSERT t = t1 <=> BIT1 n INSERT NNODE s t = NNODE s t1)`,
REWRITE_TAC[NTRIE_INSERT; NTRIE_EQ] THEN REPEAT COND_CASES_TAC THEN
ASM_REWRITE_TAC[NTRIE_INSERT; NTRIE_EQ] THEN
MESON_TAC[NEMPTY; NZERO]) in
let rec NTRIE_INSERT_RULE =
function
Const("_0",_),Const("NEMPTY",_) -> pth2
| Const("_0",_),Const("NZERO",_) -> pth3
| Const("_0",_),Comb(Comb(Const("NNODE",_),stm),ttm) ->
let rth = NTRIE_INSERT_RULE(zero_tm,stm) in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; ttm,tvar; stm1,svar1] pth4 in
EQ_MP pth rth
| ntm,Const("NEMPTY",_) ->
let rth = NTRIE_SING_RULE ntm in
let stm = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar] pth1 in
EQ_MP pth rth
| Comb(Const("BIT0",_),ntm),Const("NZERO",_) ->
let rth = NTRIE_INSERT_RULE(ntm,NZERO_tm) in
let ttm = rand(concl rth) in
let pth = INST [ntm,nvar; ttm,tvar] pth5 in
EQ_MP pth rth
| Comb(Const("BIT1",_),ntm),Const("NZERO",_) ->
let rth = NTRIE_SING_RULE ntm in
let ttm = rand(concl rth) in
let pth = INST [ntm,nvar; ttm,tvar] pth6 in
EQ_MP pth rth
| Comb(Const("BIT0",_),ntm),
Comb(Comb(Const("NNODE",_),stm),ttm) ->
let rth = NTRIE_INSERT_RULE(ntm,stm) in
let stm1 = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar; stm1,svar1] pth7 in
EQ_MP pth rth
| Comb(Const("BIT1",_),ntm),
Comb(Comb(Const("NNODE",_),stm),ttm) ->
let rth = NTRIE_INSERT_RULE(ntm,ttm) in
let ttm1 = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar; ttm1,tvar1] pth8 in
EQ_MP pth rth
| _ -> failwith "Malformed ntrie or numeral" in
let NTRIE_INSERT_CONV : conv =
function
Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)),
Comb(Const("NTRIE",_),stm)) ->
let rth = NTRIE_INSERT_RULE(ntm,stm) in
let ttm = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar] pth0 in
EQ_MP pth rth
| _ -> failwith "NTRIE_INSERT_CONV" in
NTRIE_INSERT_RULE,NTRIE_INSERT_CONV
(* ------------------------------------------------------------------------- *)
(* Union. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_UNION_CONV : conv =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9] =
(CONJUNCTS o STANDARDIZE o prove)
(`(s1 UNION s2 = s <=> NTRIE s1 UNION NTRIE s2 = NTRIE s) /\
NEMPTY UNION NEMPTY = NEMPTY /\
NEMPTY UNION NZERO = NZERO /\
NZERO UNION NEMPTY = NZERO /\
NZERO UNION NZERO = NZERO /\
(s UNION NEMPTY = s) /\
(NEMPTY UNION t = t) /\
(s UNION NZERO = s1 <=> NNODE s t UNION NZERO = NNODE s1 t) /\
(s UNION NZERO = s1 <=> NZERO UNION NNODE s t = NNODE s1 t) /\
(s1 UNION s2 = s /\ t1 UNION t2 = t <=>
NNODE s1 t1 UNION NNODE s2 t2 = NNODE s t)`,
REPEAT STRIP_TAC THEN TRY EQ_TAC THEN
REPEAT (FIRST_X_ASSUM SUBST_VAR_TAC) THEN
REWRITE_TAC[NTRIE_UNION; NTRIE; NTRIE_EQ]) in
let rec NTRIE_UNION_NZERO =
function
Const("NEMPTY",_) -> pth2
| Const("NZERO",_) -> pth4
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
NTRIE_NNODE_UNION_NZERO (stm,ttm)
| _ -> failwith "Malformed ntrie"
and NTRIE_NNODE_UNION_NZERO (stm,ttm) =
let rth = NTRIE_UNION_NZERO stm in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth7 in
EQ_MP pth rth
and NTRIE_NZERO_UNION_NNODE (stm,ttm) =
let rth = NTRIE_UNION_NZERO stm in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth8 in
EQ_MP pth rth in
let rec NTRIE_UNION_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> pth1
| Const("NEMPTY",_),Const("NZERO",_) -> pth2
| Const("NZERO",_),Const("NEMPTY",_) -> pth3
| Const("NZERO",_),Const("NZERO",_) -> pth4
| stm,Const("NEMPTY",_) -> INST [stm,svar] pth5
| Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth6
| Comb(Comb(Const("NNODE",_),stm),ttm),Const("NZERO",_) ->
NTRIE_NNODE_UNION_NZERO (stm,ttm)
| Const("NZERO",_),Comb(Comb(Const("NNODE",_),stm),ttm) ->
NTRIE_NZERO_UNION_NNODE (stm,ttm)
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let rth1 = NTRIE_UNION_RULE(stm1,stm2)
and rth2 = NTRIE_UNION_RULE(ttm1,ttm2) in
let stm = rand(concl rth1)
and ttm = rand(concl rth2) in
let pth = INST [stm,svar; stm1,svar1; stm2,svar2;
ttm,tvar; ttm1,tvar1; ttm2,tvar2]
pth9 in
EQ_MP pth (CONJ rth1 rth2)
| _ -> failwith "Malformed ntrie" in
let NTRIE_UNION_CONV : conv =
function
Comb(Comb(Const("UNION",_),Comb(Const("NTRIE",_),stm1)),
Comb(Const("NTRIE",_),stm2)) ->
let rth = NTRIE_UNION_RULE(stm1,stm2) in
let stm = rand(concl rth) in
EQ_MP (INST [stm,svar; stm1,svar1; stm2,svar2] pth0) rth
| _ -> failwith "NTRIE_UNION_CONV" in
NTRIE_UNION_CONV
(* ------------------------------------------------------------------------- *)
(* Intersection. *)
(* ------------------------------------------------------------------------- *)
let MK_NNODE_RULE =
let pth0,pth1 = (CONJ_PAIR o STANDARDIZE o prove)
(`NNODE NEMPTY NEMPTY = NEMPTY /\
NNODE NZERO NEMPTY = NZERO`,
REWRITE_TAC[NTRIE_EQ]) in
function
Const("NEMPTY",_),Const("NEMPTY",_) -> pth0
| Const("NZERO",_),Const("NEMPTY",_) -> pth1
| _ -> failwith "MK_NNODE_RULE"
let NTRIE_INTER_CONV : conv =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9;npth9;pth10] =
(CONJUNCTS o STANDARDIZE o prove)
(`(s1 INTER s2 = s <=> NTRIE s1 INTER NTRIE s2 = NTRIE s) /\
NEMPTY INTER NEMPTY = NEMPTY /\
NEMPTY INTER NZERO = NEMPTY /\
NZERO INTER NEMPTY = NEMPTY /\
s INTER NEMPTY = NEMPTY /\
NEMPTY INTER t = NEMPTY /\
NZERO INTER NZERO = NZERO /\
(s INTER NZERO = s1 <=> NNODE s t INTER NZERO = s1) /\
(s INTER NZERO = s1 <=> NZERO INTER NNODE s t = s1) /\
(_0 IN t <=> NZERO INTER t = NZERO) /\
(~(_0 IN t) <=> NZERO INTER t = NEMPTY) /\
(s1 INTER s2 = s /\ t1 INTER t2 = t <=>
NNODE s1 t1 INTER NNODE s2 t2 = NNODE s t)`,
REWRITE_TAC[NTRIE_INTER; NTRIE_EQ; NTRIE; NZERO; NEMPTY] THEN SET_TAC[]) in
let rec NTRIE_INTER_NZERO =
function
Const("NEMPTY",_) -> pth2
| Const("NZERO",_) -> pth6
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
NTRIE_NNODE_INTER_NZERO (stm,ttm)
| _ -> failwith "Malformed ntrie"
and NTRIE_NNODE_INTER_NZERO (stm,ttm) =
let rth = NTRIE_INTER_NZERO stm in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth7 in
EQ_MP pth rth
and NTRIE_NZERO_INTER_NNODE (stm,ttm) =
let rth = NTRIE_INTER_NZERO stm in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth8 in
EQ_MP pth rth in
let rec NTRIE_INTER_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> pth1
| Const("NEMPTY",_),Const("NZERO",_) -> pth2
| Const("NZERO",_),Const("NEMPTY",_) -> pth3
| Const("NZERO",_),Const("NZERO",_) -> pth6
| stm,Const("NEMPTY",_) -> INST [stm,svar] pth4
| Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth5
| Comb(Comb(Const("NNODE",_),stm),ttm),Const("NZERO",_) ->
NTRIE_NNODE_INTER_NZERO(stm,ttm)
| Const("NZERO",_),Comb(Comb(Const("NNODE",_),stm),ttm) ->
NTRIE_NZERO_INTER_NNODE(stm,ttm)
| Const("NZERO",_),ttm ->
let b,rth = NTRIE_ZERO_IN_RULE ttm in
let pth = if b then pth9 else npth9 in
EQ_MP (INST [ttm,tvar] pth) rth
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let rth1 = NTRIE_INTER_RULE(stm1,stm2)
and rth2 = NTRIE_INTER_RULE(ttm1,ttm2) in
let stm = rand(concl rth1)
and ttm = rand(concl rth2) in
let pth = INST [stm,svar; stm1,svar1; stm2,svar2;
ttm,tvar; ttm1,tvar1; ttm2,tvar2]
pth10 in
let th = EQ_MP pth (CONJ rth1 rth2) in
( try TRANS th (MK_NNODE_RULE(stm,ttm))
with Failure _ -> th )
| _ -> failwith "Malformed ntrie" in
let NTRIE_INTER_CONV : conv =
function
Comb(Comb(Const("INTER",_),Comb(Const("NTRIE",_),stm1)),
Comb(Const("NTRIE",_),stm2)) ->
let rth = NTRIE_INTER_RULE(stm1,stm2) in
let stm = rand(concl rth) in
EQ_MP (INST [stm,svar; stm1,svar1; stm2,svar2] pth0) rth
| _ -> failwith "NTRIE_INTER_CONV" in
NTRIE_INTER_CONV
(* ------------------------------------------------------------------------- *)
(* Deletion. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DELETE_ZERO,NTRIE_NNODE_DELETE_ZERO,NTRIE_DELETE_CONV =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8] =
(CONJUNCTS o STANDARDIZE o prove)
(`(s DELETE n = t <=> NTRIE s DELETE NUMERAL n = NTRIE t) /\
NEMPTY DELETE _0 = NEMPTY /\
NEMPTY DELETE n = NEMPTY /\
NZERO DELETE _0 = NEMPTY /\
(~(n = _0) <=> NZERO DELETE BIT0 n = NZERO) /\
NZERO DELETE BIT1 n = NZERO /\
(s DELETE _0 = s1 <=> NNODE s t DELETE _0 = NNODE s1 t) /\
(s DELETE n = s1 <=> NNODE s t DELETE BIT0 n = NNODE s1 t) /\
(t DELETE n = t1 <=> NNODE s t DELETE BIT1 n = NNODE s t1)`,
REWRITE_TAC[NTRIE_DELETE; ARITH_EQ; NTRIE] THEN
MESON_TAC[NTRIE_EQ; NTRIE_DELETE]) in
let rec NTRIE_DELETE_ZERO =
function
Const("NEMPTY",_) -> pth1
| Const("NZERO",_) -> pth3
| Comb(Comb(Const("NNODE",_),stm),ttm) ->
NTRIE_NNODE_DELETE_ZERO(stm,ttm)
| _ -> failwith "Malformed ntrie"
and NTRIE_NNODE_DELETE_ZERO (stm,ttm) =
let rth = NTRIE_DELETE_ZERO stm in
let stm1 = rand(concl rth) in
let pth = INST [stm,svar; stm1,svar1; ttm,tvar] pth6 in
EQ_MP pth rth in
let NTRIE_DELETE_CONV : conv =
let rec NTRIE_DELETE_RULE =
function
Const("NEMPTY",_),Const("_0",_) -> pth1
| Const("NEMPTY",_),ntm -> INST [ntm,nvar] pth2
| Const("NZERO",_),Const("_0",_) -> pth3
| Comb(Comb(Const("NNODE",_),stm),ttm),Const("_0",_) ->
NTRIE_NNODE_DELETE_ZERO(stm,ttm)
| Const("NZERO",_),Comb(Const("BIT0",_),ntm) ->
let rth = NUM_NZ_RULE ntm in
EQ_MP (INST [ntm,nvar] pth4) rth
| Const("NZERO",_),Comb(Const("BIT1",_),ntm) -> INST [ntm,nvar] pth5
| Comb(Comb(Const("NNODE",_),stm),ttm),Comb(Const("BIT0",_),ntm) ->
let rth = NTRIE_DELETE_RULE(stm,ntm) in
let stm1 = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; stm1,svar1; ttm,tvar] pth7 in
let th = EQ_MP pth rth in
( try TRANS th (MK_NNODE_RULE(stm1,ttm)) with Failure _ -> th )
| Comb(Comb(Const("NNODE",_),stm),ttm),Comb(Const("BIT1",_),ntm) ->
let rth = NTRIE_DELETE_RULE(ttm,ntm) in
let ttm1 = rand(concl rth) in
let pth = INST [ntm,nvar; stm,svar; ttm,tvar; ttm1,tvar1] pth8 in
let th = EQ_MP pth rth in
( try TRANS th (MK_NNODE_RULE(stm,ttm1)) with Failure _ -> th )
| _ -> failwith "Malformed ntrie" in
function
Comb(Comb(Const("DELETE",_),Comb(Const("NTRIE",_),stm)),
Comb(Const("NUMERAL",_),ntm)) ->
let rth = NTRIE_DELETE_RULE(stm,ntm) in
let ttm = rand(concl rth) in
EQ_MP (INST [ntm,nvar; stm,svar; ttm,tvar] pth0) rth
| _ -> failwith "NTRIE_DELETE_CONV" in
NTRIE_DELETE_ZERO,NTRIE_NNODE_DELETE_ZERO,NTRIE_DELETE_CONV
(* ------------------------------------------------------------------------- *)
(* Disjointedness. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DISJOINT_CONV : conv =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9;pth10;pth11;pth12] =
(CONJUNCTS o STANDARDIZE o prove)
(`DISJOINT NEMPTY NEMPTY /\
DISJOINT NEMPTY NZERO /\
DISJOINT NZERO NEMPTY /\
~DISJOINT NZERO NZERO /\
DISJOINT s NEMPTY /\
DISJOINT NEMPTY t /\
(_0 IN s <=> ~DISJOINT s NZERO) /\
(~(_0 IN s) <=> DISJOINT s NZERO) /\
(_0 IN t <=> ~DISJOINT NZERO t) /\
(~(_0 IN t) <=> DISJOINT NZERO t) /\
(DISJOINT s1 s2 /\ DISJOINT t1 t2 <=>
DISJOINT (NNODE s1 t1) (NNODE s2 t2)) /\
(~DISJOINT s1 s2 ==> ~DISJOINT (NNODE s1 t1) (NNODE s2 t2)) /\
(~DISJOINT t1 t2 ==> ~DISJOINT (NNODE s1 t1) (NNODE s2 t2))`,
SIMP_TAC[NTRIE_DISJOINT] THEN REWRITE_TAC[NZERO] THEN SET_TAC[]) in
let rec NTRIE_DISJOINT_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> true,pth0
| Const("NEMPTY",_),Const("NZERO",_) -> true,pth1
| Const("NZERO",_),Const("NEMPTY",_) -> true,pth2
| Const("NZERO",_),Const("NZERO",_) -> false,pth3
| stm,Const("NEMPTY",_) -> true,INST [stm,svar] pth4
| Const("NEMPTY",_),ttm -> true,INST [ttm,tvar] pth5
| stm,Const("NZERO",_) ->
let b,rth = NTRIE_ZERO_IN_RULE stm in
let pinst = INST [stm,svar] in
let pth = pinst (if b then pth6 else pth7) in
not b,EQ_MP pth rth
| Const("NZERO",_),ttm ->
let b,rth = NTRIE_ZERO_IN_RULE ttm in
let pinst = INST [ttm,tvar] in
let pth = pinst (if b then pth8 else pth9) in
not b,EQ_MP pth rth
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let b1,rth1 = NTRIE_DISJOINT_RULE (stm1,stm2) in
let pinst = INST [stm1,svar1; stm2,svar2; ttm1,tvar1; ttm2,tvar2] in
if not b1 then false,MP (pinst pth11) rth1 else
let b2,rth2 = NTRIE_DISJOINT_RULE (ttm1,ttm2) in
if not b2 then false,MP (pinst pth12) rth2 else
true,EQ_MP (pinst pth10) (CONJ rth1 rth2)
| _ -> failwith "Malformed ntrie" in
let pth1,pth2 = (CONJ_PAIR o STANDARDIZE o prove)
(`(DISJOINT s t <=> (DISJOINT (NTRIE s) (NTRIE t) <=> T)) /\
(~DISJOINT s t <=> (DISJOINT (NTRIE s) (NTRIE t) <=> F))`,
REWRITE_TAC[NTRIE]) in
function
Comb(Comb(Const("DISJOINT",_),Comb(Const("NTRIE",_),stm)),
Comb(Const("NTRIE",_),ttm)) ->
let b,rth = NTRIE_DISJOINT_RULE(stm,ttm) in
let pth = if b then pth1 else pth2 in
EQ_MP (INST [stm,svar; ttm,tvar] pth) rth
| _ -> failwith "NTRIE_DISJOINT_CONV"
(* ------------------------------------------------------------------------- *)
(* Set difference. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_DIFF_CONV : conv =
let [pth0;pth1;pth2;pth3;pth4;pth5;pth6;pth7;pth8;pth9] =
(CONJUNCTS o STANDARDIZE o prove)
(`NEMPTY DIFF NEMPTY = NEMPTY /\
NEMPTY DIFF NZERO = NEMPTY /\
NZERO DIFF NEMPTY = NZERO /\
NZERO DIFF NZERO = NEMPTY /\
NEMPTY DIFF t = NEMPTY /\
s DIFF NEMPTY = s /\
s DIFF NZERO = s DELETE _0 /\
(_0 IN t <=> NZERO DIFF t = NEMPTY) /\
(~(_0 IN t) <=> NZERO DIFF t = NZERO) /\
(s1 DIFF s2 = s /\ t1 DIFF t2 = t <=>
NNODE s1 t1 DIFF NNODE s2 t2 = NNODE s t)`,
REWRITE_TAC[NTRIE_DIFF; NTRIE_EQ] THEN
REWRITE_TAC[NZERO; NEMPTY] THEN SET_TAC[]) in
let rec NTRIE_DIFF_RULE =
function
Const("NEMPTY",_),Const("NEMPTY",_) -> pth0
| Const("NEMPTY",_),Const("NZERO",_) -> pth1
| Const("NZERO",_),Const("NEMPTY",_) -> pth2
| Const("NZERO",_),Const("NZERO",_) -> pth3
| stm,Const("NEMPTY",_) -> INST [stm,svar] pth5
| Const("NEMPTY",_),ttm -> INST [ttm,tvar] pth4
| stm,Const("NZERO",_) ->
let rth = NTRIE_DELETE_ZERO stm in
let pth = INST [stm,svar] pth6 in
TRANS pth rth
| Const("NZERO",_),ttm ->
let b,rth = NTRIE_ZERO_IN_RULE ttm in
let pinst = INST [ttm,tvar] in
let pth = pinst(if b then pth7 else pth8) in
EQ_MP pth rth
| Comb(Comb(Const("NNODE",_),stm1),ttm1),
Comb(Comb(Const("NNODE",_),stm2),ttm2) ->
let rth1 = NTRIE_DIFF_RULE(stm1,stm2)
and rth2 = NTRIE_DIFF_RULE(ttm1,ttm2) in
let stm = rand(concl rth1)
and ttm = rand(concl rth2) in
let pth = INST [stm,svar; stm1,svar1; stm2,svar2;
ttm,tvar; ttm1,tvar1; ttm2,tvar2]
pth9 in
let th = EQ_MP pth (CONJ rth1 rth2) in
( try TRANS th (MK_NNODE_RULE(stm,ttm)) with Failure _ -> th )
| _ -> failwith "Malformed ntrie" in
let pth = (STANDARDIZE o prove)
(`(s DIFF t = s1 <=> NTRIE s DIFF NTRIE t = NTRIE s1)`,
REWRITE_TAC[NTRIE]) in
function
Comb(Comb(Const("DIFF",_),Comb(Const("NTRIE",_),stm)),
Comb(Const("NTRIE",_),ttm)) ->
let rth = NTRIE_DIFF_RULE(stm,ttm) in
let rtm = rand(concl rth) in
EQ_MP (INST [stm,svar; ttm,tvar; rtm,svar1] pth) rth
| _ -> failwith "NTRIE_DIFF_CONV"
(* ------------------------------------------------------------------------- *)
(* Encoding from and decoding to set enumerations. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_ENCODE_CONV : conv =
let [pth0;pth1;pth2] = (CONJUNCTS o STANDARDIZE o prove)
(`{} = NEMPTY /\
s = NTRIE s /\
(INSERT) (NUMERAL n) = (INSERT) n`,
REWRITE_TAC[NTRIE; NEMPTY; NUMERAL]) in
let rec NTRIE_ENC_CONV : conv =
function
Const("EMPTY",ty) when ty = ntrie_ty -> pth0
| Comb(Comb(Const("INSERT",_),Comb(Const("NUMERAL",_),ntm)),stm) ->
let rth1 = NTRIE_ENC_CONV stm in
let ttm = rand(concl rth1) in
let rth2 = MK_COMB ((INST [ntm,nvar] pth2),rth1) in
TRANS rth2 (NTRIE_INSERT_RULE (ntm,ttm))
| _ -> failwith "NTRIE_ENC_CONV" in
fun tm ->
let rth = NTRIE_ENC_CONV tm in
let stm = rand(concl rth) in
TRANS rth (INST [stm,svar] pth1);;
let NTRIE_DECODE_CONV : conv =
fun tm ->
let l = dest_small_ntrie tm in
let tm' = mk_numset (map mk_small_numeral (sort (<) l)) in
SYM (NTRIE_ENCODE_CONV tm');;
end
let NTRIE_IN_CONV : conv = Ntrie_conversions.NTRIE_IN_CONV
and NTRIE_SUBSET_CONV : conv = Ntrie_conversions.NTRIE_SUBSET_CONV
and NTRIE_EQ_CONV : conv = Ntrie_conversions.NTRIE_EQ_CONV
and NTRIE_SING_CONV : conv = Ntrie_conversions.NTRIE_SING_CONV
and NTRIE_INSERT_CONV : conv = Ntrie_conversions.NTRIE_INSERT_CONV
and NTRIE_UNION_CONV : conv = Ntrie_conversions.NTRIE_UNION_CONV
and NTRIE_INTER_CONV : conv = Ntrie_conversions.NTRIE_INTER_CONV
and NTRIE_DELETE_CONV : conv = Ntrie_conversions.NTRIE_DELETE_CONV
and NTRIE_DISJOINT_CONV : conv = Ntrie_conversions.NTRIE_DISJOINT_CONV
and NTRIE_DIFF_CONV : conv = Ntrie_conversions.NTRIE_DIFF_CONV
and NTRIE_ENCODE_CONV : conv = Ntrie_conversions.NTRIE_ENCODE_CONV
and NTRIE_DECODE_CONV : conv = Ntrie_conversions.NTRIE_DECODE_CONV;;
(* ------------------------------------------------------------------------- *)
(* Final hack-together. *)
(* ------------------------------------------------------------------------- *)
let NTRIE_REL_CONV : conv =
let gconv_net = itlist (uncurry net_of_conv)
[`NTRIE s = NTRIE t`, NTRIE_EQ_CONV;
`NTRIE s SUBSET NTRIE t`, NTRIE_SUBSET_CONV;
`DISJOINT (NTRIE s) (NTRIE t)`, NTRIE_DISJOINT_CONV;
`NUMERAL n IN NTRIE s`, NTRIE_IN_CONV]
(basic_net()) in
REWRITES_CONV gconv_net;;
let NTRIE_RED_CONV : conv =
let gconv_net = itlist (uncurry net_of_conv)
[`NTRIE s = NTRIE t`, NTRIE_EQ_CONV;
`NTRIE s SUBSET NTRIE t`, NTRIE_SUBSET_CONV;
`DISJOINT (NTRIE s) (NTRIE t)`, NTRIE_DISJOINT_CONV;
`NUMERAL n IN NTRIE s`, NTRIE_IN_CONV;
`NUMERAL n INSERT NTRIE s`, NTRIE_INSERT_CONV;
`NTRIE s UNION NTRIE t`, NTRIE_UNION_CONV;
`NTRIE s INTER NTRIE t`, NTRIE_INTER_CONV;
`NTRIE s DELETE NUMERAL n`, NTRIE_DELETE_CONV;
`NTRIE s DIFF NTRIE t`, NTRIE_DIFF_CONV]
(basic_net()) in
REWRITES_CONV gconv_net;;
let NTRIE_REDUCE_CONV = DEPTH_CONV NTRIE_RED_CONV;;
let NTRIE_REDUCE_TAC = CONV_TAC NTRIE_REDUCE_CONV;;
|