Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 57,518 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 |
(* ========================================================================= *)
(* Some geometric notions in real^N. *)
(* ========================================================================= *)
needs "Multivariate/realanalysis.ml";;
prioritize_vector();;
(* ------------------------------------------------------------------------- *)
(* Pythagoras's theorem is almost immediate. *)
(* ------------------------------------------------------------------------- *)
let PYTHAGORAS = prove
(`!A B C:real^N.
orthogonal (A - B) (C - B)
==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`,
REWRITE_TAC[NORM_POW_2; orthogonal; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN
CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Angle between vectors (always 0 <= angle <= pi). *)
(* ------------------------------------------------------------------------- *)
let vector_angle = new_definition
`vector_angle x y = if x = vec 0 \/ y = vec 0 then pi / &2
else acs((x dot y) / (norm x * norm y))`;;
let VECTOR_ANGLE_LINEAR_IMAGE_EQ = prove
(`!f x y. linear f /\ (!x. norm(f x) = norm x)
==> (vector_angle (f x) (f y) = vector_angle x y)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[vector_angle; GSYM NORM_EQ_0] THEN
ASM_MESON_TAC[PRESERVES_NORM_PRESERVES_DOT]);;
add_linear_invariants [VECTOR_ANGLE_LINEAR_IMAGE_EQ];;
let VECTOR_ANGLE_ORTHOGONAL_TRANSFORMATION = prove
(`!f x y:real^N.
orthogonal_transformation f
==> vector_angle (f x) (f y) = vector_angle x y`,
REWRITE_TAC[ORTHOGONAL_TRANSFORMATION; VECTOR_ANGLE_LINEAR_IMAGE_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Basic properties of vector angles. *)
(* ------------------------------------------------------------------------- *)
let VECTOR_ANGLE_REFL = prove
(`!x. vector_angle x x = if x = vec 0 then pi / &2 else &0`,
GEN_TAC THEN REWRITE_TAC[vector_angle; DISJ_ACI] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM NORM_POW_2; REAL_POW_2] THEN
ASM_SIMP_TAC[REAL_DIV_REFL; REAL_ENTIRE; NORM_EQ_0; ACS_1]);;
let VECTOR_ANGLE_SYM = prove
(`!x y. vector_angle x y = vector_angle y x`,
REWRITE_TAC[vector_angle; DISJ_SYM; DOT_SYM; REAL_MUL_SYM]);;
let VECTOR_ANGLE_LMUL = prove
(`!a x y:real^N.
vector_angle (a % x) y =
if a = &0 then pi / &2
else if &0 <= a then vector_angle x y
else pi - vector_angle x y`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[vector_angle; VECTOR_MUL_EQ_0] THEN
ASM_CASES_TAC `x:real^N = vec 0 \/ y:real^N = vec 0` THEN
ASM_REWRITE_TAC[] THENL [REAL_ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[NORM_MUL; DOT_LMUL; real_div; REAL_INV_MUL; real_abs] THEN
COND_CASES_TAC THEN
ASM_REWRITE_TAC[REAL_INV_NEG; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN
ASM_SIMP_TAC[REAL_FIELD
`~(a = &0) ==> (a * x) * (inv a * y) * z = x * y * z`] THEN
MATCH_MP_TAC ACS_NEG THEN
REWRITE_TAC[GSYM REAL_ABS_BOUNDS; GSYM REAL_INV_MUL] THEN
REWRITE_TAC[GSYM real_div; NORM_CAUCHY_SCHWARZ_DIV]);;
let VECTOR_ANGLE_RMUL = prove
(`!a x y:real^N.
vector_angle x (a % y) =
if a = &0 then pi / &2
else if &0 <= a then vector_angle x y
else pi - vector_angle x y`,
ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN
REWRITE_TAC[VECTOR_ANGLE_LMUL]);;
let VECTOR_ANGLE_LNEG = prove
(`!x y. vector_angle (--x) y = pi - vector_angle x y`,
REWRITE_TAC[VECTOR_ARITH `--x = -- &1 % x`; VECTOR_ANGLE_LMUL] THEN
CONV_TAC REAL_RAT_REDUCE_CONV);;
let VECTOR_ANGLE_RNEG = prove
(`!x y. vector_angle x (--y) = pi - vector_angle x y`,
ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN REWRITE_TAC[VECTOR_ANGLE_LNEG]);;
let VECTOR_ANGLE_NEG2 = prove
(`!x y. vector_angle (--x) (--y) = vector_angle x y`,
REWRITE_TAC[VECTOR_ANGLE_LNEG; VECTOR_ANGLE_RNEG] THEN REAL_ARITH_TAC);;
let SIN_VECTOR_ANGLE_LMUL = prove
(`!a x y:real^N.
sin(vector_angle (a % x) y) =
if a = &0 then &1 else sin(vector_angle x y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[VECTOR_ANGLE_LMUL] THEN
ASM_CASES_TAC `a = &0` THEN ASM_REWRITE_TAC[SIN_PI2] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[SIN_SUB; SIN_PI; COS_PI] THEN
REAL_ARITH_TAC);;
let SIN_VECTOR_ANGLE_RMUL = prove
(`!a x y:real^N.
sin(vector_angle x (a % y)) =
if a = &0 then &1 else sin(vector_angle x y)`,
ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN
REWRITE_TAC[SIN_VECTOR_ANGLE_LMUL]);;
let VECTOR_ANGLE = prove
(`!x y:real^N. x dot y = norm(x) * norm(y) * cos(vector_angle x y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[vector_angle] THEN
ASM_CASES_TAC `x:real^N = vec 0` THEN
ASM_REWRITE_TAC[DOT_LZERO; NORM_0; REAL_MUL_LZERO] THEN
ASM_CASES_TAC `y:real^N = vec 0` THEN
ASM_REWRITE_TAC[DOT_RZERO; NORM_0; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c:real = c * a * b`] THEN
ASM_SIMP_TAC[GSYM REAL_EQ_LDIV_EQ; REAL_LT_MUL; NORM_POS_LT] THEN
MATCH_MP_TAC(GSYM COS_ACS) THEN
ASM_REWRITE_TAC[REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV]);;
let VECTOR_ANGLE_RANGE = prove
(`!x y:real^N. &0 <= vector_angle x y /\ vector_angle x y <= pi`,
REPEAT GEN_TAC THEN REWRITE_TAC[vector_angle] THEN COND_CASES_TAC THENL
[MP_TAC PI_POS THEN REAL_ARITH_TAC; ALL_TAC] THEN
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN MATCH_MP_TAC ACS_BOUNDS THEN
ASM_REWRITE_TAC[REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV]);;
let ORTHOGONAL_VECTOR_ANGLE = prove
(`!x y:real^N. orthogonal x y <=> vector_angle x y = pi / &2`,
REPEAT STRIP_TAC THEN REWRITE_TAC[orthogonal; vector_angle] THEN
ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_LZERO] THEN
ASM_CASES_TAC `y:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_RZERO] THEN
EQ_TAC THENL
[SIMP_TAC[real_div; REAL_MUL_LZERO] THEN DISCH_TAC THEN
REWRITE_TAC[GSYM real_div; GSYM COS_PI2] THEN
MATCH_MP_TAC ACS_COS THEN MP_TAC PI_POS THEN REAL_ARITH_TAC;
DISCH_THEN(MP_TAC o AP_TERM `cos`) THEN
SIMP_TAC[COS_ACS; REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV; COS_PI2] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_LT_MUL; NORM_POS_LT; REAL_MUL_LZERO]]);;
let VECTOR_ANGLE_EQ_0 = prove
(`!x y:real^N. vector_angle x y = &0 <=>
~(x = vec 0) /\ ~(y = vec 0) /\ norm(x) % y = norm(y) % x`,
REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC [`x:real^N = vec 0`; `y:real^N = vec 0`] THEN
ASM_SIMP_TAC[vector_angle; PI_NZ; REAL_ARITH `x / &2 = &0 <=> x = &0`] THEN
REWRITE_TAC[GSYM NORM_CAUCHY_SCHWARZ_EQ] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_MUL_LID] THEN
ASM_SIMP_TAC[GSYM REAL_EQ_LDIV_EQ; NORM_POS_LT; REAL_LT_MUL] THEN
MESON_TAC[ACS_1; COS_ACS; REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV; COS_0]);;
let VECTOR_ANGLE_EQ_PI = prove
(`!x y:real^N. vector_angle x y = pi <=>
~(x = vec 0) /\ ~(y = vec 0) /\
norm(x) % y + norm(y) % x = vec 0`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`x:real^N`; `--y:real^N`] VECTOR_ANGLE_EQ_0) THEN
SIMP_TAC[VECTOR_ANGLE_RNEG; REAL_ARITH `pi - x = &0 <=> x = pi`] THEN
STRIP_TAC THEN
REWRITE_TAC[NORM_NEG; VECTOR_ARITH `--x = vec 0 <=> x = vec 0`] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN VECTOR_ARITH_TAC);;
let VECTOR_ANGLE_EQ_0_DIST = prove
(`!x y:real^N. vector_angle x y = &0 <=>
~(x = vec 0) /\ ~(y = vec 0) /\ norm(x + y) = norm x + norm y`,
REWRITE_TAC[VECTOR_ANGLE_EQ_0; GSYM NORM_TRIANGLE_EQ]);;
let VECTOR_ANGLE_EQ_PI_DIST = prove
(`!x y:real^N. vector_angle x y = pi <=>
~(x = vec 0) /\ ~(y = vec 0) /\ norm(x - y) = norm x + norm y`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`x:real^N`; `--y:real^N`] VECTOR_ANGLE_EQ_0_DIST) THEN
SIMP_TAC[VECTOR_ANGLE_RNEG; REAL_ARITH `pi - x = &0 <=> x = pi`] THEN
STRIP_TAC THEN REWRITE_TAC[NORM_NEG] THEN NORM_ARITH_TAC);;
let SIN_VECTOR_ANGLE_POS = prove
(`!v w. &0 <= sin(vector_angle v w)`,
SIMP_TAC[SIN_POS_PI_LE; VECTOR_ANGLE_RANGE]);;
let SIN_VECTOR_ANGLE_EQ_0 = prove
(`!x y. sin(vector_angle x y) = &0 <=>
vector_angle x y = &0 \/ vector_angle x y = pi`,
MESON_TAC[SIN_POS_PI; VECTOR_ANGLE_RANGE; REAL_LT_LE; SIN_0; SIN_PI]);;
let ASN_SIN_VECTOR_ANGLE = prove
(`!x y:real^N.
asn(sin(vector_angle x y)) =
if vector_angle x y <= pi / &2 then vector_angle x y
else pi - vector_angle x y`,
REPEAT GEN_TAC THEN COND_CASES_TAC THENL
[ALL_TAC;
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `asn(sin(pi - vector_angle (x:real^N) y))` THEN CONJ_TAC THENL
[AP_TERM_TAC THEN REWRITE_TAC[SIN_SUB; SIN_PI; COS_PI] THEN
REAL_ARITH_TAC;
ALL_TAC]] THEN
MATCH_MP_TAC ASN_SIN THEN
MP_TAC(ISPECL [`x:real^N`; `y:real^N`] VECTOR_ANGLE_RANGE) THEN
ASM_REAL_ARITH_TAC);;
let SIN_VECTOR_ANGLE_EQ = prove
(`!x y w z.
sin(vector_angle x y) = sin(vector_angle w z) <=>
vector_angle x y = vector_angle w z \/
vector_angle x y = pi - vector_angle w z`,
REPEAT GEN_TAC THEN EQ_TAC THEN
STRIP_TAC THEN ASM_REWRITE_TAC[SIN_SUB; SIN_PI; COS_PI] THENL
[ALL_TAC; REAL_ARITH_TAC] THEN
FIRST_X_ASSUM(MP_TAC o AP_TERM `asn`) THEN
REWRITE_TAC[ASN_SIN_VECTOR_ANGLE] THEN REAL_ARITH_TAC);;
let CONTINUOUS_WITHIN_CX_VECTOR_ANGLE_COMPOSE = prove
(`!f:real^M->real^N g x s.
~(f x = vec 0) /\ ~(g x = vec 0) /\
f continuous (at x within s) /\
g continuous (at x within s)
==> (\x. Cx(vector_angle (f x) (g x))) continuous (at x within s)`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `trivial_limit(at (x:real^M) within s)` THEN
ASM_SIMP_TAC[CONTINUOUS_TRIVIAL_LIMIT; vector_angle] THEN
SUBGOAL_THEN
`(cacs o (\x. Cx(((f x:real^N) dot g x) / (norm(f x) * norm(g x)))))
continuous (at (x:real^M) within s)`
MP_TAC THENL
[MATCH_MP_TAC CONTINUOUS_WITHIN_COMPOSE THEN CONJ_TAC THENL
[REWRITE_TAC[CX_DIV; CX_MUL] THEN REWRITE_TAC[WITHIN_UNIV] THEN
MATCH_MP_TAC CONTINUOUS_COMPLEX_DIV THEN
ASM_SIMP_TAC[NETLIMIT_WITHIN; COMPLEX_ENTIRE; CX_INJ; NORM_EQ_0] THEN
REWRITE_TAC[CONTINUOUS_CX_LIFT; GSYM CX_MUL; LIFT_CMUL] THEN
ASM_SIMP_TAC[CONTINUOUS_LIFT_DOT2] THEN
MATCH_MP_TAC CONTINUOUS_MUL THEN
ASM_SIMP_TAC[CONTINUOUS_LIFT_NORM_COMPOSE; o_DEF];
MATCH_MP_TAC CONTINUOUS_WITHIN_SUBSET THEN
EXISTS_TAC `{z | real z /\ abs(Re z) <= &1}` THEN
REWRITE_TAC[CONTINUOUS_WITHIN_CACS_REAL] THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV; IN_ELIM_THM] THEN
REWRITE_TAC[REAL_CX; RE_CX; NORM_CAUCHY_SCHWARZ_DIV]];
ASM_SIMP_TAC[CONTINUOUS_WITHIN; CX_ACS; o_DEF;
NORM_CAUCHY_SCHWARZ_DIV] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN
SUBGOAL_THEN
`eventually (\y. ~((f:real^M->real^N) y = vec 0) /\
~((g:real^M->real^N) y = vec 0))
(at x within s)`
MP_TAC THENL
[REWRITE_TAC[EVENTUALLY_AND] THEN CONJ_TAC THENL
[UNDISCH_TAC `(f:real^M->real^N) continuous (at x within s)`;
UNDISCH_TAC `(g:real^M->real^N) continuous (at x within s)`] THEN
REWRITE_TAC[CONTINUOUS_WITHIN; tendsto] THENL
[DISCH_THEN(MP_TAC o SPEC `norm((f:real^M->real^N) x)`);
DISCH_THEN(MP_TAC o SPEC `norm((g:real^M->real^N) x)`)] THEN
ASM_REWRITE_TAC[NORM_POS_LT] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
REWRITE_TAC[] THEN CONV_TAC NORM_ARITH;
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
SIMP_TAC[CX_ACS; NORM_CAUCHY_SCHWARZ_DIV]]]);;
let CONTINUOUS_AT_CX_VECTOR_ANGLE = prove
(`!c x:real^N. ~(x = vec 0) ==> (Cx o vector_angle c) continuous (at x)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[o_DEF; vector_angle] THEN
ASM_CASES_TAC `c:real^N = vec 0` THEN ASM_REWRITE_TAC[CONTINUOUS_CONST] THEN
MATCH_MP_TAC CONTINUOUS_TRANSFORM_AT THEN
MAP_EVERY EXISTS_TAC [`\x:real^N. cacs(Cx((c dot x) / (norm c * norm x)))`;
`norm(x:real^N)`] THEN
ASM_REWRITE_TAC[NORM_POS_LT] THEN CONJ_TAC THENL
[X_GEN_TAC `z:real^N` THEN DISCH_TAC THEN COND_CASES_TAC THENL
[ASM_MESON_TAC[NORM_ARITH `~(dist(vec 0,x) < norm x)`]; ALL_TAC] THEN
MATCH_MP_TAC(GSYM CX_ACS) THEN REWRITE_TAC[NORM_CAUCHY_SCHWARZ_DIV];
ALL_TAC] THEN
ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_WITHIN_COMPOSE) THEN
CONJ_TAC THENL
[REWRITE_TAC[CX_DIV; CX_MUL] THEN REWRITE_TAC[WITHIN_UNIV] THEN
MATCH_MP_TAC CONTINUOUS_COMPLEX_DIV THEN
ASM_REWRITE_TAC[NETLIMIT_AT; COMPLEX_ENTIRE; CX_INJ; NORM_EQ_0] THEN
SIMP_TAC[CONTINUOUS_COMPLEX_MUL; CONTINUOUS_CONST;
CONTINUOUS_AT_CX_NORM; CONTINUOUS_AT_CX_DOT];
MATCH_MP_TAC CONTINUOUS_WITHIN_SUBSET THEN
EXISTS_TAC `{z | real z /\ abs(Re z) <= &1}` THEN
REWRITE_TAC[CONTINUOUS_WITHIN_CACS_REAL] THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV; IN_ELIM_THM] THEN
REWRITE_TAC[REAL_CX; RE_CX; NORM_CAUCHY_SCHWARZ_DIV]]);;
let CONTINUOUS_WITHIN_CX_VECTOR_ANGLE = prove
(`!c x:real^N s.
~(x = vec 0) ==> (Cx o vector_angle c) continuous (at x within s)`,
SIMP_TAC[CONTINUOUS_AT_WITHIN; CONTINUOUS_AT_CX_VECTOR_ANGLE]);;
let REAL_CONTINUOUS_AT_VECTOR_ANGLE = prove
(`!c x:real^N. ~(x = vec 0) ==> (vector_angle c) real_continuous (at x)`,
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS; CONTINUOUS_AT_CX_VECTOR_ANGLE]);;
let REAL_CONTINUOUS_WITHIN_VECTOR_ANGLE = prove
(`!c s x:real^N. ~(x = vec 0)
==> (vector_angle c) real_continuous (at x within s)`,
REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS; CONTINUOUS_WITHIN_CX_VECTOR_ANGLE]);;
let CONTINUOUS_ON_CX_VECTOR_ANGLE = prove
(`!s. ~(vec 0 IN s) ==> (Cx o vector_angle c) continuous_on s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
ASM_MESON_TAC[CONTINUOUS_WITHIN_CX_VECTOR_ANGLE]);;
let VECTOR_ANGLE_EQ = prove
(`!u v x y. ~(u = vec 0) /\ ~(v = vec 0) /\ ~(x = vec 0) /\ ~(y = vec 0)
==> (vector_angle u v = vector_angle x y <=>
(x dot y) * norm(u) * norm(v) =
(u dot v) * norm(x) * norm(y))`,
SIMP_TAC[vector_angle; NORM_EQ_0; REAL_FIELD
`~(u = &0) /\ ~(v = &0) /\ ~(x = &0) /\ ~(y = &0)
==> (a * u * v = b * x * y <=> a / (x * y) = b / (u * v))`] THEN
REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN
DISCH_THEN(MP_TAC o AP_TERM `cos`) THEN
SIMP_TAC[COS_ACS; NORM_CAUCHY_SCHWARZ_DIV; REAL_BOUNDS_LE]);;
let COS_VECTOR_ANGLE_EQ = prove
(`!u v x y.
cos(vector_angle u v) = cos(vector_angle x y) <=>
vector_angle u v = vector_angle x y`,
MESON_TAC[ACS_COS; VECTOR_ANGLE_RANGE]);;
let COLLINEAR_VECTOR_ANGLE = prove
(`!x y. ~(x = vec 0) /\ ~(y = vec 0)
==> (collinear {vec 0,x,y} <=>
vector_angle x y = &0 \/ vector_angle x y = pi)`,
REWRITE_TAC[GSYM NORM_CAUCHY_SCHWARZ_EQUAL; NORM_CAUCHY_SCHWARZ_ABS_EQ;
VECTOR_ANGLE_EQ_0; VECTOR_ANGLE_EQ_PI] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN BINOP_TAC THEN
VECTOR_ARITH_TAC);;
let COLLINEAR_SIN_VECTOR_ANGLE = prove
(`!x y. ~(x = vec 0) /\ ~(y = vec 0)
==> (collinear {vec 0,x,y} <=> sin(vector_angle x y) = &0)`,
REWRITE_TAC[SIN_VECTOR_ANGLE_EQ_0; COLLINEAR_VECTOR_ANGLE]);;
let COLLINEAR_SIN_VECTOR_ANGLE_IMP = prove
(`!x y. sin(vector_angle x y) = &0
==> ~(x = vec 0) /\ ~(y = vec 0) /\ collinear {vec 0,x,y}`,
MESON_TAC[COLLINEAR_SIN_VECTOR_ANGLE; SIN_VECTOR_ANGLE_EQ_0;
VECTOR_ANGLE_EQ_0_DIST; VECTOR_ANGLE_EQ_PI_DIST]);;
let VECTOR_ANGLE_EQ_0_RIGHT = prove
(`!x y z:real^N. vector_angle x y = &0
==> (vector_angle x z = vector_angle y z)`,
REWRITE_TAC[VECTOR_ANGLE_EQ_0] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `vector_angle (norm(x:real^N) % y) (z:real^N)` THEN CONJ_TAC THENL
[ASM_REWRITE_TAC[] THEN
ASM_REWRITE_TAC[VECTOR_ANGLE_LMUL; NORM_EQ_0; NORM_POS_LE];
REWRITE_TAC[VECTOR_ANGLE_LMUL] THEN
ASM_REWRITE_TAC[NORM_EQ_0; NORM_POS_LE]]);;
let VECTOR_ANGLE_EQ_0_LEFT = prove
(`!x y z:real^N. vector_angle x y = &0
==> (vector_angle z x = vector_angle z y)`,
MESON_TAC[VECTOR_ANGLE_EQ_0_RIGHT; VECTOR_ANGLE_SYM]);;
let VECTOR_ANGLE_EQ_PI_RIGHT = prove
(`!x y z:real^N. vector_angle x y = pi
==> (vector_angle x z = pi - vector_angle y z)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`--x:real^N`; `y:real^N`; `z:real^N`]
VECTOR_ANGLE_EQ_0_RIGHT) THEN
ASM_REWRITE_TAC[VECTOR_ANGLE_LNEG] THEN REAL_ARITH_TAC);;
let VECTOR_ANGLE_EQ_PI_LEFT = prove
(`!x y z:real^N. vector_angle x y = pi
==> (vector_angle z x = pi - vector_angle z y)`,
MESON_TAC[VECTOR_ANGLE_EQ_PI_RIGHT; VECTOR_ANGLE_SYM]);;
let COS_VECTOR_ANGLE = prove
(`!x y:real^N.
cos(vector_angle x y) = if x = vec 0 \/ y = vec 0 then &0
else (x dot y) / (norm x * norm y)`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `x:real^N = vec 0` THENL
[ASM_REWRITE_TAC[vector_angle; COS_PI2]; ALL_TAC] THEN
ASM_CASES_TAC `y:real^N = vec 0` THENL
[ASM_REWRITE_TAC[vector_angle; COS_PI2]; ALL_TAC] THEN
ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_LT_MUL; NORM_POS_LT; VECTOR_ANGLE] THEN
REAL_ARITH_TAC);;
let SIN_VECTOR_ANGLE = prove
(`!x y:real^N.
sin(vector_angle x y) =
if x = vec 0 \/ y = vec 0 then &1
else sqrt(&1 - ((x dot y) / (norm x * norm y)) pow 2)`,
SIMP_TAC[SIN_COS_SQRT; SIN_VECTOR_ANGLE_POS; COS_VECTOR_ANGLE] THEN
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[SQRT_1]);;
let SIN_SQUARED_VECTOR_ANGLE = prove
(`!x y:real^N.
sin(vector_angle x y) pow 2 =
if x = vec 0 \/ y = vec 0 then &1
else &1 - ((x dot y) / (norm x * norm y)) pow 2`,
REPEAT GEN_TAC THEN REWRITE_TAC
[REWRITE_RULE [REAL_ARITH `s + c = &1 <=> s = &1 - c`] SIN_CIRCLE] THEN
REWRITE_TAC[COS_VECTOR_ANGLE] THEN REAL_ARITH_TAC);;
let VECTOR_ANGLE_COMPLEX_LMUL = prove
(`!a. ~(a = Cx(&0))
==> vector_angle (a * x) (a * y) = vector_angle x y`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `x = Cx(&0)` THENL
[ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; vector_angle; COMPLEX_VEC_0];
ALL_TAC] THEN
ASM_CASES_TAC `y = Cx(&0)` THENL
[ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; vector_angle; COMPLEX_VEC_0];
ALL_TAC] THEN
MP_TAC(ISPECL
[`a * x:complex`; `a * y:complex`; `x:complex`; `y:complex`]
VECTOR_ANGLE_EQ) THEN
ASM_REWRITE_TAC[COMPLEX_VEC_0; COMPLEX_ENTIRE] THEN
DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC(REAL_RING
`a pow 2 * xy:real = d ==> xy * (a * x) * (a * y) = d * x * y`) THEN
REWRITE_TAC[NORM_POW_2] THEN
REWRITE_TAC[DOT_2; complex_mul; GSYM RE_DEF; GSYM IM_DEF; RE; IM] THEN
REAL_ARITH_TAC);;
let VECTOR_ANGLE_1 = prove
(`!x. vector_angle x (Cx(&1)) = acs(Re x / norm x)`,
GEN_TAC THEN
SIMP_TAC[vector_angle; COMPLEX_VEC_0; CX_INJ; REAL_OF_NUM_EQ; ARITH_EQ] THEN
COND_CASES_TAC THENL
[ASM_REWRITE_TAC[real_div; RE_CX; ACS_0; REAL_MUL_LZERO]; ALL_TAC] THEN
REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM; REAL_MUL_RID] THEN
REWRITE_TAC[DOT_2; GSYM RE_DEF; GSYM IM_DEF; RE_CX; IM_CX] THEN
AP_TERM_TAC THEN REAL_ARITH_TAC);;
let ARG_EQ_VECTOR_ANGLE_1 = prove
(`!z. ~(z = Cx(&0)) /\ &0 <= Im z ==> Arg z = vector_angle z (Cx(&1))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[VECTOR_ANGLE_1] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV o RAND_CONV) [ARG] THEN
REWRITE_TAC[RE_MUL_CX; RE_CEXP; RE_II; IM_MUL_II; IM_CX; RE_CX] THEN
REWRITE_TAC[REAL_MUL_LZERO; REAL_EXP_0; REAL_MUL_LID] THEN
ASM_SIMP_TAC[COMPLEX_NORM_ZERO; REAL_FIELD
`~(z = &0) ==> (z * x) / z = x`] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC ACS_COS THEN
ASM_REWRITE_TAC[ARG; ARG_LE_PI]);;
let VECTOR_ANGLE_ARG = prove
(`!w z. ~(w = Cx(&0)) /\ ~(z = Cx(&0))
==> vector_angle w z = if &0 <= Im(z / w) then Arg(z / w)
else &2 * pi - Arg(z / w)`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
[SUBGOAL_THEN `z = w * (z / w) /\ w = w * Cx(&1)` MP_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD; ALL_TAC];
SUBGOAL_THEN `w = z * (w / z) /\ z = z * Cx(&1)` MP_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD; ALL_TAC]] THEN
DISCH_THEN(fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th]) THEN
ASM_SIMP_TAC[VECTOR_ANGLE_COMPLEX_LMUL] THENL
[ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC ARG_EQ_VECTOR_ANGLE_1 THEN ASM_REWRITE_TAC[] THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD;
MP_TAC(ISPEC `z / w:complex` ARG_INV) THEN ANTS_TAC THENL
[ASM_MESON_TAC[real; REAL_LE_REFL]; DISCH_THEN(SUBST1_TAC o SYM)] THEN
REWRITE_TAC[COMPLEX_INV_DIV] THEN CONV_TAC SYM_CONV THEN
MATCH_MP_TAC ARG_EQ_VECTOR_ANGLE_1 THEN CONJ_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD;
ONCE_REWRITE_TAC[GSYM COMPLEX_INV_DIV] THEN
REWRITE_TAC[IM_COMPLEX_INV_GE_0] THEN ASM_REAL_ARITH_TAC]]);;
let VECTOR_ANGLE_PRESERVING_EQ_SIMILARITY = prove
(`!f:real^N->real^N.
linear f /\ (!x y. vector_angle (f x) (f y) = vector_angle x y) <=>
?c g. ~(c = &0) /\ orthogonal_transformation g /\ f = \z. c % g z`,
REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL
[ALL_TAC;
ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_LINEAR; LINEAR_COMPOSE_CMUL] THEN
ASM_SIMP_TAC[VECTOR_ANGLE_LMUL; VECTOR_ANGLE_RMUL] THEN
REWRITE_TAC[REAL_ARITH `pi - (pi - x) = x`; COND_ID] THEN
ASM_MESON_TAC[VECTOR_ANGLE_ORTHOGONAL_TRANSFORMATION]] THEN
MP_TAC(ISPEC `f:real^N->real^N` ORTHOGONALITY_PRESERVING_EQ_SIMILARITY) THEN
ASM_REWRITE_TAC[ORTHOGONAL_VECTOR_ANGLE] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^N->real^N` THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`basis 1:real^N`; `basis 1:real^N`]) THEN
ASM_REWRITE_TAC[VECTOR_ANGLE_REFL; VECTOR_MUL_LZERO] THEN
SIMP_TAC[BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL] THEN
MP_TAC PI_POS THEN REAL_ARITH_TAC);;
let VECTOR_ANGLE_PRESERVING_EQ_SIMILARITY_ALT = prove
(`!f:real^N->real^N.
linear f /\ (!x y. vector_angle (f x) (f y) = vector_angle x y) <=>
?c g. &0 < c /\ orthogonal_transformation g /\ f = \z. c % g z`,
GEN_TAC THEN REWRITE_TAC[VECTOR_ANGLE_PRESERVING_EQ_SIMILARITY] THEN
EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM]; MESON_TAC[REAL_LT_REFL]] THEN
MAP_EVERY X_GEN_TAC [`c:real`; `g:real^N->real^N`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH
`~(c = &0) ==> &0 < c \/ &0 < --c`))
THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MAP_EVERY EXISTS_TAC [`--c:real`; `\x. --((g:real^N->real^N) x)`] THEN
ASM_REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_NEG] THEN
REWRITE_TAC[VECTOR_MUL_LNEG; VECTOR_MUL_RNEG; VECTOR_NEG_NEG]);;
(* ------------------------------------------------------------------------- *)
(* Traditional geometric notion of angle (always 0 <= theta <= pi). *)
(* ------------------------------------------------------------------------- *)
let angle = new_definition
`angle(a,b,c) = vector_angle (a - b) (c - b)`;;
let ANGLE_LINEAR_IMAGE_EQ = prove
(`!f a b c.
linear f /\ (!x. norm(f x) = norm x)
==> angle(f a,f b,f c) = angle(a,b,c)`,
SIMP_TAC[angle; GSYM LINEAR_SUB; VECTOR_ANGLE_LINEAR_IMAGE_EQ]);;
add_linear_invariants [ANGLE_LINEAR_IMAGE_EQ];;
let ANGLE_TRANSLATION_EQ = prove
(`!a b c d. angle(a + b,a + c,a + d) = angle(b,c,d)`,
REPEAT GEN_TAC THEN REWRITE_TAC[angle] THEN
BINOP_TAC THEN VECTOR_ARITH_TAC);;
add_translation_invariants [ANGLE_TRANSLATION_EQ];;
let VECTOR_ANGLE_ANGLE = prove
(`vector_angle x y = angle(x,vec 0,y)`,
REWRITE_TAC[angle; VECTOR_SUB_RZERO]);;
let ANGLE_EQ_PI_DIST = prove
(`!A B C:real^N.
angle(A,B,C) = pi <=>
~(A = B) /\ ~(C = B) /\ dist(A,C) = dist(A,B) + dist(B,C)`,
REWRITE_TAC[angle; VECTOR_ANGLE_EQ_PI_DIST] THEN NORM_ARITH_TAC);;
let SIN_ANGLE_POS = prove
(`!A B C. &0 <= sin(angle(A,B,C))`,
REWRITE_TAC[angle; SIN_VECTOR_ANGLE_POS]);;
let ANGLE = prove
(`!A B C. (A - C) dot (B - C) = dist(A,C) * dist(B,C) * cos(angle(A,C,B))`,
REWRITE_TAC[angle; dist; GSYM VECTOR_ANGLE]);;
let ANGLE_REFL = prove
(`!A B. angle(A,A,B) = pi / &2 /\ angle(B,A,A) = pi / &2`,
REWRITE_TAC[angle; vector_angle; VECTOR_SUB_REFL]);;
let ANGLE_REFL_MID = prove
(`!A B. ~(A = B) ==> angle(A,B,A) = &0`,
SIMP_TAC[angle; vector_angle; VECTOR_SUB_EQ; GSYM NORM_POW_2; ARITH;
GSYM REAL_POW_2; REAL_DIV_REFL; ACS_1; REAL_POW_EQ_0; NORM_EQ_0]);;
let ANGLE_SYM = prove
(`!A B C. angle(A,B,C) = angle(C,B,A)`,
REWRITE_TAC[angle; vector_angle; VECTOR_SUB_EQ; DISJ_SYM;
REAL_MUL_SYM; DOT_SYM]);;
let ANGLE_RANGE = prove
(`!A B C. &0 <= angle(A,B,C) /\ angle(A,B,C) <= pi`,
REWRITE_TAC[angle; VECTOR_ANGLE_RANGE]);;
let COS_ANGLE_EQ = prove
(`!a b c a' b' c'.
cos(angle(a,b,c)) = cos(angle(a',b',c')) <=>
angle(a,b,c) = angle(a',b',c')`,
REWRITE_TAC[angle; COS_VECTOR_ANGLE_EQ]);;
let ANGLE_EQ = prove
(`!a b c a' b' c'.
~(a = b) /\ ~(c = b) /\ ~(a' = b') /\ ~(c' = b')
==> (angle(a,b,c) = angle(a',b',c') <=>
((a' - b') dot (c' - b')) * norm (a - b) * norm (c - b) =
((a - b) dot (c - b)) * norm (a' - b') * norm (c' - b'))`,
SIMP_TAC[angle; VECTOR_ANGLE_EQ; VECTOR_SUB_EQ]);;
let SIN_ANGLE_EQ_0 = prove
(`!A B C. sin(angle(A,B,C)) = &0 <=> angle(A,B,C) = &0 \/ angle(A,B,C) = pi`,
REWRITE_TAC[angle; SIN_VECTOR_ANGLE_EQ_0]);;
let SIN_ANGLE_EQ = prove
(`!A B C A' B' C'. sin(angle(A,B,C)) = sin(angle(A',B',C')) <=>
angle(A,B,C) = angle(A',B',C') \/
angle(A,B,C) = pi - angle(A',B',C')`,
REWRITE_TAC[angle; SIN_VECTOR_ANGLE_EQ]);;
let COLLINEAR_ANGLE = prove
(`!A B C. ~(A = B) /\ ~(B = C)
==> (collinear {A,B,C} <=> angle(A,B,C) = &0 \/ angle(A,B,C) = pi)`,
ONCE_REWRITE_TAC[COLLINEAR_3] THEN
SIMP_TAC[COLLINEAR_VECTOR_ANGLE; VECTOR_SUB_EQ; angle]);;
let COLLINEAR_SIN_ANGLE = prove
(`!A B C. ~(A = B) /\ ~(B = C)
==> (collinear {A,B,C} <=> sin(angle(A,B,C)) = &0)`,
REWRITE_TAC[SIN_ANGLE_EQ_0; COLLINEAR_ANGLE]);;
let COLLINEAR_SIN_ANGLE_IMP = prove
(`!A B C. sin(angle(A,B,C)) = &0
==> ~(A = B) /\ ~(B = C) /\ collinear {A,B,C}`,
REPEAT GEN_TAC THEN
ONCE_REWRITE_TAC[COLLINEAR_3] THEN REWRITE_TAC[angle] THEN
DISCH_THEN(MP_TAC o MATCH_MP COLLINEAR_SIN_VECTOR_ANGLE_IMP) THEN
SIMP_TAC[VECTOR_SUB_EQ]);;
let ANGLE_EQ_0_RIGHT = prove
(`!A B C. angle(A,B,C) = &0 ==> angle(A,B,D) = angle(C,B,D)`,
REWRITE_TAC[VECTOR_ANGLE_EQ_0_RIGHT; angle]);;
let ANGLE_EQ_0_LEFT = prove
(`!A B C. angle(A,B,C) = &0 ==> angle(D,B,A) = angle(D,B,C)`,
MESON_TAC[ANGLE_EQ_0_RIGHT; ANGLE_SYM]);;
let ANGLE_EQ_PI_RIGHT = prove
(`!A B C. angle(A,B,C) = pi ==> angle(D,B,A) = pi - angle(D,B,C)`,
REWRITE_TAC[VECTOR_ANGLE_EQ_PI_LEFT; angle]);;
let ANGLE_EQ_PI_LEFT = prove
(`!A B C. angle(A,B,C) = pi ==> angle(A,B,D) = pi - angle(C,B,D)`,
MESON_TAC[ANGLE_EQ_PI_RIGHT; ANGLE_SYM]);;
let COS_ANGLE = prove
(`!a b c. cos(angle(a,b,c)) = if a = b \/ c = b then &0
else ((a - b) dot (c - b)) /
(norm(a - b) * norm(c - b))`,
REWRITE_TAC[angle; COS_VECTOR_ANGLE; VECTOR_SUB_EQ]);;
let SIN_ANGLE = prove
(`!a b c. sin(angle(a,b,c)) =
if a = b \/ c = b then &1
else sqrt(&1 - (((a - b) dot (c - b)) /
(norm(a - b) * norm(c - b))) pow 2)`,
REWRITE_TAC[angle; SIN_VECTOR_ANGLE; VECTOR_SUB_EQ]);;
let SIN_SQUARED_ANGLE = prove
(`!a b c. sin(angle(a,b,c)) pow 2 =
if a = b \/ c = b then &1
else &1 - (((a - b) dot (c - b)) /
(norm(a - b) * norm(c - b))) pow 2`,
REWRITE_TAC[angle; SIN_SQUARED_VECTOR_ANGLE; VECTOR_SUB_EQ]);;
(* ------------------------------------------------------------------------- *)
(* The basic right angle triangles of elementary trigonometry. *)
(* ------------------------------------------------------------------------- *)
let COS_ADJACENT_HYPOTENUSE = prove
(`!A B C:real^N.
orthogonal (A - B) (C - B)
==> dist(A,C) * cos(angle(B,A,C)) = dist(A,B)`,
GEOM_ORIGIN_TAC `A:real^N` THEN REPEAT GEN_TAC THEN
REWRITE_TAC[DIST_0; angle; VECTOR_SUB_RZERO] THEN
REWRITE_TAC[ORTHOGONAL_LNEG; VECTOR_SUB_LZERO] THEN DISCH_TAC THEN
ASM_CASES_TAC `B:real^N = vec 0` THENL
[ASM_REWRITE_TAC[vector_angle; COS_PI2; NORM_0; REAL_MUL_RZERO];
MATCH_MP_TAC(REAL_RING `~(b = &0) /\ b * x = b pow 2 ==> x = b`) THEN
ASM_REWRITE_TAC[NORM_EQ_0; GSYM VECTOR_ANGLE] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [orthogonal]) THEN
REWRITE_TAC[DOT_RSUB; NORM_POW_2] THEN REAL_ARITH_TAC]);;
let COS_ADJACENT_OVER_HYPOTENUSE = prove
(`!A B C:real^N.
orthogonal (A - B) (C - B)
==> cos(angle(B,A,C)) = dist(A,B) / dist(A,C)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^N = C` THENL
[ASM_REWRITE_TAC[DIST_REFL; real_div; REAL_INV_0; angle; VECTOR_SUB_REFL;
vector_angle] THEN
REWRITE_TAC[GSYM real_div; COS_PI2; REAL_MUL_RZERO];
ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; DIST_POS_LT] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[COS_ADJACENT_HYPOTENUSE]]);;
let SIN_OPPOSITE_HYPOTENUSE = prove
(`!A B C:real^N.
orthogonal (A - B) (C - B)
==> dist(A,C) * sin(angle(B,A,C)) = dist(C,B)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^N = C` THEN
ASM_SIMP_TAC[ORTHOGONAL_REFL; VECTOR_SUB_EQ; DIST_REFL; REAL_MUL_LZERO] THEN
DISCH_TAC THEN CONV_TAC SYM_CONV THEN
REWRITE_TAC[dist; NORM_EQ_SQUARE] THEN
SIMP_TAC[REAL_LE_MUL; SIN_ANGLE_POS; NORM_POS_LE] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP COS_ADJACENT_HYPOTENUSE) THEN
DISCH_THEN(MP_TAC o MATCH_MP (REAL_RING
`x:real = y ==> x pow 2 = y pow 2`)) THEN
REWRITE_TAC[REAL_POW_MUL; GSYM NORM_POW_2; GSYM dist] THEN
MATCH_MP_TAC(REAL_RING
`d + e = h /\ s + c = &1 /\ ~(h = &0) ==> h * c = d ==> e = h * s`) THEN
ASM_REWRITE_TAC[SIN_CIRCLE; REAL_POW_EQ_0; DIST_EQ_0] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PYTHAGORAS) THEN
REWRITE_TAC[GSYM dist; DIST_SYM] THEN REAL_ARITH_TAC);;
let SIN_OPPOSITE_OVER_HYPOTENUSE = prove
(`!A B C:real^N.
orthogonal (A - B) (C - B) /\ ~(A = C)
==> sin(angle(B,A,C)) = dist(C,B) / dist(A,C)`,
SIMP_TAC[REAL_EQ_RDIV_EQ; DIST_POS_LT] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
SIMP_TAC[SIN_OPPOSITE_HYPOTENUSE]);;
let TAN_OPPOSITE_ADJACENT = prove
(`!A B C:real^N.
orthogonal (A - B) (C - B) /\ ~(A = B)
==> dist(A,B) * tan(angle(B,A,C)) = dist(C,B)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[tan] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP COS_ADJACENT_HYPOTENUSE) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP SIN_OPPOSITE_HYPOTENUSE) THEN
ASM_CASES_TAC `cos (angle (B:real^N,A,C)) = &0` THENL
[ALL_TAC; POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD] THEN
ASM_REWRITE_TAC[REAL_MUL_RZERO; real_div; REAL_MUL_RZERO; REAL_INV_0] THEN
ASM_MESON_TAC[DIST_EQ_0]);;
let TAN_OPPOSITE_OVER_ADJACENT = prove
(`!A B C:real^N.
orthogonal (A - B) (C - B)
==> tan(angle(B,A,C)) = dist(C,B) / dist(A,B)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `A:real^N = B` THENL
[ASM_REWRITE_TAC[angle; VECTOR_SUB_REFL; vector_angle] THEN
REWRITE_TAC[tan; COS_PI2; DIST_REFL; real_div; REAL_INV_0; REAL_MUL_RZERO];
ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; DIST_POS_LT] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
ASM_SIMP_TAC[TAN_OPPOSITE_ADJACENT]]);;
(* ------------------------------------------------------------------------- *)
(* The law of cosines. *)
(* ------------------------------------------------------------------------- *)
let LAW_OF_COSINES = prove
(`!A B C:real^N.
dist(B,C) pow 2 = (dist(A,B) pow 2 + dist(A,C) pow 2) -
&2 * dist(A,B) * dist(A,C) * cos(angle(B,A,C))`,
REPEAT GEN_TAC THEN
REWRITE_TAC[angle; ONCE_REWRITE_RULE[NORM_SUB] dist; GSYM VECTOR_ANGLE;
NORM_POW_2] THEN
VECTOR_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* The law of sines. *)
(* ------------------------------------------------------------------------- *)
let LAW_OF_SINES = prove
(`!A B C:real^N.
sin(angle(A,B,C)) * dist(B,C) = sin(angle(B,A,C)) * dist(A,C)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_POW_EQ THEN EXISTS_TAC `2` THEN
SIMP_TAC[SIN_ANGLE_POS; DIST_POS_LE; REAL_LE_MUL; ARITH] THEN
REWRITE_TAC[REAL_POW_MUL; MATCH_MP
(REAL_ARITH `x + y = &1 ==> x = &1 - y`) (SPEC_ALL SIN_CIRCLE)] THEN
ASM_CASES_TAC `A:real^N = B` THEN ASM_REWRITE_TAC[ANGLE_REFL; COS_PI2] THEN
RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM VECTOR_SUB_EQ]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM NORM_EQ_0]) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_RING
`~(a = &0) ==> a pow 2 * x = a pow 2 * y ==> x = y`)) THEN
ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[GSYM dist] THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [DIST_SYM] THEN
REWRITE_TAC[REAL_RING
`a * (&1 - x) * b = c * (&1 - y) * d <=>
a * b - a * b * x = c * d - c * d * y`] THEN
REWRITE_TAC[GSYM REAL_POW_MUL; GSYM ANGLE] THEN
REWRITE_TAC[REAL_POW_MUL; dist; NORM_POW_2] THEN
REWRITE_TAC[DOT_LSUB; DOT_RSUB; DOT_SYM] THEN CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* The sum of the angles of a triangle. *)
(* ------------------------------------------------------------------------- *)
let TRIANGLE_ANGLE_SUM_LEMMA = prove
(`!A B C:real^N. ~(A = B) /\ ~(A = C) /\ ~(B = C)
==> cos(angle(B,A,C) + angle(A,B,C) + angle(B,C,A)) = -- &1`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
REWRITE_TAC[GSYM NORM_EQ_0] THEN
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] LAW_OF_COSINES) THEN
MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] LAW_OF_COSINES) THEN
MP_TAC(ISPECL [`C:real^N`; `B:real^N`; `A:real^N`] LAW_OF_COSINES) THEN
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] LAW_OF_SINES) THEN
MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] LAW_OF_SINES) THEN
MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `A:real^N`] LAW_OF_SINES) THEN
REWRITE_TAC[COS_ADD; SIN_ADD; dist; NORM_SUB] THEN
MAP_EVERY (fun t -> MP_TAC(SPEC t SIN_CIRCLE))
[`angle(B:real^N,A,C)`; `angle(A:real^N,B,C)`; `angle(B:real^N,C,A)`] THEN
REWRITE_TAC[COS_ADD; SIN_ADD; ANGLE_SYM] THEN CONV_TAC REAL_RING);;
let COS_MINUS1_LEMMA = prove
(`!x. cos(x) = -- &1 /\ &0 <= x /\ x < &3 * pi ==> x = pi`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `?n. integer n /\ x = n * pi`
(X_CHOOSE_THEN `nn:real` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
REWRITE_TAC[GSYM SIN_EQ_0] THENL
[MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN ASM_REWRITE_TAC[] THEN
CONV_TAC REAL_RING;
ALL_TAC] THEN
SUBGOAL_THEN `?n. nn = &n` (X_CHOOSE_THEN `n:num` SUBST_ALL_TAC) THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_MUL_POS_LE]) THEN
SIMP_TAC[PI_POS; REAL_ARITH `&0 < p ==> ~(p < &0) /\ ~(p = &0)`] THEN
ASM_MESON_TAC[INTEGER_POS; REAL_LT_LE];
ALL_TAC] THEN
MATCH_MP_TAC(REAL_RING `n = &1 ==> n * p = p`) THEN
REWRITE_TAC[REAL_OF_NUM_EQ] THEN
MATCH_MP_TAC(ARITH_RULE `n < 3 /\ ~(n = 0) /\ ~(n = 2) ==> n = 1`) THEN
RULE_ASSUM_TAC(SIMP_RULE[REAL_LT_RMUL_EQ; PI_POS; REAL_OF_NUM_LT]) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN SIMP_TAC[COS_0; REAL_MUL_LZERO; COS_NPI] THEN
REAL_ARITH_TAC);;
let TRIANGLE_ANGLE_SUM = prove
(`!A B C:real^N. ~(A = B /\ B = C /\ A = C)
==> angle(B,A,C) + angle(A,B,C) + angle(B,C,A) = pi`,
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC
[`A:real^N = B`; `B:real^N = C`; `A:real^N = C`] THEN
ASM_SIMP_TAC[ANGLE_REFL_MID; ANGLE_REFL; REAL_HALF; REAL_ADD_RID] THEN
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[REAL_ADD_LID; REAL_HALF] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC COS_MINUS1_LEMMA THEN
ASM_SIMP_TAC[TRIANGLE_ANGLE_SUM_LEMMA; REAL_LE_ADD; ANGLE_RANGE] THEN
MATCH_MP_TAC(REAL_ARITH
`&0 <= x /\ x <= p /\ &0 <= y /\ y <= p /\ &0 <= z /\ z <= p /\
~(x = p /\ y = p /\ z = p)
==> x + y + z < &3 * p`) THEN
ASM_SIMP_TAC[ANGLE_RANGE] THEN REPEAT STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ANGLE_EQ_PI_DIST])) THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV
[GSYM VECTOR_SUB_EQ])) THEN
REWRITE_TAC[GSYM NORM_EQ_0; dist; NORM_SUB] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* A few more lemmas about angles. *)
(* ------------------------------------------------------------------------- *)
let ANGLE_EQ_PI_OTHERS = prove
(`!A B C:real^N.
angle(A,B,C) = pi
==> angle(B,C,A) = &0 /\ angle(A,C,B) = &0 /\
angle(B,A,C) = &0 /\ angle(C,A,B) = &0`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [ANGLE_EQ_PI_DIST]) THEN
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] TRIANGLE_ANGLE_SUM) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
`x + p + y = p ==> &0 <= x /\ &0 <= y ==> x = &0 /\ y = &0`)) THEN
SIMP_TAC[ANGLE_RANGE; ANGLE_SYM]);;
let ANGLE_EQ_0_DIST = prove
(`!A B C:real^N. angle(A,B,C) = &0 <=>
~(A = B) /\ ~(C = B) /\
(dist(A,B) = dist(A,C) + dist(C,B) \/
dist(B,C) = dist(A,C) + dist(A,B))`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `A:real^N = B` THENL
[ASM_REWRITE_TAC[angle; VECTOR_ANGLE_EQ_0; VECTOR_SUB_EQ]; ALL_TAC] THEN
ASM_CASES_TAC `B:real^N = C` THENL
[ASM_REWRITE_TAC[angle; VECTOR_ANGLE_EQ_0; VECTOR_SUB_EQ]; ALL_TAC] THEN
ASM_CASES_TAC `A:real^N = C` THENL
[ASM_SIMP_TAC[ANGLE_REFL_MID; DIST_REFL; REAL_ADD_LID]; ALL_TAC] THEN
EQ_TAC THENL
[ALL_TAC;
STRIP_TAC THENL
[MP_TAC(ISPECL[`A:real^N`; `C:real^N`; `B:real^N`] ANGLE_EQ_PI_DIST);
MP_TAC(ISPECL[`B:real^N`; `A:real^N`; `C:real^N`] ANGLE_EQ_PI_DIST)] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[DIST_SYM; REAL_ADD_AC] THEN
DISCH_THEN(MP_TAC o MATCH_MP ANGLE_EQ_PI_OTHERS) THEN SIMP_TAC[]] THEN
ASM_REWRITE_TAC[angle; VECTOR_ANGLE_EQ_0; VECTOR_SUB_EQ] THEN
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
(ISPECL [`norm(A - B:real^N)`; `norm(C - B:real^N)`]
REAL_LT_TOTAL)
THENL
[ASM_REWRITE_TAC[VECTOR_MUL_LCANCEL; NORM_EQ_0; VECTOR_SUB_EQ;
VECTOR_ARITH `c - b:real^N = a - b <=> a = c`];
ONCE_REWRITE_TAC[VECTOR_ARITH
`norm(A - B) % (C - B) = norm(C - B) % (A - B) <=>
(norm(C - B) - norm(A - B)) % (A - B) = norm(A - B) % (C - A)`];
ONCE_REWRITE_TAC[VECTOR_ARITH
`norm(A - B) % (C - B) = norm(C - B) % (A - B) <=>
(norm(A - B) - norm(C - B)) % (C - B) = norm(C - B) % (A - C)`]] THEN
DISCH_THEN(MP_TAC o MATCH_MP
(REWRITE_RULE[IMP_CONJ] NORM_CROSS_MULTIPLY)) THEN
ASM_SIMP_TAC[REAL_SUB_LT; NORM_POS_LT; VECTOR_SUB_EQ] THEN
SIMP_TAC[GSYM DIST_TRIANGLE_EQ] THEN SIMP_TAC[DIST_SYM]);;
let ANGLE_EQ_0_DIST_ABS = prove
(`!A B C:real^N. angle(A,B,C) = &0 <=>
~(A = B) /\ ~(C = B) /\
dist(A,C) = abs(dist(A,B) - dist(C,B))`,
REPEAT GEN_TAC THEN REWRITE_TAC[ANGLE_EQ_0_DIST] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN
MP_TAC(ISPECL [`A:real^N`; `C:real^N`] DIST_POS_LE) THEN
REWRITE_TAC[DIST_SYM] THEN REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Some rules for congruent triangles (not necessarily in the same real^N). *)
(* ------------------------------------------------------------------------- *)
let CONGRUENT_TRIANGLES_SSS = prove
(`!A B C:real^M A' B' C':real^N.
dist(A,B) = dist(A',B') /\
dist(B,C) = dist(B',C') /\
dist(C,A) = dist(C',A')
==> angle(A,B,C) = angle(A',B',C')`,
REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC
[`dist(A':real^N,B') = &0`; `dist(B':real^N,C') = &0`] THEN
ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[DIST_EQ_0]) THEN
ASM_SIMP_TAC[ANGLE_REFL_MID; ANGLE_REFL] THEN
ONCE_REWRITE_TAC[GSYM COS_ANGLE_EQ] THEN
MP_TAC(ISPECL [`B:real^M`; `A:real^M`; `C:real^M`] LAW_OF_COSINES) THEN
MP_TAC(ISPECL [`B':real^N`; `A':real^N`; `C':real^N`] LAW_OF_COSINES) THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[GSYM DIST_EQ_0; DIST_SYM] THEN
CONV_TAC REAL_FIELD);;
let CONGRUENT_TRIANGLES_SAS = prove
(`!A B C:real^M A' B' C':real^N.
dist(A,B) = dist(A',B') /\
angle(A,B,C) = angle(A',B',C') /\
dist(B,C) = dist(B',C')
==> dist(A,C) = dist(A',C')`,
REPEAT STRIP_TAC THEN REWRITE_TAC[DIST_EQ] THEN
MP_TAC(ISPECL [`B:real^M`; `A:real^M`; `C:real^M`] LAW_OF_COSINES) THEN
MP_TAC(ISPECL [`B':real^N`; `A':real^N`; `C':real^N`] LAW_OF_COSINES) THEN
REPEAT(DISCH_THEN SUBST1_TAC) THEN
REPEAT BINOP_TAC THEN ASM_MESON_TAC[DIST_SYM]);;
let CONGRUENT_TRIANGLES_AAS = prove
(`!A B C:real^M A' B' C':real^N.
angle(A,B,C) = angle(A',B',C') /\
angle(B,C,A) = angle(B',C',A') /\
dist(A,B) = dist(A',B') /\
~(collinear {A,B,C})
==> dist(A,C) = dist(A',C') /\ dist(B,C) = dist(B',C')`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^M = B` THENL
[FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[INSERT_AC; COLLINEAR_2];
ALL_TAC] THEN
DISCH_TAC THEN SUBGOAL_THEN `~(A':real^N = B')` ASSUME_TAC THENL
[ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN
SUBGOAL_THEN `angle(C:real^M,A,B) = angle(C':real^N,A',B')` ASSUME_TAC THENL
[MP_TAC(ISPECL [`A:real^M`; `B:real^M`; `C:real^M`] TRIANGLE_ANGLE_SUM) THEN
MP_TAC(ISPECL [`A':real^N`; `B':real^N`; `C':real^N`]
TRIANGLE_ANGLE_SUM) THEN ASM_REWRITE_TAC[IMP_IMP] THEN
REWRITE_TAC[ANGLE_SYM] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
[MP_TAC(ISPECL [`C:real^M`; `B:real^M`; `A:real^M`] LAW_OF_SINES) THEN
MP_TAC(ISPECL [`C':real^N`; `B':real^N`; `A':real^N`] LAW_OF_SINES) THEN
SUBGOAL_THEN `~(sin(angle(B':real^N,C',A')) = &0)` MP_TAC THENL
[ASM_MESON_TAC[COLLINEAR_SIN_ANGLE_IMP; INSERT_AC];
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ANGLE_SYM; DIST_SYM] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[ANGLE_SYM; DIST_SYM] THEN
CONV_TAC REAL_FIELD];
ASM_MESON_TAC[CONGRUENT_TRIANGLES_SAS; DIST_SYM; ANGLE_SYM]]);;
let CONGRUENT_TRIANGLES_ASA = prove
(`!A B C:real^M A' B' C':real^N.
angle(A,B,C) = angle(A',B',C') /\
dist(A,B) = dist(A',B') /\
angle(B,A,C) = angle(B',A',C') /\
~(collinear {A,B,C})
==> dist(A,C) = dist(A',C')`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^M = B` THENL
[FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[INSERT_AC; COLLINEAR_2];
ALL_TAC] THEN
REPEAT STRIP_TAC THEN SUBGOAL_THEN `~(A':real^N = B')` ASSUME_TAC THENL
[ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN
MP_TAC(ISPECL [`A:real^M`; `B:real^M`; `C:real^M`] TRIANGLE_ANGLE_SUM) THEN
MP_TAC(ISPECL [`A':real^N`; `B':real^N`; `C':real^N`]
TRIANGLE_ANGLE_SUM) THEN
ASM_REWRITE_TAC[IMP_IMP] THEN
DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
`a + b + x = pi /\ a + b + y = pi ==> x = y`)) THEN
ASM_MESON_TAC[CONGRUENT_TRIANGLES_AAS; DIST_SYM; ANGLE_SYM]);;
(* ------------------------------------------------------------------------- *)
(* Full versions where we deduce everything from the conditions. *)
(* ------------------------------------------------------------------------- *)
let CONGRUENT_TRIANGLES_SSS_FULL = prove
(`!A B C:real^M A' B' C':real^N.
dist(A,B) = dist(A',B') /\
dist(B,C) = dist(B',C') /\
dist(C,A) = dist(C',A')
==> dist(A,B) = dist(A',B') /\
dist(B,C) = dist(B',C') /\
dist(C,A) = dist(C',A') /\
angle(A,B,C) = angle(A',B',C') /\
angle(B,C,A) = angle(B',C',A') /\
angle(C,A,B) = angle(C',A',B')`,
MESON_TAC[CONGRUENT_TRIANGLES_SSS; DIST_SYM; ANGLE_SYM]);;
let CONGRUENT_TRIANGLES_SAS_FULL = prove
(`!A B C:real^M A' B' C':real^N.
dist(A,B) = dist(A',B') /\
angle(A,B,C) = angle(A',B',C') /\
dist(B,C) = dist(B',C')
==> dist(A,B) = dist(A',B') /\
dist(B,C) = dist(B',C') /\
dist(C,A) = dist(C',A') /\
angle(A,B,C) = angle(A',B',C') /\
angle(B,C,A) = angle(B',C',A') /\
angle(C,A,B) = angle(C',A',B')`,
MESON_TAC[CONGRUENT_TRIANGLES_SSS; DIST_SYM; ANGLE_SYM;
CONGRUENT_TRIANGLES_SAS]);;
let CONGRUENT_TRIANGLES_AAS_FULL = prove
(`!A B C:real^M A' B' C':real^N.
angle(A,B,C) = angle(A',B',C') /\
angle(B,C,A) = angle(B',C',A') /\
dist(A,B) = dist(A',B') /\
~(collinear {A,B,C})
==> dist(A,B) = dist(A',B') /\
dist(B,C) = dist(B',C') /\
dist(C,A) = dist(C',A') /\
angle(A,B,C) = angle(A',B',C') /\
angle(B,C,A) = angle(B',C',A') /\
angle(C,A,B) = angle(C',A',B')`,
MESON_TAC[CONGRUENT_TRIANGLES_SSS; DIST_SYM; ANGLE_SYM;
CONGRUENT_TRIANGLES_AAS]);;
let CONGRUENT_TRIANGLES_ASA_FULL = prove
(`!A B C:real^M A' B' C':real^N.
angle(A,B,C) = angle(A',B',C') /\
dist(A,B) = dist(A',B') /\
angle(B,A,C) = angle(B',A',C') /\
~(collinear {A,B,C})
==> dist(A,B) = dist(A',B') /\
dist(B,C) = dist(B',C') /\
dist(C,A) = dist(C',A') /\
angle(A,B,C) = angle(A',B',C') /\
angle(B,C,A) = angle(B',C',A') /\
angle(C,A,B) = angle(C',A',B')`,
MESON_TAC[CONGRUENT_TRIANGLES_ASA; CONGRUENT_TRIANGLES_SAS_FULL;
DIST_SYM; ANGLE_SYM]);;
(* ------------------------------------------------------------------------- *)
(* Between-ness. *)
(* ------------------------------------------------------------------------- *)
let ANGLE_BETWEEN = prove
(`!a b x. angle(a,x,b) = pi <=> ~(x = a) /\ ~(x = b) /\ between x (a,b)`,
REPEAT GEN_TAC THEN REWRITE_TAC[between; ANGLE_EQ_PI_DIST] THEN
REWRITE_TAC[EQ_SYM_EQ]);;
let BETWEEN_ANGLE = prove
(`!a b x. between x (a,b) <=> x = a \/ x = b \/ angle(a,x,b) = pi`,
REPEAT GEN_TAC THEN REWRITE_TAC[ANGLE_BETWEEN] THEN
MESON_TAC[BETWEEN_REFL]);;
let ANGLES_ALONG_LINE = prove
(`!A B C D:real^N.
~(C = A) /\ ~(C = B) /\ between C (A,B)
==> angle(A,C,D) + angle(B,C,D) = pi`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM ANGLE_BETWEEN] THEN
DISCH_THEN(SUBST1_TAC o MATCH_MP ANGLE_EQ_PI_LEFT) THEN REAL_ARITH_TAC);;
let ANGLES_ADD_BETWEEN = prove
(`!A B C D:real^N.
between C (A,B) /\ ~(D = A) /\ ~(D = B)
==> angle(A,D,C) + angle(C,D,B) = angle(A,D,B)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^N = B` THENL
[ASM_SIMP_TAC[BETWEEN_REFL_EQ] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ADD_LID];
ALL_TAC] THEN
ASM_CASES_TAC `C:real^N = A` THEN
ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ADD_LID] THEN
ASM_CASES_TAC `C:real^N = B` THEN
ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ADD_RID] THEN
STRIP_TAC THEN
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`; `D:real^N`]
ANGLES_ALONG_LINE) THEN
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN
MP_TAC(ISPECL [`A:real^N`; `C:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN
MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `angle(C:real^N,A,D) = angle(B,A,D) /\
angle(A,B,D) = angle(C,B,D)`
(CONJUNCTS_THEN SUBST1_TAC)
THENL [ALL_TAC; REWRITE_TAC[ANGLE_SYM] THEN REAL_ARITH_TAC] THEN
CONJ_TAC THEN MATCH_MP_TAC ANGLE_EQ_0_RIGHT THEN
ASM_MESON_TAC[ANGLE_EQ_PI_OTHERS; BETWEEN_ANGLE]);;
(* ------------------------------------------------------------------------- *)
(* Distance from a point to a line expressed with angles. *)
(* ------------------------------------------------------------------------- *)
let SETDIST_POINT_LINE = prove
(`!x y z:real^N.
setdist({x},affine hull {y,z}) = dist(x,y) * sin(angle(x,y,z))`,
REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `y:real^N` THEN
REPEAT GEN_TAC THEN
SIMP_TAC[SETDIST_CLOSEST_POINT; CLOSED_AFFINE_HULL;
AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN
ABBREV_TAC `y = closest_point (affine hull {vec 0, z}) (x:real^N)` THEN
MP_TAC(ISPECL [`vec 0:real^N`; `y:real^N`; `x:real^N`]
SIN_OPPOSITE_HYPOTENUSE) THEN
MP_TAC(ISPECL [`affine hull {vec 0:real^N, z}`; `x:real^N`; `vec 0:real^N`]
CLOSEST_POINT_AFFINE_ORTHOGONAL) THEN
ASM_SIMP_TAC[HULL_INC; IN_INSERT; AFFINE_AFFINE_HULL;
AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN
DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[DIST_SYM] THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [ANGLE_SYM] THEN
MP_TAC(ISPECL [`affine hull {vec 0:real^N, z}`; `x:real^N`]
CLOSEST_POINT_IN_SET) THEN
ASM_SIMP_TAC[CLOSED_AFFINE_HULL; AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN
SIMP_TAC[AFFINE_HULL_2; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN
MAP_EVERY X_GEN_TAC [`b:real`; `a:real`] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`affine hull {vec 0:real^N, z}`; `x:real^N`; `z:real^N`]
CLOSEST_POINT_AFFINE_ORTHOGONAL) THEN
ASM_SIMP_TAC[HULL_INC; IN_INSERT; AFFINE_AFFINE_HULL;
AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN
REWRITE_TAC[angle; VECTOR_SUB_RZERO; SIN_VECTOR_ANGLE_LMUL] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_SUB_RZERO] THEN
SIMP_TAC[ORTHOGONAL_VECTOR_ANGLE; SIN_PI2]);;
(* ------------------------------------------------------------------------- *)
(* A standard formula for the area of a triangle. *)
(* ------------------------------------------------------------------------- *)
let AREA_TRIANGLE_SIN = prove
(`!a b c:real^2.
measure(convex hull {a,b,c}) =
(dist(a,b) * dist(a,c) * sin(angle(b,a,c))) / &2`,
GEOM_ORIGIN_TAC `a:real^2` THEN
REWRITE_TAC[MEASURE_TRIANGLE; angle] THEN
REWRITE_TAC[VECTOR_SUB_RZERO; VEC_COMPONENT; REAL_SUB_RZERO; DIST_0] THEN
REPEAT GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH
`&0 <= y /\ abs x = abs y ==> abs x / &2 = y / &2`) THEN
SIMP_TAC[REAL_LE_MUL; NORM_POS_LE; SIN_VECTOR_ANGLE_POS] THEN
REWRITE_TAC[REAL_EQ_SQUARE_ABS] THEN
ASM_CASES_TAC `b:real^2 = vec 0` THENL
[ASM_REWRITE_TAC[VEC_COMPONENT; NORM_0] THEN REAL_ARITH_TAC; ALL_TAC] THEN
ASM_CASES_TAC `c:real^2 = vec 0` THENL
[ASM_REWRITE_TAC[VEC_COMPONENT; NORM_0] THEN REAL_ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[REAL_POW_MUL; SIN_SQUARED_VECTOR_ANGLE] THEN
ASM_SIMP_TAC[NORM_EQ_0; REAL_FIELD
`~(b = &0) /\ ~(c = &0)
==> b pow 2 * c pow 2 * (&1 - (d / (b * c)) pow 2) =
b pow 2 * c pow 2 - d pow 2`] THEN
REWRITE_TAC[NORM_POW_2; DOT_2] THEN CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Angles satisfy the triangle law and hence vector_angle defines a metric. *)
(* ------------------------------------------------------------------------- *)
let ANGLE_TRIANGLE_LAW = prove
(`!p u v w:real^N. angle(u,p,w) <= angle(u,p,v) + angle(v,p,w)`,
let lemma0 = prove
(`x1 * x1 + y1 * y1 + z1 * z1 = &1 /\ x2 * x2 + y2 * y2 + z2 * z2 = &1
==> (x2 * x1 - (x2 * x1 + y2 * y1 + z2 * z1)) pow 2 <=
(&1 - x2 pow 2) * (&1 - x1 pow 2)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[REAL_ARITH
`(x2 * x1 - (x2 * x1 + y2 * y1 + z2 * z1)) pow 2 <=
(&1 - x2 pow 2) * (&1 - x1 pow 2)
<=> &0 <= --(y1 pow 2 + z1 pow 2) *
((x2 * x2 + y2 * y2 + z2 * z2) - &1) +
(x2 pow 2 - &1) * ((x1 * x1 + y1 * y1 + z1 * z1) - &1) +
(y2 * z1 - y1 * z2) pow 2`] THEN
ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; REAL_ADD_LID] THEN
REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE]) in
let lemma1 = prove
(`!p u v w:real^3.
norm(u - p) = &1 /\ norm(v - p) = &1 /\ norm(w - p) = &1
==> angle(u,p,w) <= angle(u,p,v) + angle(v,p,w)`,
GEOM_ORIGIN_TAC `p:real^3` THEN
REWRITE_TAC[angle; VECTOR_SUB_RZERO] THEN
GEOM_BASIS_MULTIPLE_TAC 1 `v:real^3` THEN
X_GEN_TAC `vb:real` THEN
SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_GE_1; LE_REFL] THEN
SIMP_TAC[REAL_ARITH `&0 <= vb ==> (abs(vb) * &1 = &1 <=> vb = &1)`] THEN
DISCH_THEN(K ALL_TAC) THEN ASM_CASES_TAC `vb = &1` THEN
ASM_REWRITE_TAC[VECTOR_MUL_LID] THEN POP_ASSUM(K ALL_TAC) THEN
REPEAT GEN_TAC THEN
SUBGOAL_THEN `~(basis 1:real^3 = vec 0)` ASSUME_TAC THENL
[ASM_SIMP_TAC[BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL]; ALL_TAC] THEN
MAP_EVERY ASM_CASES_TAC
[`u:real^3 = vec 0`; `w:real^3 = vec 0`] THEN
ASM_REWRITE_TAC[NORM_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH
`&0 <= x /\ x <= pi /\ &0 <= y /\ y <= pi /\ &0 <= z /\ z <= pi /\
(&0 <= y + z /\ y + z <= pi ==> x <= y + z)
==> x <= y + z`) THEN
REWRITE_TAC[VECTOR_ANGLE_RANGE] THEN STRIP_TAC THEN
W(MP_TAC o PART_MATCH (rand o rand) COS_MONO_LE_EQ o snd) THEN
ASM_REWRITE_TAC[VECTOR_ANGLE_RANGE] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
ASM_SIMP_TAC[COS_ADD; COS_VECTOR_ANGLE; VECTOR_SUB_RZERO] THEN
REWRITE_TAC[REAL_MUL_LID; REAL_DIV_1] THEN
MATCH_MP_TAC(REAL_ARITH
`abs(x - z) <= abs(y) /\ &0 <= y ==> x - y <= z`) THEN
ASM_SIMP_TAC[SIN_VECTOR_ANGLE_POS; REAL_LE_MUL; REAL_LE_SQUARE_ABS] THEN
ASM_REWRITE_TAC[REAL_POW_MUL; SIN_SQUARED_VECTOR_ANGLE] THEN
ASM_REWRITE_TAC[VECTOR_SUB_RZERO; REAL_MUL_LID; REAL_DIV_1] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NORM_EQ_1])) THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`u:real^3`; `w:real^3`] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN REWRITE_TAC[FORALL_VECTOR_3] THEN
SIMP_TAC[DOT_BASIS; DIMINDEX_GE_1; LE_REFL; NORM_BASIS] THEN
REWRITE_TAC[REAL_MUL_LID; REAL_DIV_1] THEN
REWRITE_TAC[DOT_3; VECTOR_3] THEN SIMP_TAC[lemma0]) in
let lemma2 = prove
(`!p u v w:real^3. angle(u,p,w) <= angle(u,p,v) + angle(v,p,w)`,
GEOM_ORIGIN_TAC `p:real^3` THEN REPEAT GEN_TAC THEN
ASM_CASES_TAC `u:real^3 = vec 0` THENL
[MATCH_MP_TAC(REAL_ARITH `x = pi / &2 /\ y = pi / &2 /\ &0 <= z
==> x <= y + z`) THEN
REWRITE_TAC[angle; VECTOR_ANGLE_RANGE] THEN
ASM_REWRITE_TAC[vector_angle; VECTOR_SUB_RZERO];
ALL_TAC] THEN
ASM_CASES_TAC `v:real^3 = vec 0` THENL
[MATCH_MP_TAC(REAL_ARITH `x <= pi /\ y = pi / &2 /\ z = pi / &2
==> x <= y + z`) THEN
REWRITE_TAC[angle; VECTOR_ANGLE_RANGE] THEN
ASM_REWRITE_TAC[vector_angle; VECTOR_SUB_RZERO];
ALL_TAC] THEN
ASM_CASES_TAC `w:real^3 = vec 0` THENL
[MATCH_MP_TAC(REAL_ARITH `x = pi / &2 /\ &0 <= y /\ z = pi / &2
==> x <= y + z`) THEN
REWRITE_TAC[angle; VECTOR_ANGLE_RANGE] THEN
ASM_REWRITE_TAC[vector_angle; VECTOR_SUB_RZERO];
ALL_TAC] THEN
MP_TAC(ISPECL [`vec 0:real^3`; `inv(norm u) % u:real^3`;
`inv(norm v) % v:real^3`; `inv(norm w) % w:real^3`]
lemma1) THEN
ASM_SIMP_TAC[angle; VECTOR_SUB_RZERO; NORM_MUL] THEN
ASM_SIMP_TAC[REAL_ABS_INV; REAL_ABS_NORM; REAL_MUL_LINV; NORM_EQ_0] THEN
ASM_REWRITE_TAC[VECTOR_ANGLE_LMUL; VECTOR_ANGLE_RMUL] THEN
ASM_REWRITE_TAC[REAL_INV_EQ_0; NORM_EQ_0; REAL_LE_INV_EQ; NORM_POS_LE]) in
DISJ_CASES_TAC(ARITH_RULE
`dimindex(:3) <= dimindex(:N) \/ dimindex(:N) <= dimindex(:3)`)
THENL
[ALL_TAC;
FIRST_ASSUM(ACCEPT_TAC o C GEOM_DROP_DIMENSION_RULE
lemma2)] THEN
GEOM_ORIGIN_TAC `p:real^N` THEN REPEAT GEN_TAC THEN
SUBGOAL_THEN `subspace(span{u:real^N,v,w}) /\
dim(span{u,v,w}) <= dimindex(:3) /\
dimindex(:3) <= dimindex(:N)`
MP_TAC THENL
[ASM_REWRITE_TAC[SUBSPACE_SPAN; DIM_SPAN] THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD{u:real^N,v,w}` THEN
SIMP_TAC[DIM_LE_CARD; FINITE_INSERT; FINITE_EMPTY] THEN
SIMP_TAC[DIMINDEX_3; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN
ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP ISOMETRY_UNIV_SUPERSET_SUBSPACE) THEN
DISCH_THEN(X_CHOOSE_THEN `f:real^3->real^N` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP LINEAR_0) THEN
SUBGOAL_THEN `{u:real^N,v,w} SUBSET IMAGE f (:real^3)` MP_TAC THENL
[ASM_MESON_TAC[SUBSET; SPAN_INC]; ALL_TAC] THEN
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_IMAGE; IN_UNIV] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
MP_TAC(end_itlist CONJ
(mapfilter (ISPEC `f:real^3->real^N`) (!invariant_under_linear))) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
REWRITE_TAC[lemma2]);;
let VECTOR_ANGLE_TRIANGLE_LAW = prove
(`!u v w:real^N. vector_angle u w <= vector_angle u v + vector_angle v w`,
REWRITE_TAC[VECTOR_ANGLE_ANGLE; ANGLE_TRIANGLE_LAW]);;
|