Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 57,518 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
(* ========================================================================= *)
(* Some geometric notions in real^N.                                         *)
(* ========================================================================= *)

needs "Multivariate/realanalysis.ml";;

prioritize_vector();;

(* ------------------------------------------------------------------------- *)
(* Pythagoras's theorem is almost immediate.                                 *)
(* ------------------------------------------------------------------------- *)

let PYTHAGORAS = prove
 (`!A B C:real^N.
        orthogonal (A - B) (C - B)
        ==> norm(C - A) pow 2 = norm(B - A) pow 2 + norm(C - B) pow 2`,
  REWRITE_TAC[NORM_POW_2; orthogonal; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN
  CONV_TAC REAL_RING);;

(* ------------------------------------------------------------------------- *)
(* Angle between vectors (always 0 <= angle <= pi).                          *)
(* ------------------------------------------------------------------------- *)

let vector_angle = new_definition
 `vector_angle x y = if x = vec 0 \/ y = vec 0 then pi / &2
               else acs((x dot y) / (norm x * norm y))`;;

let VECTOR_ANGLE_LINEAR_IMAGE_EQ = prove
 (`!f x y. linear f /\ (!x. norm(f x) = norm x)
           ==> (vector_angle (f x) (f y) = vector_angle x y)`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[vector_angle; GSYM NORM_EQ_0] THEN
  ASM_MESON_TAC[PRESERVES_NORM_PRESERVES_DOT]);;

add_linear_invariants [VECTOR_ANGLE_LINEAR_IMAGE_EQ];;

let VECTOR_ANGLE_ORTHOGONAL_TRANSFORMATION = prove
 (`!f x y:real^N.
        orthogonal_transformation f
        ==> vector_angle (f x) (f y) = vector_angle x y`,
  REWRITE_TAC[ORTHOGONAL_TRANSFORMATION; VECTOR_ANGLE_LINEAR_IMAGE_EQ]);;

(* ------------------------------------------------------------------------- *)
(* Basic properties of vector angles.                                        *)
(* ------------------------------------------------------------------------- *)

let VECTOR_ANGLE_REFL = prove
 (`!x. vector_angle x x = if x = vec 0 then pi / &2 else &0`,
  GEN_TAC THEN REWRITE_TAC[vector_angle; DISJ_ACI] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM NORM_POW_2; REAL_POW_2] THEN
  ASM_SIMP_TAC[REAL_DIV_REFL; REAL_ENTIRE; NORM_EQ_0; ACS_1]);;

let VECTOR_ANGLE_SYM = prove
 (`!x y. vector_angle x y = vector_angle y x`,
  REWRITE_TAC[vector_angle; DISJ_SYM; DOT_SYM; REAL_MUL_SYM]);;

let VECTOR_ANGLE_LMUL = prove
 (`!a x y:real^N.
        vector_angle (a % x) y =
                if a = &0 then pi / &2
                else if &0 <= a then vector_angle x y
                else pi - vector_angle x y`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
  ASM_REWRITE_TAC[vector_angle; VECTOR_MUL_EQ_0] THEN
  ASM_CASES_TAC `x:real^N = vec 0 \/ y:real^N = vec 0` THEN
  ASM_REWRITE_TAC[] THENL [REAL_ARITH_TAC; ALL_TAC] THEN
  REWRITE_TAC[NORM_MUL; DOT_LMUL; real_div; REAL_INV_MUL; real_abs] THEN
  COND_CASES_TAC THEN
  ASM_REWRITE_TAC[REAL_INV_NEG; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN
  ASM_SIMP_TAC[REAL_FIELD
   `~(a = &0) ==> (a * x) * (inv a * y) * z = x * y * z`] THEN
  MATCH_MP_TAC ACS_NEG THEN
  REWRITE_TAC[GSYM REAL_ABS_BOUNDS; GSYM REAL_INV_MUL] THEN
  REWRITE_TAC[GSYM real_div; NORM_CAUCHY_SCHWARZ_DIV]);;

let VECTOR_ANGLE_RMUL = prove
 (`!a x y:real^N.
        vector_angle x (a % y) =
                if a = &0 then pi / &2
                else if &0 <= a then vector_angle x y
                else pi - vector_angle x y`,
  ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN
  REWRITE_TAC[VECTOR_ANGLE_LMUL]);;

let VECTOR_ANGLE_LNEG = prove
 (`!x y. vector_angle (--x) y = pi - vector_angle x y`,
  REWRITE_TAC[VECTOR_ARITH `--x = -- &1 % x`; VECTOR_ANGLE_LMUL] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV);;

let VECTOR_ANGLE_RNEG = prove
 (`!x y. vector_angle x (--y) = pi - vector_angle x y`,
  ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN REWRITE_TAC[VECTOR_ANGLE_LNEG]);;

let VECTOR_ANGLE_NEG2 = prove
 (`!x y. vector_angle (--x) (--y) = vector_angle x y`,
  REWRITE_TAC[VECTOR_ANGLE_LNEG; VECTOR_ANGLE_RNEG] THEN REAL_ARITH_TAC);;

let SIN_VECTOR_ANGLE_LMUL = prove
 (`!a x y:real^N.
        sin(vector_angle (a % x) y) =
        if a = &0 then &1 else sin(vector_angle x y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[VECTOR_ANGLE_LMUL] THEN
  ASM_CASES_TAC `a = &0` THEN ASM_REWRITE_TAC[SIN_PI2] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[SIN_SUB; SIN_PI; COS_PI] THEN
  REAL_ARITH_TAC);;

let SIN_VECTOR_ANGLE_RMUL = prove
 (`!a x y:real^N.
        sin(vector_angle x (a % y)) =
        if a = &0 then &1 else sin(vector_angle x y)`,
  ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN
  REWRITE_TAC[SIN_VECTOR_ANGLE_LMUL]);;

let VECTOR_ANGLE = prove
 (`!x y:real^N. x dot y = norm(x) * norm(y) * cos(vector_angle x y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[vector_angle] THEN
  ASM_CASES_TAC `x:real^N = vec 0` THEN
  ASM_REWRITE_TAC[DOT_LZERO; NORM_0; REAL_MUL_LZERO] THEN
  ASM_CASES_TAC `y:real^N = vec 0` THEN
  ASM_REWRITE_TAC[DOT_RZERO; NORM_0; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
  ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c:real = c * a * b`] THEN
  ASM_SIMP_TAC[GSYM REAL_EQ_LDIV_EQ; REAL_LT_MUL; NORM_POS_LT] THEN
  MATCH_MP_TAC(GSYM COS_ACS) THEN
  ASM_REWRITE_TAC[REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV]);;

let VECTOR_ANGLE_RANGE = prove
 (`!x y:real^N. &0 <= vector_angle x y /\ vector_angle x y <= pi`,
  REPEAT GEN_TAC THEN REWRITE_TAC[vector_angle] THEN COND_CASES_TAC THENL
   [MP_TAC PI_POS THEN REAL_ARITH_TAC; ALL_TAC] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN MATCH_MP_TAC ACS_BOUNDS THEN
  ASM_REWRITE_TAC[REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV]);;

let ORTHOGONAL_VECTOR_ANGLE = prove
 (`!x y:real^N. orthogonal x y <=> vector_angle x y = pi / &2`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[orthogonal; vector_angle] THEN
  ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_LZERO] THEN
  ASM_CASES_TAC `y:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_RZERO] THEN
  EQ_TAC THENL
   [SIMP_TAC[real_div; REAL_MUL_LZERO] THEN DISCH_TAC THEN
    REWRITE_TAC[GSYM real_div; GSYM COS_PI2] THEN
    MATCH_MP_TAC ACS_COS THEN MP_TAC PI_POS THEN REAL_ARITH_TAC;
    DISCH_THEN(MP_TAC o AP_TERM `cos`) THEN
    SIMP_TAC[COS_ACS; REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV; COS_PI2] THEN
    ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_LT_MUL; NORM_POS_LT; REAL_MUL_LZERO]]);;

let VECTOR_ANGLE_EQ_0 = prove
 (`!x y:real^N. vector_angle x y = &0 <=>
                ~(x = vec 0) /\ ~(y = vec 0) /\ norm(x) % y = norm(y) % x`,
  REPEAT GEN_TAC THEN
  MAP_EVERY ASM_CASES_TAC [`x:real^N = vec 0`; `y:real^N = vec 0`] THEN
  ASM_SIMP_TAC[vector_angle; PI_NZ; REAL_ARITH `x / &2 = &0 <=> x = &0`] THEN
  REWRITE_TAC[GSYM NORM_CAUCHY_SCHWARZ_EQ] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_MUL_LID] THEN
  ASM_SIMP_TAC[GSYM REAL_EQ_LDIV_EQ; NORM_POS_LT; REAL_LT_MUL] THEN
  MESON_TAC[ACS_1; COS_ACS; REAL_BOUNDS_LE; NORM_CAUCHY_SCHWARZ_DIV; COS_0]);;

let VECTOR_ANGLE_EQ_PI = prove
 (`!x y:real^N. vector_angle x y = pi <=>
                ~(x = vec 0) /\ ~(y = vec 0) /\
                norm(x) % y + norm(y) % x = vec 0`,
  REPEAT GEN_TAC THEN
  MP_TAC(ISPECL [`x:real^N`; `--y:real^N`] VECTOR_ANGLE_EQ_0) THEN
  SIMP_TAC[VECTOR_ANGLE_RNEG; REAL_ARITH `pi - x = &0 <=> x = pi`] THEN
  STRIP_TAC THEN
  REWRITE_TAC[NORM_NEG; VECTOR_ARITH `--x = vec 0 <=> x = vec 0`] THEN
  AP_TERM_TAC THEN AP_TERM_TAC THEN VECTOR_ARITH_TAC);;

let VECTOR_ANGLE_EQ_0_DIST = prove
 (`!x y:real^N. vector_angle x y = &0 <=>
                ~(x = vec 0) /\ ~(y = vec 0) /\ norm(x + y) = norm x + norm y`,
  REWRITE_TAC[VECTOR_ANGLE_EQ_0; GSYM NORM_TRIANGLE_EQ]);;

let VECTOR_ANGLE_EQ_PI_DIST = prove
 (`!x y:real^N. vector_angle x y = pi <=>
                ~(x = vec 0) /\ ~(y = vec 0) /\ norm(x - y) = norm x + norm y`,
  REPEAT GEN_TAC THEN
  MP_TAC(ISPECL [`x:real^N`; `--y:real^N`] VECTOR_ANGLE_EQ_0_DIST) THEN
  SIMP_TAC[VECTOR_ANGLE_RNEG; REAL_ARITH `pi - x = &0 <=> x = pi`] THEN
  STRIP_TAC THEN REWRITE_TAC[NORM_NEG] THEN NORM_ARITH_TAC);;

let SIN_VECTOR_ANGLE_POS = prove
 (`!v w. &0 <= sin(vector_angle v w)`,
  SIMP_TAC[SIN_POS_PI_LE; VECTOR_ANGLE_RANGE]);;

let SIN_VECTOR_ANGLE_EQ_0 = prove
 (`!x y. sin(vector_angle x y) = &0 <=>
           vector_angle x y = &0 \/ vector_angle x y = pi`,
  MESON_TAC[SIN_POS_PI; VECTOR_ANGLE_RANGE; REAL_LT_LE; SIN_0; SIN_PI]);;

let ASN_SIN_VECTOR_ANGLE = prove
 (`!x y:real^N.
        asn(sin(vector_angle x y)) =
          if vector_angle x y <= pi / &2 then vector_angle x y
          else pi - vector_angle x y`,
  REPEAT GEN_TAC THEN COND_CASES_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `asn(sin(pi - vector_angle (x:real^N) y))` THEN CONJ_TAC THENL
     [AP_TERM_TAC THEN REWRITE_TAC[SIN_SUB; SIN_PI; COS_PI] THEN
      REAL_ARITH_TAC;
      ALL_TAC]] THEN
  MATCH_MP_TAC ASN_SIN THEN
  MP_TAC(ISPECL [`x:real^N`; `y:real^N`] VECTOR_ANGLE_RANGE) THEN
  ASM_REAL_ARITH_TAC);;

let SIN_VECTOR_ANGLE_EQ = prove
 (`!x y w z.
        sin(vector_angle x y) = sin(vector_angle w z) <=>
            vector_angle x y = vector_angle w z \/
            vector_angle x y = pi - vector_angle w z`,
  REPEAT GEN_TAC THEN EQ_TAC THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[SIN_SUB; SIN_PI; COS_PI] THENL
   [ALL_TAC; REAL_ARITH_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o AP_TERM `asn`) THEN
  REWRITE_TAC[ASN_SIN_VECTOR_ANGLE] THEN REAL_ARITH_TAC);;

let CONTINUOUS_WITHIN_CX_VECTOR_ANGLE_COMPOSE = prove
 (`!f:real^M->real^N g x s.
     ~(f x = vec 0) /\ ~(g x = vec 0) /\
     f continuous (at x within s) /\
     g continuous (at x within s)
     ==> (\x. Cx(vector_angle (f x) (g x))) continuous (at x within s)`,
  REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `trivial_limit(at (x:real^M) within s)` THEN
  ASM_SIMP_TAC[CONTINUOUS_TRIVIAL_LIMIT; vector_angle] THEN
  SUBGOAL_THEN
   `(cacs o (\x. Cx(((f x:real^N) dot g x) / (norm(f x) * norm(g x)))))
    continuous (at (x:real^M) within s)`
  MP_TAC THENL
   [MATCH_MP_TAC CONTINUOUS_WITHIN_COMPOSE THEN CONJ_TAC THENL
     [REWRITE_TAC[CX_DIV; CX_MUL] THEN REWRITE_TAC[WITHIN_UNIV] THEN
      MATCH_MP_TAC CONTINUOUS_COMPLEX_DIV THEN
      ASM_SIMP_TAC[NETLIMIT_WITHIN; COMPLEX_ENTIRE; CX_INJ; NORM_EQ_0] THEN
      REWRITE_TAC[CONTINUOUS_CX_LIFT; GSYM CX_MUL; LIFT_CMUL] THEN
      ASM_SIMP_TAC[CONTINUOUS_LIFT_DOT2] THEN
      MATCH_MP_TAC CONTINUOUS_MUL THEN
      ASM_SIMP_TAC[CONTINUOUS_LIFT_NORM_COMPOSE; o_DEF];
      MATCH_MP_TAC CONTINUOUS_WITHIN_SUBSET THEN
      EXISTS_TAC `{z | real z /\ abs(Re z) <= &1}` THEN
      REWRITE_TAC[CONTINUOUS_WITHIN_CACS_REAL] THEN
      REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV; IN_ELIM_THM] THEN
      REWRITE_TAC[REAL_CX; RE_CX; NORM_CAUCHY_SCHWARZ_DIV]];
    ASM_SIMP_TAC[CONTINUOUS_WITHIN; CX_ACS; o_DEF;
                 NORM_CAUCHY_SCHWARZ_DIV] THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN
    SUBGOAL_THEN
      `eventually (\y. ~((f:real^M->real^N) y = vec 0) /\
                       ~((g:real^M->real^N) y = vec 0))
                  (at x within s)`
    MP_TAC THENL
     [REWRITE_TAC[EVENTUALLY_AND] THEN CONJ_TAC THENL
       [UNDISCH_TAC `(f:real^M->real^N) continuous (at x within s)`;
        UNDISCH_TAC `(g:real^M->real^N) continuous (at x within s)`] THEN
      REWRITE_TAC[CONTINUOUS_WITHIN; tendsto] THENL
       [DISCH_THEN(MP_TAC o SPEC `norm((f:real^M->real^N) x)`);
        DISCH_THEN(MP_TAC o SPEC `norm((g:real^M->real^N) x)`)] THEN
      ASM_REWRITE_TAC[NORM_POS_LT] THEN
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
      REWRITE_TAC[] THEN CONV_TAC NORM_ARITH;
      MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN
      SIMP_TAC[CX_ACS; NORM_CAUCHY_SCHWARZ_DIV]]]);;

let CONTINUOUS_AT_CX_VECTOR_ANGLE = prove
 (`!c x:real^N. ~(x = vec 0) ==> (Cx o vector_angle c) continuous (at x)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[o_DEF; vector_angle] THEN
  ASM_CASES_TAC `c:real^N = vec 0` THEN ASM_REWRITE_TAC[CONTINUOUS_CONST] THEN
  MATCH_MP_TAC CONTINUOUS_TRANSFORM_AT THEN
  MAP_EVERY EXISTS_TAC [`\x:real^N. cacs(Cx((c dot x) / (norm c * norm x)))`;
                        `norm(x:real^N)`] THEN
  ASM_REWRITE_TAC[NORM_POS_LT] THEN CONJ_TAC THENL
   [X_GEN_TAC `z:real^N` THEN DISCH_TAC THEN COND_CASES_TAC THENL
     [ASM_MESON_TAC[NORM_ARITH `~(dist(vec 0,x) < norm x)`]; ALL_TAC] THEN
    MATCH_MP_TAC(GSYM CX_ACS) THEN REWRITE_TAC[NORM_CAUCHY_SCHWARZ_DIV];
    ALL_TAC] THEN
  ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN
  MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_WITHIN_COMPOSE) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[CX_DIV; CX_MUL] THEN REWRITE_TAC[WITHIN_UNIV] THEN
    MATCH_MP_TAC CONTINUOUS_COMPLEX_DIV THEN
    ASM_REWRITE_TAC[NETLIMIT_AT; COMPLEX_ENTIRE; CX_INJ; NORM_EQ_0] THEN
    SIMP_TAC[CONTINUOUS_COMPLEX_MUL; CONTINUOUS_CONST;
             CONTINUOUS_AT_CX_NORM; CONTINUOUS_AT_CX_DOT];
    MATCH_MP_TAC CONTINUOUS_WITHIN_SUBSET THEN
    EXISTS_TAC `{z | real z /\ abs(Re z) <= &1}` THEN
    REWRITE_TAC[CONTINUOUS_WITHIN_CACS_REAL] THEN
    REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV; IN_ELIM_THM] THEN
    REWRITE_TAC[REAL_CX; RE_CX; NORM_CAUCHY_SCHWARZ_DIV]]);;

let CONTINUOUS_WITHIN_CX_VECTOR_ANGLE = prove
 (`!c x:real^N s.
     ~(x = vec 0) ==> (Cx o vector_angle c) continuous (at x within s)`,
  SIMP_TAC[CONTINUOUS_AT_WITHIN; CONTINUOUS_AT_CX_VECTOR_ANGLE]);;

let REAL_CONTINUOUS_AT_VECTOR_ANGLE = prove
 (`!c x:real^N. ~(x = vec 0) ==> (vector_angle c) real_continuous (at x)`,
  REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS; CONTINUOUS_AT_CX_VECTOR_ANGLE]);;

let REAL_CONTINUOUS_WITHIN_VECTOR_ANGLE = prove
 (`!c s x:real^N. ~(x = vec 0)
                  ==> (vector_angle c) real_continuous (at x within s)`,
  REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS; CONTINUOUS_WITHIN_CX_VECTOR_ANGLE]);;

let CONTINUOUS_ON_CX_VECTOR_ANGLE = prove
 (`!s. ~(vec 0 IN s) ==> (Cx o vector_angle c) continuous_on s`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN
  ASM_MESON_TAC[CONTINUOUS_WITHIN_CX_VECTOR_ANGLE]);;

let VECTOR_ANGLE_EQ = prove
 (`!u v x y. ~(u = vec 0) /\  ~(v = vec 0) /\ ~(x = vec 0) /\ ~(y = vec 0)
             ==> (vector_angle u v = vector_angle x y <=>
                        (x dot y) * norm(u) * norm(v) =
                        (u dot v) * norm(x) * norm(y))`,
  SIMP_TAC[vector_angle; NORM_EQ_0; REAL_FIELD
   `~(u = &0) /\ ~(v = &0) /\ ~(x = &0) /\ ~(y = &0)
    ==> (a * u * v = b * x * y <=> a / (x * y) = b / (u * v))`] THEN
  REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[] THEN
  DISCH_THEN(MP_TAC o AP_TERM `cos`) THEN
  SIMP_TAC[COS_ACS; NORM_CAUCHY_SCHWARZ_DIV; REAL_BOUNDS_LE]);;

let COS_VECTOR_ANGLE_EQ = prove
 (`!u v x y.
        cos(vector_angle u v) = cos(vector_angle x y) <=>
        vector_angle u v = vector_angle x y`,
  MESON_TAC[ACS_COS; VECTOR_ANGLE_RANGE]);;

let COLLINEAR_VECTOR_ANGLE = prove
 (`!x y. ~(x = vec 0) /\ ~(y = vec 0)
         ==> (collinear {vec 0,x,y} <=>
                vector_angle x y = &0 \/ vector_angle x y = pi)`,
  REWRITE_TAC[GSYM NORM_CAUCHY_SCHWARZ_EQUAL; NORM_CAUCHY_SCHWARZ_ABS_EQ;
              VECTOR_ANGLE_EQ_0; VECTOR_ANGLE_EQ_PI] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN BINOP_TAC THEN
  VECTOR_ARITH_TAC);;

let COLLINEAR_SIN_VECTOR_ANGLE = prove
 (`!x y. ~(x = vec 0) /\ ~(y = vec 0)
         ==> (collinear {vec 0,x,y} <=> sin(vector_angle x y) = &0)`,
  REWRITE_TAC[SIN_VECTOR_ANGLE_EQ_0; COLLINEAR_VECTOR_ANGLE]);;

let COLLINEAR_SIN_VECTOR_ANGLE_IMP = prove
 (`!x y. sin(vector_angle x y) = &0
         ==> ~(x = vec 0) /\ ~(y = vec 0) /\ collinear {vec 0,x,y}`,
  MESON_TAC[COLLINEAR_SIN_VECTOR_ANGLE; SIN_VECTOR_ANGLE_EQ_0;
            VECTOR_ANGLE_EQ_0_DIST; VECTOR_ANGLE_EQ_PI_DIST]);;

let VECTOR_ANGLE_EQ_0_RIGHT = prove
 (`!x y z:real^N. vector_angle x y = &0
                  ==> (vector_angle x z = vector_angle y z)`,
  REWRITE_TAC[VECTOR_ANGLE_EQ_0] THEN REPEAT STRIP_TAC THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `vector_angle (norm(x:real^N) % y) (z:real^N)` THEN CONJ_TAC THENL
   [ASM_REWRITE_TAC[] THEN
    ASM_REWRITE_TAC[VECTOR_ANGLE_LMUL; NORM_EQ_0; NORM_POS_LE];
    REWRITE_TAC[VECTOR_ANGLE_LMUL] THEN
    ASM_REWRITE_TAC[NORM_EQ_0; NORM_POS_LE]]);;

let VECTOR_ANGLE_EQ_0_LEFT = prove
 (`!x y z:real^N. vector_angle x y = &0
                  ==> (vector_angle z x = vector_angle z y)`,
  MESON_TAC[VECTOR_ANGLE_EQ_0_RIGHT; VECTOR_ANGLE_SYM]);;

let VECTOR_ANGLE_EQ_PI_RIGHT = prove
 (`!x y z:real^N. vector_angle x y = pi
                  ==> (vector_angle x z = pi - vector_angle y z)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`--x:real^N`; `y:real^N`; `z:real^N`]
   VECTOR_ANGLE_EQ_0_RIGHT) THEN
  ASM_REWRITE_TAC[VECTOR_ANGLE_LNEG] THEN REAL_ARITH_TAC);;

let VECTOR_ANGLE_EQ_PI_LEFT = prove
 (`!x y z:real^N. vector_angle x y = pi
                  ==> (vector_angle z x = pi - vector_angle z y)`,
  MESON_TAC[VECTOR_ANGLE_EQ_PI_RIGHT; VECTOR_ANGLE_SYM]);;

let COS_VECTOR_ANGLE = prove
 (`!x y:real^N.
        cos(vector_angle x y) = if x = vec 0 \/ y = vec 0 then &0
                                else (x dot y) / (norm x * norm y)`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `x:real^N = vec 0` THENL
   [ASM_REWRITE_TAC[vector_angle; COS_PI2]; ALL_TAC] THEN
  ASM_CASES_TAC `y:real^N = vec 0` THENL
   [ASM_REWRITE_TAC[vector_angle; COS_PI2]; ALL_TAC] THEN
  ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_LT_MUL; NORM_POS_LT; VECTOR_ANGLE] THEN
  REAL_ARITH_TAC);;

let SIN_VECTOR_ANGLE = prove
 (`!x y:real^N.
        sin(vector_angle x y) =
            if x = vec 0 \/ y = vec 0 then &1
            else sqrt(&1 - ((x dot y) / (norm x * norm y)) pow 2)`,
  SIMP_TAC[SIN_COS_SQRT; SIN_VECTOR_ANGLE_POS; COS_VECTOR_ANGLE] THEN
  REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[SQRT_1]);;

let SIN_SQUARED_VECTOR_ANGLE = prove
 (`!x y:real^N.
        sin(vector_angle x y) pow 2 =
            if x = vec 0 \/ y = vec 0 then &1
            else &1 - ((x dot y) / (norm x * norm y)) pow 2`,
  REPEAT GEN_TAC THEN REWRITE_TAC
   [REWRITE_RULE [REAL_ARITH `s + c = &1 <=> s = &1 - c`] SIN_CIRCLE] THEN
  REWRITE_TAC[COS_VECTOR_ANGLE] THEN REAL_ARITH_TAC);;

let VECTOR_ANGLE_COMPLEX_LMUL = prove
 (`!a. ~(a = Cx(&0))
       ==> vector_angle (a * x) (a * y) = vector_angle x y`,
  REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `x = Cx(&0)` THENL
   [ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; vector_angle; COMPLEX_VEC_0];
    ALL_TAC] THEN
  ASM_CASES_TAC `y = Cx(&0)` THENL
   [ASM_REWRITE_TAC[COMPLEX_MUL_RZERO; vector_angle; COMPLEX_VEC_0];
    ALL_TAC] THEN
  MP_TAC(ISPECL
   [`a * x:complex`; `a * y:complex`; `x:complex`; `y:complex`]
        VECTOR_ANGLE_EQ) THEN
  ASM_REWRITE_TAC[COMPLEX_VEC_0; COMPLEX_ENTIRE] THEN
  DISCH_THEN SUBST1_TAC THEN
  REWRITE_TAC[COMPLEX_NORM_MUL] THEN MATCH_MP_TAC(REAL_RING
   `a pow 2 * xy:real = d ==> xy * (a * x) * (a * y) = d * x * y`) THEN
  REWRITE_TAC[NORM_POW_2] THEN
  REWRITE_TAC[DOT_2; complex_mul; GSYM RE_DEF; GSYM IM_DEF; RE; IM] THEN
  REAL_ARITH_TAC);;

let VECTOR_ANGLE_1 = prove
 (`!x. vector_angle x (Cx(&1)) = acs(Re x / norm x)`,
  GEN_TAC THEN
  SIMP_TAC[vector_angle; COMPLEX_VEC_0; CX_INJ; REAL_OF_NUM_EQ; ARITH_EQ] THEN
  COND_CASES_TAC THENL
   [ASM_REWRITE_TAC[real_div; RE_CX; ACS_0; REAL_MUL_LZERO]; ALL_TAC] THEN
  REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM; REAL_MUL_RID] THEN
  REWRITE_TAC[DOT_2; GSYM RE_DEF; GSYM IM_DEF; RE_CX; IM_CX] THEN
  AP_TERM_TAC THEN REAL_ARITH_TAC);;

let ARG_EQ_VECTOR_ANGLE_1 = prove
 (`!z. ~(z = Cx(&0)) /\ &0 <= Im z ==> Arg z = vector_angle z (Cx(&1))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[VECTOR_ANGLE_1] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o LAND_CONV o RAND_CONV) [ARG] THEN
  REWRITE_TAC[RE_MUL_CX; RE_CEXP; RE_II; IM_MUL_II; IM_CX; RE_CX] THEN
  REWRITE_TAC[REAL_MUL_LZERO; REAL_EXP_0; REAL_MUL_LID] THEN
  ASM_SIMP_TAC[COMPLEX_NORM_ZERO; REAL_FIELD
   `~(z = &0) ==> (z * x) / z = x`] THEN
  CONV_TAC SYM_CONV THEN MATCH_MP_TAC ACS_COS THEN
  ASM_REWRITE_TAC[ARG; ARG_LE_PI]);;

let VECTOR_ANGLE_ARG = prove
 (`!w z. ~(w = Cx(&0)) /\ ~(z = Cx(&0))
         ==> vector_angle w z = if &0 <= Im(z / w) then Arg(z / w)
                                else &2 * pi - Arg(z / w)`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
   [SUBGOAL_THEN `z = w * (z / w) /\ w = w * Cx(&1)` MP_TAC THENL
     [REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD; ALL_TAC];
    SUBGOAL_THEN `w = z * (w / z) /\ z = z * Cx(&1)` MP_TAC THENL
     [REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD; ALL_TAC]] THEN
  DISCH_THEN(fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th]) THEN
  ASM_SIMP_TAC[VECTOR_ANGLE_COMPLEX_LMUL] THENL
   [ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC ARG_EQ_VECTOR_ANGLE_1 THEN ASM_REWRITE_TAC[] THEN
    REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD;
    MP_TAC(ISPEC `z / w:complex` ARG_INV) THEN ANTS_TAC THENL
     [ASM_MESON_TAC[real; REAL_LE_REFL]; DISCH_THEN(SUBST1_TAC o SYM)] THEN
    REWRITE_TAC[COMPLEX_INV_DIV] THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC ARG_EQ_VECTOR_ANGLE_1 THEN CONJ_TAC THENL
     [REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD;
      ONCE_REWRITE_TAC[GSYM COMPLEX_INV_DIV] THEN
      REWRITE_TAC[IM_COMPLEX_INV_GE_0] THEN ASM_REAL_ARITH_TAC]]);;

let VECTOR_ANGLE_PRESERVING_EQ_SIMILARITY = prove
 (`!f:real^N->real^N.
      linear f /\ (!x y. vector_angle (f x) (f y) = vector_angle x y) <=>
      ?c g. ~(c = &0) /\ orthogonal_transformation g /\ f = \z. c % g z`,
  REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL
   [ALL_TAC;
    ASM_SIMP_TAC[ORTHOGONAL_TRANSFORMATION_LINEAR; LINEAR_COMPOSE_CMUL] THEN
    ASM_SIMP_TAC[VECTOR_ANGLE_LMUL; VECTOR_ANGLE_RMUL] THEN
    REWRITE_TAC[REAL_ARITH `pi - (pi - x) = x`; COND_ID] THEN
    ASM_MESON_TAC[VECTOR_ANGLE_ORTHOGONAL_TRANSFORMATION]] THEN
  MP_TAC(ISPEC `f:real^N->real^N` ORTHOGONALITY_PRESERVING_EQ_SIMILARITY) THEN
  ASM_REWRITE_TAC[ORTHOGONAL_VECTOR_ANGLE] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^N->real^N` THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o SPECL [`basis 1:real^N`; `basis 1:real^N`]) THEN
  ASM_REWRITE_TAC[VECTOR_ANGLE_REFL; VECTOR_MUL_LZERO] THEN
  SIMP_TAC[BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL] THEN
  MP_TAC PI_POS THEN REAL_ARITH_TAC);;

let VECTOR_ANGLE_PRESERVING_EQ_SIMILARITY_ALT = prove
 (`!f:real^N->real^N.
      linear f /\ (!x y. vector_angle (f x) (f y) = vector_angle x y) <=>
      ?c g. &0 < c /\ orthogonal_transformation g /\ f = \z. c % g z`,
  GEN_TAC THEN REWRITE_TAC[VECTOR_ANGLE_PRESERVING_EQ_SIMILARITY] THEN
  EQ_TAC THENL [REWRITE_TAC[LEFT_IMP_EXISTS_THM]; MESON_TAC[REAL_LT_REFL]] THEN
  MAP_EVERY X_GEN_TAC [`c:real`; `g:real^N->real^N`] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH
   `~(c = &0) ==> &0 < c \/ &0 < --c`))
  THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  MAP_EVERY EXISTS_TAC [`--c:real`; `\x. --((g:real^N->real^N) x)`] THEN
  ASM_REWRITE_TAC[ORTHOGONAL_TRANSFORMATION_NEG] THEN
  REWRITE_TAC[VECTOR_MUL_LNEG; VECTOR_MUL_RNEG; VECTOR_NEG_NEG]);;

(* ------------------------------------------------------------------------- *)
(* Traditional geometric notion of angle (always 0 <= theta <= pi).          *)
(* ------------------------------------------------------------------------- *)

let angle = new_definition
 `angle(a,b,c) = vector_angle (a - b) (c - b)`;;

let ANGLE_LINEAR_IMAGE_EQ = prove
 (`!f a b c.
        linear f /\ (!x. norm(f x) = norm x)
        ==> angle(f a,f b,f c) = angle(a,b,c)`,
  SIMP_TAC[angle; GSYM LINEAR_SUB; VECTOR_ANGLE_LINEAR_IMAGE_EQ]);;

add_linear_invariants [ANGLE_LINEAR_IMAGE_EQ];;

let ANGLE_TRANSLATION_EQ = prove
 (`!a b c d. angle(a + b,a + c,a + d) = angle(b,c,d)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[angle] THEN
  BINOP_TAC THEN VECTOR_ARITH_TAC);;

add_translation_invariants [ANGLE_TRANSLATION_EQ];;

let VECTOR_ANGLE_ANGLE = prove
 (`vector_angle x y = angle(x,vec 0,y)`,
  REWRITE_TAC[angle; VECTOR_SUB_RZERO]);;

let ANGLE_EQ_PI_DIST = prove
 (`!A B C:real^N.
        angle(A,B,C) = pi <=>
        ~(A = B) /\ ~(C = B) /\ dist(A,C) = dist(A,B) + dist(B,C)`,
  REWRITE_TAC[angle; VECTOR_ANGLE_EQ_PI_DIST] THEN NORM_ARITH_TAC);;

let SIN_ANGLE_POS = prove
 (`!A B C. &0 <= sin(angle(A,B,C))`,
  REWRITE_TAC[angle; SIN_VECTOR_ANGLE_POS]);;

let ANGLE = prove
 (`!A B C. (A - C) dot (B - C) = dist(A,C) * dist(B,C) * cos(angle(A,C,B))`,
  REWRITE_TAC[angle; dist; GSYM VECTOR_ANGLE]);;

let ANGLE_REFL = prove
 (`!A B. angle(A,A,B) = pi / &2 /\ angle(B,A,A) = pi / &2`,
  REWRITE_TAC[angle; vector_angle; VECTOR_SUB_REFL]);;

let ANGLE_REFL_MID = prove
 (`!A B. ~(A = B) ==> angle(A,B,A) = &0`,
  SIMP_TAC[angle; vector_angle; VECTOR_SUB_EQ; GSYM NORM_POW_2; ARITH;
    GSYM REAL_POW_2; REAL_DIV_REFL; ACS_1; REAL_POW_EQ_0; NORM_EQ_0]);;

let ANGLE_SYM = prove
 (`!A B C. angle(A,B,C) = angle(C,B,A)`,
  REWRITE_TAC[angle; vector_angle; VECTOR_SUB_EQ; DISJ_SYM;
              REAL_MUL_SYM; DOT_SYM]);;

let ANGLE_RANGE = prove
 (`!A B C. &0 <= angle(A,B,C) /\ angle(A,B,C) <= pi`,
  REWRITE_TAC[angle; VECTOR_ANGLE_RANGE]);;

let COS_ANGLE_EQ = prove
 (`!a b c a' b' c'.
        cos(angle(a,b,c)) = cos(angle(a',b',c')) <=>
        angle(a,b,c) = angle(a',b',c')`,
  REWRITE_TAC[angle; COS_VECTOR_ANGLE_EQ]);;

let ANGLE_EQ = prove
 (`!a b c a' b' c'.
        ~(a = b) /\ ~(c = b) /\ ~(a' = b') /\ ~(c' = b')
        ==> (angle(a,b,c) = angle(a',b',c') <=>
                ((a' - b') dot (c' - b')) * norm (a - b) * norm (c - b) =
                ((a - b) dot (c - b)) * norm (a' - b') * norm (c' - b'))`,
  SIMP_TAC[angle; VECTOR_ANGLE_EQ; VECTOR_SUB_EQ]);;

let SIN_ANGLE_EQ_0 = prove
 (`!A B C. sin(angle(A,B,C)) = &0 <=> angle(A,B,C) = &0 \/ angle(A,B,C) = pi`,
  REWRITE_TAC[angle; SIN_VECTOR_ANGLE_EQ_0]);;

let SIN_ANGLE_EQ = prove
 (`!A B C A' B' C'. sin(angle(A,B,C)) = sin(angle(A',B',C')) <=>
                        angle(A,B,C) = angle(A',B',C') \/
                        angle(A,B,C) = pi - angle(A',B',C')`,
  REWRITE_TAC[angle; SIN_VECTOR_ANGLE_EQ]);;

let COLLINEAR_ANGLE = prove
 (`!A B C. ~(A = B) /\ ~(B = C)
           ==> (collinear {A,B,C} <=> angle(A,B,C) = &0 \/ angle(A,B,C) = pi)`,
  ONCE_REWRITE_TAC[COLLINEAR_3] THEN
  SIMP_TAC[COLLINEAR_VECTOR_ANGLE; VECTOR_SUB_EQ; angle]);;

let COLLINEAR_SIN_ANGLE = prove
 (`!A B C. ~(A = B) /\ ~(B = C)
           ==> (collinear {A,B,C} <=> sin(angle(A,B,C)) = &0)`,
  REWRITE_TAC[SIN_ANGLE_EQ_0; COLLINEAR_ANGLE]);;

let COLLINEAR_SIN_ANGLE_IMP = prove
 (`!A B C. sin(angle(A,B,C)) = &0
           ==> ~(A = B) /\ ~(B = C) /\ collinear {A,B,C}`,
  REPEAT GEN_TAC THEN
  ONCE_REWRITE_TAC[COLLINEAR_3] THEN REWRITE_TAC[angle] THEN
  DISCH_THEN(MP_TAC o MATCH_MP COLLINEAR_SIN_VECTOR_ANGLE_IMP) THEN
  SIMP_TAC[VECTOR_SUB_EQ]);;

let ANGLE_EQ_0_RIGHT = prove
 (`!A B C. angle(A,B,C) = &0 ==> angle(A,B,D) = angle(C,B,D)`,
  REWRITE_TAC[VECTOR_ANGLE_EQ_0_RIGHT; angle]);;

let ANGLE_EQ_0_LEFT = prove
 (`!A B C. angle(A,B,C) = &0 ==> angle(D,B,A) = angle(D,B,C)`,
  MESON_TAC[ANGLE_EQ_0_RIGHT; ANGLE_SYM]);;

let ANGLE_EQ_PI_RIGHT = prove
 (`!A B C. angle(A,B,C) = pi ==> angle(D,B,A) = pi - angle(D,B,C)`,
  REWRITE_TAC[VECTOR_ANGLE_EQ_PI_LEFT; angle]);;

let ANGLE_EQ_PI_LEFT = prove
 (`!A B C. angle(A,B,C) = pi ==> angle(A,B,D) = pi - angle(C,B,D)`,
  MESON_TAC[ANGLE_EQ_PI_RIGHT; ANGLE_SYM]);;

let COS_ANGLE = prove
 (`!a b c. cos(angle(a,b,c)) = if a = b \/ c = b then &0
                               else ((a - b) dot (c - b)) /
                                    (norm(a - b) * norm(c - b))`,
  REWRITE_TAC[angle; COS_VECTOR_ANGLE; VECTOR_SUB_EQ]);;

let SIN_ANGLE = prove
 (`!a b c. sin(angle(a,b,c)) =
             if a = b \/ c = b then &1
             else sqrt(&1 - (((a - b) dot (c - b)) /
                             (norm(a - b) * norm(c - b))) pow 2)`,
  REWRITE_TAC[angle; SIN_VECTOR_ANGLE; VECTOR_SUB_EQ]);;

let SIN_SQUARED_ANGLE = prove
 (`!a b c. sin(angle(a,b,c)) pow 2 =
             if a = b \/ c = b then &1
             else &1 - (((a - b) dot (c - b)) /
                        (norm(a - b) * norm(c - b))) pow 2`,
  REWRITE_TAC[angle; SIN_SQUARED_VECTOR_ANGLE; VECTOR_SUB_EQ]);;

(* ------------------------------------------------------------------------- *)
(* The basic right angle triangles of elementary trigonometry.               *)
(* ------------------------------------------------------------------------- *)

let COS_ADJACENT_HYPOTENUSE = prove
 (`!A B C:real^N.
        orthogonal (A - B) (C - B)
        ==> dist(A,C) * cos(angle(B,A,C)) = dist(A,B)`,
  GEOM_ORIGIN_TAC `A:real^N` THEN REPEAT GEN_TAC THEN
  REWRITE_TAC[DIST_0; angle; VECTOR_SUB_RZERO] THEN
  REWRITE_TAC[ORTHOGONAL_LNEG; VECTOR_SUB_LZERO] THEN DISCH_TAC THEN
  ASM_CASES_TAC `B:real^N = vec 0` THENL
   [ASM_REWRITE_TAC[vector_angle; COS_PI2; NORM_0; REAL_MUL_RZERO];
    MATCH_MP_TAC(REAL_RING `~(b = &0) /\ b * x = b pow 2 ==> x = b`) THEN
    ASM_REWRITE_TAC[NORM_EQ_0; GSYM VECTOR_ANGLE] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [orthogonal]) THEN
    REWRITE_TAC[DOT_RSUB; NORM_POW_2] THEN REAL_ARITH_TAC]);;

let COS_ADJACENT_OVER_HYPOTENUSE = prove
 (`!A B C:real^N.
        orthogonal (A - B) (C - B)
        ==> cos(angle(B,A,C)) = dist(A,B) / dist(A,C)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^N = C` THENL
   [ASM_REWRITE_TAC[DIST_REFL; real_div; REAL_INV_0; angle; VECTOR_SUB_REFL;
                    vector_angle] THEN
    REWRITE_TAC[GSYM real_div; COS_PI2; REAL_MUL_RZERO];
    ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; DIST_POS_LT] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
    REWRITE_TAC[COS_ADJACENT_HYPOTENUSE]]);;

let SIN_OPPOSITE_HYPOTENUSE = prove
 (`!A B C:real^N.
        orthogonal (A - B) (C - B)
        ==> dist(A,C) * sin(angle(B,A,C)) = dist(C,B)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^N = C` THEN
  ASM_SIMP_TAC[ORTHOGONAL_REFL; VECTOR_SUB_EQ; DIST_REFL; REAL_MUL_LZERO] THEN
  DISCH_TAC THEN CONV_TAC SYM_CONV THEN
  REWRITE_TAC[dist; NORM_EQ_SQUARE] THEN
  SIMP_TAC[REAL_LE_MUL; SIN_ANGLE_POS; NORM_POS_LE] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP COS_ADJACENT_HYPOTENUSE) THEN
  DISCH_THEN(MP_TAC o MATCH_MP (REAL_RING
   `x:real = y ==> x pow 2 = y pow 2`)) THEN
  REWRITE_TAC[REAL_POW_MUL; GSYM NORM_POW_2; GSYM dist] THEN
  MATCH_MP_TAC(REAL_RING
   `d + e = h /\ s + c = &1 /\ ~(h = &0) ==> h * c = d ==> e = h * s`) THEN
  ASM_REWRITE_TAC[SIN_CIRCLE; REAL_POW_EQ_0; DIST_EQ_0] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP PYTHAGORAS) THEN
  REWRITE_TAC[GSYM dist; DIST_SYM] THEN REAL_ARITH_TAC);;

let SIN_OPPOSITE_OVER_HYPOTENUSE = prove
 (`!A B C:real^N.
        orthogonal (A - B) (C - B) /\ ~(A = C)
        ==> sin(angle(B,A,C)) = dist(C,B) / dist(A,C)`,
  SIMP_TAC[REAL_EQ_RDIV_EQ; DIST_POS_LT] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  SIMP_TAC[SIN_OPPOSITE_HYPOTENUSE]);;

let TAN_OPPOSITE_ADJACENT = prove
 (`!A B C:real^N.
        orthogonal (A - B) (C - B) /\ ~(A = B)
        ==> dist(A,B) * tan(angle(B,A,C)) = dist(C,B)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[tan] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP COS_ADJACENT_HYPOTENUSE) THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP SIN_OPPOSITE_HYPOTENUSE) THEN
  ASM_CASES_TAC `cos (angle (B:real^N,A,C)) = &0` THENL
   [ALL_TAC; POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD] THEN
  ASM_REWRITE_TAC[REAL_MUL_RZERO; real_div; REAL_MUL_RZERO; REAL_INV_0] THEN
  ASM_MESON_TAC[DIST_EQ_0]);;

let TAN_OPPOSITE_OVER_ADJACENT = prove
 (`!A B C:real^N.
        orthogonal (A - B) (C - B)
        ==> tan(angle(B,A,C)) = dist(C,B) / dist(A,B)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `A:real^N = B` THENL
   [ASM_REWRITE_TAC[angle; VECTOR_SUB_REFL; vector_angle] THEN
    REWRITE_TAC[tan; COS_PI2; DIST_REFL; real_div; REAL_INV_0; REAL_MUL_RZERO];
    ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; DIST_POS_LT] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
    ASM_SIMP_TAC[TAN_OPPOSITE_ADJACENT]]);;

(* ------------------------------------------------------------------------- *)
(* The law of cosines.                                                       *)
(* ------------------------------------------------------------------------- *)

let LAW_OF_COSINES = prove
 (`!A B C:real^N.
        dist(B,C) pow 2 = (dist(A,B) pow 2 + dist(A,C) pow 2) -
                          &2 * dist(A,B) * dist(A,C) * cos(angle(B,A,C))`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[angle; ONCE_REWRITE_RULE[NORM_SUB] dist; GSYM VECTOR_ANGLE;
              NORM_POW_2] THEN
  VECTOR_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* The law of sines.                                                         *)
(* ------------------------------------------------------------------------- *)

let LAW_OF_SINES = prove
 (`!A B C:real^N.
      sin(angle(A,B,C)) * dist(B,C) = sin(angle(B,A,C)) * dist(A,C)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_POW_EQ THEN EXISTS_TAC `2` THEN
  SIMP_TAC[SIN_ANGLE_POS; DIST_POS_LE; REAL_LE_MUL; ARITH] THEN
  REWRITE_TAC[REAL_POW_MUL; MATCH_MP
   (REAL_ARITH `x + y = &1 ==> x = &1 - y`) (SPEC_ALL SIN_CIRCLE)] THEN
  ASM_CASES_TAC `A:real^N = B` THEN ASM_REWRITE_TAC[ANGLE_REFL; COS_PI2] THEN
  RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM VECTOR_SUB_EQ]) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[GSYM NORM_EQ_0]) THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_RING
   `~(a = &0) ==> a pow 2 * x = a pow 2 * y ==> x = y`)) THEN
  ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[GSYM dist] THEN
  GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [DIST_SYM] THEN
  REWRITE_TAC[REAL_RING
   `a * (&1 - x) * b = c * (&1 - y) * d <=>
    a * b - a * b * x = c * d - c * d * y`] THEN
  REWRITE_TAC[GSYM REAL_POW_MUL; GSYM ANGLE] THEN
  REWRITE_TAC[REAL_POW_MUL; dist; NORM_POW_2] THEN
  REWRITE_TAC[DOT_LSUB; DOT_RSUB; DOT_SYM] THEN CONV_TAC REAL_RING);;

(* ------------------------------------------------------------------------- *)
(* The sum of the angles of a triangle.                                      *)
(* ------------------------------------------------------------------------- *)

let TRIANGLE_ANGLE_SUM_LEMMA = prove
 (`!A B C:real^N. ~(A = B) /\ ~(A = C) /\ ~(B = C)
                  ==> cos(angle(B,A,C) + angle(A,B,C) + angle(B,C,A)) = -- &1`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
  REWRITE_TAC[GSYM NORM_EQ_0] THEN
  MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] LAW_OF_COSINES) THEN
  MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] LAW_OF_COSINES) THEN
  MP_TAC(ISPECL [`C:real^N`; `B:real^N`; `A:real^N`] LAW_OF_COSINES) THEN
  MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] LAW_OF_SINES) THEN
  MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] LAW_OF_SINES) THEN
  MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `A:real^N`] LAW_OF_SINES) THEN
  REWRITE_TAC[COS_ADD; SIN_ADD; dist; NORM_SUB] THEN
  MAP_EVERY (fun t -> MP_TAC(SPEC t SIN_CIRCLE))
   [`angle(B:real^N,A,C)`; `angle(A:real^N,B,C)`; `angle(B:real^N,C,A)`] THEN
  REWRITE_TAC[COS_ADD; SIN_ADD; ANGLE_SYM] THEN CONV_TAC REAL_RING);;

let COS_MINUS1_LEMMA = prove
 (`!x. cos(x) = -- &1 /\ &0 <= x /\ x < &3 * pi ==> x = pi`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `?n. integer n /\ x = n * pi`
   (X_CHOOSE_THEN `nn:real` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
  REWRITE_TAC[GSYM SIN_EQ_0] THENL
   [MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC REAL_RING;
    ALL_TAC] THEN
  SUBGOAL_THEN `?n. nn = &n` (X_CHOOSE_THEN `n:num` SUBST_ALL_TAC) THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_MUL_POS_LE]) THEN
    SIMP_TAC[PI_POS; REAL_ARITH `&0 < p ==> ~(p < &0) /\ ~(p = &0)`] THEN
    ASM_MESON_TAC[INTEGER_POS; REAL_LT_LE];
    ALL_TAC] THEN
  MATCH_MP_TAC(REAL_RING `n = &1 ==> n * p = p`) THEN
  REWRITE_TAC[REAL_OF_NUM_EQ] THEN
  MATCH_MP_TAC(ARITH_RULE `n < 3 /\ ~(n = 0) /\ ~(n = 2) ==> n = 1`) THEN
  RULE_ASSUM_TAC(SIMP_RULE[REAL_LT_RMUL_EQ; PI_POS; REAL_OF_NUM_LT]) THEN
  ASM_REWRITE_TAC[] THEN CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN
  REPEAT(POP_ASSUM MP_TAC) THEN SIMP_TAC[COS_0; REAL_MUL_LZERO; COS_NPI] THEN
  REAL_ARITH_TAC);;

let TRIANGLE_ANGLE_SUM = prove
 (`!A B C:real^N. ~(A = B /\ B = C /\ A = C)
                  ==> angle(B,A,C) + angle(A,B,C) + angle(B,C,A) = pi`,
  REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC
   [`A:real^N = B`; `B:real^N = C`; `A:real^N = C`] THEN
  ASM_SIMP_TAC[ANGLE_REFL_MID; ANGLE_REFL; REAL_HALF; REAL_ADD_RID] THEN
  REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
  REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[REAL_ADD_LID; REAL_HALF] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC COS_MINUS1_LEMMA THEN
  ASM_SIMP_TAC[TRIANGLE_ANGLE_SUM_LEMMA; REAL_LE_ADD; ANGLE_RANGE] THEN
  MATCH_MP_TAC(REAL_ARITH
   `&0 <= x /\ x <= p /\ &0 <= y /\ y <= p /\ &0 <= z /\ z <= p /\
    ~(x = p /\ y = p /\ z = p)
    ==> x + y + z < &3 * p`) THEN
  ASM_SIMP_TAC[ANGLE_RANGE] THEN REPEAT STRIP_TAC THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ANGLE_EQ_PI_DIST])) THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV
   [GSYM VECTOR_SUB_EQ])) THEN
  REWRITE_TAC[GSYM NORM_EQ_0; dist; NORM_SUB] THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* A few more lemmas about angles.                                           *)
(* ------------------------------------------------------------------------- *)

let ANGLE_EQ_PI_OTHERS = prove
 (`!A B C:real^N.
        angle(A,B,C) = pi
        ==> angle(B,C,A) = &0 /\ angle(A,C,B) = &0 /\
            angle(B,A,C) = &0 /\ angle(C,A,B) = &0`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [ANGLE_EQ_PI_DIST]) THEN
  MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] TRIANGLE_ANGLE_SUM) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
   `x + p + y = p ==> &0 <= x /\ &0 <= y ==> x = &0 /\ y = &0`)) THEN
  SIMP_TAC[ANGLE_RANGE; ANGLE_SYM]);;

let ANGLE_EQ_0_DIST = prove
 (`!A B C:real^N. angle(A,B,C) = &0 <=>
                  ~(A = B) /\ ~(C = B) /\
                  (dist(A,B) = dist(A,C) + dist(C,B) \/
                   dist(B,C) = dist(A,C) + dist(A,B))`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `A:real^N = B` THENL
   [ASM_REWRITE_TAC[angle; VECTOR_ANGLE_EQ_0; VECTOR_SUB_EQ]; ALL_TAC] THEN
  ASM_CASES_TAC `B:real^N = C` THENL
   [ASM_REWRITE_TAC[angle; VECTOR_ANGLE_EQ_0; VECTOR_SUB_EQ]; ALL_TAC] THEN
  ASM_CASES_TAC `A:real^N = C` THENL
   [ASM_SIMP_TAC[ANGLE_REFL_MID; DIST_REFL; REAL_ADD_LID]; ALL_TAC] THEN
  EQ_TAC THENL
   [ALL_TAC;
    STRIP_TAC THENL
     [MP_TAC(ISPECL[`A:real^N`; `C:real^N`; `B:real^N`] ANGLE_EQ_PI_DIST);
      MP_TAC(ISPECL[`B:real^N`; `A:real^N`; `C:real^N`] ANGLE_EQ_PI_DIST)] THEN
    ASM_REWRITE_TAC[] THEN REWRITE_TAC[DIST_SYM; REAL_ADD_AC] THEN
    DISCH_THEN(MP_TAC o MATCH_MP ANGLE_EQ_PI_OTHERS) THEN SIMP_TAC[]] THEN
  ASM_REWRITE_TAC[angle; VECTOR_ANGLE_EQ_0; VECTOR_SUB_EQ] THEN
  REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC
    (ISPECL [`norm(A - B:real^N)`; `norm(C - B:real^N)`]
                REAL_LT_TOTAL)
  THENL
   [ASM_REWRITE_TAC[VECTOR_MUL_LCANCEL; NORM_EQ_0; VECTOR_SUB_EQ;
                    VECTOR_ARITH `c - b:real^N = a - b <=> a = c`];
    ONCE_REWRITE_TAC[VECTOR_ARITH
     `norm(A - B) % (C - B) = norm(C - B) % (A - B) <=>
      (norm(C - B) - norm(A - B)) % (A - B) = norm(A - B) % (C - A)`];
    ONCE_REWRITE_TAC[VECTOR_ARITH
     `norm(A - B) % (C - B) = norm(C - B) % (A - B) <=>
      (norm(A - B) - norm(C - B)) % (C - B) = norm(C - B) % (A - C)`]] THEN
  DISCH_THEN(MP_TAC o MATCH_MP
   (REWRITE_RULE[IMP_CONJ] NORM_CROSS_MULTIPLY)) THEN
  ASM_SIMP_TAC[REAL_SUB_LT; NORM_POS_LT; VECTOR_SUB_EQ] THEN
  SIMP_TAC[GSYM DIST_TRIANGLE_EQ] THEN SIMP_TAC[DIST_SYM]);;

let ANGLE_EQ_0_DIST_ABS = prove
 (`!A B C:real^N. angle(A,B,C) = &0 <=>
                  ~(A = B) /\ ~(C = B) /\
                   dist(A,C) = abs(dist(A,B) - dist(C,B))`,
  REPEAT GEN_TAC THEN REWRITE_TAC[ANGLE_EQ_0_DIST] THEN
  AP_TERM_TAC THEN AP_TERM_TAC THEN
  MP_TAC(ISPECL [`A:real^N`; `C:real^N`] DIST_POS_LE) THEN
  REWRITE_TAC[DIST_SYM] THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Some rules for congruent triangles (not necessarily in the same real^N).  *)
(* ------------------------------------------------------------------------- *)

let CONGRUENT_TRIANGLES_SSS = prove
 (`!A B C:real^M A' B' C':real^N.
        dist(A,B) = dist(A',B') /\
        dist(B,C) = dist(B',C') /\
        dist(C,A) = dist(C',A')
        ==> angle(A,B,C) = angle(A',B',C')`,
  REPEAT GEN_TAC THEN MAP_EVERY ASM_CASES_TAC
   [`dist(A':real^N,B') = &0`; `dist(B':real^N,C') = &0`] THEN
  ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
  RULE_ASSUM_TAC(REWRITE_RULE[DIST_EQ_0]) THEN
  ASM_SIMP_TAC[ANGLE_REFL_MID; ANGLE_REFL] THEN
  ONCE_REWRITE_TAC[GSYM COS_ANGLE_EQ] THEN
  MP_TAC(ISPECL [`B:real^M`; `A:real^M`; `C:real^M`] LAW_OF_COSINES) THEN
  MP_TAC(ISPECL [`B':real^N`; `A':real^N`; `C':real^N`] LAW_OF_COSINES) THEN
  REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[GSYM DIST_EQ_0; DIST_SYM] THEN
  CONV_TAC REAL_FIELD);;

let CONGRUENT_TRIANGLES_SAS = prove
 (`!A B C:real^M A' B' C':real^N.
        dist(A,B) = dist(A',B') /\
        angle(A,B,C) = angle(A',B',C') /\
        dist(B,C) = dist(B',C')
        ==> dist(A,C) = dist(A',C')`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[DIST_EQ] THEN
  MP_TAC(ISPECL [`B:real^M`; `A:real^M`; `C:real^M`] LAW_OF_COSINES) THEN
  MP_TAC(ISPECL [`B':real^N`; `A':real^N`; `C':real^N`] LAW_OF_COSINES) THEN
  REPEAT(DISCH_THEN SUBST1_TAC) THEN
  REPEAT BINOP_TAC THEN ASM_MESON_TAC[DIST_SYM]);;

let CONGRUENT_TRIANGLES_AAS = prove
 (`!A B C:real^M A' B' C':real^N.
        angle(A,B,C) = angle(A',B',C') /\
        angle(B,C,A) = angle(B',C',A') /\
        dist(A,B) = dist(A',B') /\
        ~(collinear {A,B,C})
        ==> dist(A,C) = dist(A',C') /\ dist(B,C) = dist(B',C')`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^M = B` THENL
   [FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[INSERT_AC; COLLINEAR_2];
    ALL_TAC] THEN
  DISCH_TAC THEN SUBGOAL_THEN `~(A':real^N = B')` ASSUME_TAC THENL
   [ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN
  SUBGOAL_THEN `angle(C:real^M,A,B) = angle(C':real^N,A',B')` ASSUME_TAC THENL
   [MP_TAC(ISPECL [`A:real^M`; `B:real^M`; `C:real^M`] TRIANGLE_ANGLE_SUM) THEN
    MP_TAC(ISPECL [`A':real^N`; `B':real^N`; `C':real^N`]
      TRIANGLE_ANGLE_SUM) THEN ASM_REWRITE_TAC[IMP_IMP] THEN
    REWRITE_TAC[ANGLE_SYM] THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
   [MP_TAC(ISPECL [`C:real^M`; `B:real^M`; `A:real^M`] LAW_OF_SINES) THEN
    MP_TAC(ISPECL [`C':real^N`; `B':real^N`; `A':real^N`] LAW_OF_SINES) THEN
    SUBGOAL_THEN `~(sin(angle(B':real^N,C',A')) = &0)` MP_TAC THENL
     [ASM_MESON_TAC[COLLINEAR_SIN_ANGLE_IMP; INSERT_AC];
      ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[ANGLE_SYM; DIST_SYM] THEN
      ASM_REWRITE_TAC[] THEN REWRITE_TAC[ANGLE_SYM; DIST_SYM] THEN
      CONV_TAC REAL_FIELD];
    ASM_MESON_TAC[CONGRUENT_TRIANGLES_SAS; DIST_SYM; ANGLE_SYM]]);;

let CONGRUENT_TRIANGLES_ASA = prove
 (`!A B C:real^M A' B' C':real^N.
        angle(A,B,C) = angle(A',B',C') /\
        dist(A,B) = dist(A',B') /\
        angle(B,A,C) = angle(B',A',C') /\
        ~(collinear {A,B,C})
        ==> dist(A,C) = dist(A',C')`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^M = B` THENL
   [FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[INSERT_AC; COLLINEAR_2];
    ALL_TAC] THEN
  REPEAT STRIP_TAC THEN SUBGOAL_THEN `~(A':real^N = B')` ASSUME_TAC THENL
   [ASM_MESON_TAC[DIST_EQ_0]; ALL_TAC] THEN
  MP_TAC(ISPECL [`A:real^M`; `B:real^M`; `C:real^M`] TRIANGLE_ANGLE_SUM) THEN
  MP_TAC(ISPECL [`A':real^N`; `B':real^N`; `C':real^N`]
    TRIANGLE_ANGLE_SUM) THEN
  ASM_REWRITE_TAC[IMP_IMP] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
    `a + b + x = pi /\ a + b + y = pi ==> x = y`)) THEN
  ASM_MESON_TAC[CONGRUENT_TRIANGLES_AAS; DIST_SYM; ANGLE_SYM]);;

(* ------------------------------------------------------------------------- *)
(* Full versions where we deduce everything from the conditions.             *)
(* ------------------------------------------------------------------------- *)

let CONGRUENT_TRIANGLES_SSS_FULL = prove
 (`!A B C:real^M A' B' C':real^N.
        dist(A,B) = dist(A',B') /\
        dist(B,C) = dist(B',C') /\
        dist(C,A) = dist(C',A')
        ==> dist(A,B) = dist(A',B') /\
            dist(B,C) = dist(B',C') /\
            dist(C,A) = dist(C',A') /\
            angle(A,B,C) = angle(A',B',C') /\
            angle(B,C,A) = angle(B',C',A') /\
            angle(C,A,B) = angle(C',A',B')`,
  MESON_TAC[CONGRUENT_TRIANGLES_SSS; DIST_SYM; ANGLE_SYM]);;

let CONGRUENT_TRIANGLES_SAS_FULL = prove
 (`!A B C:real^M A' B' C':real^N.
        dist(A,B) = dist(A',B') /\
        angle(A,B,C) = angle(A',B',C') /\
        dist(B,C) = dist(B',C')
        ==> dist(A,B) = dist(A',B') /\
            dist(B,C) = dist(B',C') /\
            dist(C,A) = dist(C',A') /\
            angle(A,B,C) = angle(A',B',C') /\
            angle(B,C,A) = angle(B',C',A') /\
            angle(C,A,B) = angle(C',A',B')`,
  MESON_TAC[CONGRUENT_TRIANGLES_SSS; DIST_SYM; ANGLE_SYM;
            CONGRUENT_TRIANGLES_SAS]);;

let CONGRUENT_TRIANGLES_AAS_FULL = prove
 (`!A B C:real^M A' B' C':real^N.
        angle(A,B,C) = angle(A',B',C') /\
        angle(B,C,A) = angle(B',C',A') /\
        dist(A,B) = dist(A',B') /\
        ~(collinear {A,B,C})
        ==> dist(A,B) = dist(A',B') /\
            dist(B,C) = dist(B',C') /\
            dist(C,A) = dist(C',A') /\
            angle(A,B,C) = angle(A',B',C') /\
            angle(B,C,A) = angle(B',C',A') /\
            angle(C,A,B) = angle(C',A',B')`,
  MESON_TAC[CONGRUENT_TRIANGLES_SSS; DIST_SYM; ANGLE_SYM;
            CONGRUENT_TRIANGLES_AAS]);;

let CONGRUENT_TRIANGLES_ASA_FULL = prove
 (`!A B C:real^M A' B' C':real^N.
        angle(A,B,C) = angle(A',B',C') /\
        dist(A,B) = dist(A',B') /\
        angle(B,A,C) = angle(B',A',C') /\
        ~(collinear {A,B,C})
        ==> dist(A,B) = dist(A',B') /\
            dist(B,C) = dist(B',C') /\
            dist(C,A) = dist(C',A') /\
            angle(A,B,C) = angle(A',B',C') /\
            angle(B,C,A) = angle(B',C',A') /\
            angle(C,A,B) = angle(C',A',B')`,
  MESON_TAC[CONGRUENT_TRIANGLES_ASA; CONGRUENT_TRIANGLES_SAS_FULL;
            DIST_SYM; ANGLE_SYM]);;

(* ------------------------------------------------------------------------- *)
(* Between-ness.                                                             *)
(* ------------------------------------------------------------------------- *)

let ANGLE_BETWEEN = prove
 (`!a b x. angle(a,x,b) = pi <=> ~(x = a) /\ ~(x = b) /\ between x (a,b)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[between; ANGLE_EQ_PI_DIST] THEN
  REWRITE_TAC[EQ_SYM_EQ]);;

let BETWEEN_ANGLE = prove
 (`!a b x. between x (a,b) <=> x = a \/ x = b \/ angle(a,x,b) = pi`,
  REPEAT GEN_TAC THEN REWRITE_TAC[ANGLE_BETWEEN] THEN
  MESON_TAC[BETWEEN_REFL]);;

let ANGLES_ALONG_LINE = prove
 (`!A B C D:real^N.
      ~(C = A) /\ ~(C = B) /\ between C (A,B)
      ==> angle(A,C,D) + angle(B,C,D) = pi`,
  REPEAT GEN_TAC THEN REWRITE_TAC[GSYM ANGLE_BETWEEN] THEN
  DISCH_THEN(SUBST1_TAC o MATCH_MP ANGLE_EQ_PI_LEFT) THEN REAL_ARITH_TAC);;

let ANGLES_ADD_BETWEEN = prove
 (`!A B C D:real^N.
        between C (A,B) /\ ~(D = A) /\ ~(D = B)
        ==> angle(A,D,C) + angle(C,D,B) = angle(A,D,B)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `A:real^N = B` THENL
   [ASM_SIMP_TAC[BETWEEN_REFL_EQ] THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ADD_LID];
    ALL_TAC] THEN
  ASM_CASES_TAC `C:real^N = A` THEN
  ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ADD_LID] THEN
  ASM_CASES_TAC `C:real^N = B` THEN
  ASM_SIMP_TAC[ANGLE_REFL_MID; REAL_ADD_RID] THEN
  STRIP_TAC THEN
  MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`; `D:real^N`]
        ANGLES_ALONG_LINE) THEN
  MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN
  MP_TAC(ISPECL [`A:real^N`; `C:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN
  MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `D:real^N`] TRIANGLE_ANGLE_SUM) THEN
  ASM_REWRITE_TAC[] THEN
  SUBGOAL_THEN `angle(C:real^N,A,D) = angle(B,A,D) /\
                angle(A,B,D) = angle(C,B,D)`
   (CONJUNCTS_THEN SUBST1_TAC)
  THENL [ALL_TAC; REWRITE_TAC[ANGLE_SYM] THEN REAL_ARITH_TAC] THEN
  CONJ_TAC THEN MATCH_MP_TAC ANGLE_EQ_0_RIGHT THEN
  ASM_MESON_TAC[ANGLE_EQ_PI_OTHERS; BETWEEN_ANGLE]);;

(* ------------------------------------------------------------------------- *)
(* Distance from a point to a line expressed with angles.                    *)
(* ------------------------------------------------------------------------- *)

let SETDIST_POINT_LINE = prove
 (`!x y z:real^N.
        setdist({x},affine hull {y,z}) = dist(x,y) * sin(angle(x,y,z))`,
  REPEAT GEN_TAC THEN GEOM_ORIGIN_TAC `y:real^N` THEN
  REPEAT GEN_TAC THEN
  SIMP_TAC[SETDIST_CLOSEST_POINT; CLOSED_AFFINE_HULL;
           AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN
  ABBREV_TAC `y = closest_point (affine hull {vec 0, z}) (x:real^N)` THEN
  MP_TAC(ISPECL [`vec 0:real^N`; `y:real^N`; `x:real^N`]
        SIN_OPPOSITE_HYPOTENUSE) THEN
  MP_TAC(ISPECL [`affine hull {vec 0:real^N, z}`; `x:real^N`; `vec 0:real^N`]
        CLOSEST_POINT_AFFINE_ORTHOGONAL) THEN
  ASM_SIMP_TAC[HULL_INC; IN_INSERT; AFFINE_AFFINE_HULL;
               AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN
  DISCH_THEN(K ALL_TAC) THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
  REWRITE_TAC[DIST_SYM] THEN AP_TERM_TAC THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [ANGLE_SYM] THEN
  MP_TAC(ISPECL [`affine hull {vec 0:real^N, z}`; `x:real^N`]
        CLOSEST_POINT_IN_SET) THEN
  ASM_SIMP_TAC[CLOSED_AFFINE_HULL; AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN
  SIMP_TAC[AFFINE_HULL_2; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN
  MAP_EVERY X_GEN_TAC [`b:real`; `a:real`] THEN STRIP_TAC THEN
  MP_TAC(ISPECL [`affine hull {vec 0:real^N, z}`; `x:real^N`; `z:real^N`]
        CLOSEST_POINT_AFFINE_ORTHOGONAL) THEN
  ASM_SIMP_TAC[HULL_INC; IN_INSERT; AFFINE_AFFINE_HULL;
               AFFINE_HULL_EQ_EMPTY; NOT_INSERT_EMPTY] THEN
  REWRITE_TAC[angle; VECTOR_SUB_RZERO; SIN_VECTOR_ANGLE_LMUL] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_SUB_RZERO] THEN
  SIMP_TAC[ORTHOGONAL_VECTOR_ANGLE; SIN_PI2]);;

(* ------------------------------------------------------------------------- *)
(* A standard formula for the area of a triangle.                            *)
(* ------------------------------------------------------------------------- *)

let AREA_TRIANGLE_SIN = prove
 (`!a b c:real^2.
     measure(convex hull {a,b,c}) =
     (dist(a,b) * dist(a,c) * sin(angle(b,a,c))) / &2`,
  GEOM_ORIGIN_TAC `a:real^2` THEN
  REWRITE_TAC[MEASURE_TRIANGLE; angle] THEN
  REWRITE_TAC[VECTOR_SUB_RZERO; VEC_COMPONENT; REAL_SUB_RZERO; DIST_0] THEN
  REPEAT GEN_TAC THEN MATCH_MP_TAC(REAL_ARITH
   `&0 <= y /\ abs x = abs y ==> abs x / &2 = y / &2`) THEN
  SIMP_TAC[REAL_LE_MUL; NORM_POS_LE; SIN_VECTOR_ANGLE_POS] THEN
  REWRITE_TAC[REAL_EQ_SQUARE_ABS] THEN
  ASM_CASES_TAC `b:real^2 = vec 0` THENL
   [ASM_REWRITE_TAC[VEC_COMPONENT; NORM_0] THEN REAL_ARITH_TAC; ALL_TAC] THEN
  ASM_CASES_TAC `c:real^2 = vec 0` THENL
   [ASM_REWRITE_TAC[VEC_COMPONENT; NORM_0] THEN REAL_ARITH_TAC; ALL_TAC] THEN
  ASM_REWRITE_TAC[REAL_POW_MUL; SIN_SQUARED_VECTOR_ANGLE] THEN
  ASM_SIMP_TAC[NORM_EQ_0; REAL_FIELD
   `~(b = &0) /\ ~(c = &0)
    ==> b pow 2 * c pow 2 * (&1 - (d / (b * c)) pow 2) =
        b pow 2 * c pow 2 - d pow 2`] THEN
  REWRITE_TAC[NORM_POW_2; DOT_2] THEN CONV_TAC REAL_RING);;

(* ------------------------------------------------------------------------- *)
(* Angles satisfy the triangle law and hence vector_angle defines a metric.  *)
(* ------------------------------------------------------------------------- *)

let ANGLE_TRIANGLE_LAW = prove
 (`!p u v w:real^N. angle(u,p,w) <= angle(u,p,v) + angle(v,p,w)`,
  let lemma0 = prove
   (`x1 * x1 + y1 * y1 + z1 * z1 = &1 /\ x2 * x2 + y2 * y2 + z2 * z2 = &1
     ==> (x2 * x1 - (x2 * x1 + y2 * y1 + z2 * z1)) pow 2 <=
         (&1 - x2 pow 2) * (&1 - x1 pow 2)`,
    REPEAT STRIP_TAC THEN
    REWRITE_TAC[REAL_ARITH
     `(x2 * x1 - (x2 * x1 + y2 * y1 + z2 * z1)) pow 2 <=
      (&1 - x2 pow 2) * (&1 - x1 pow 2)
      <=> &0 <= --(y1 pow 2 + z1 pow 2) *
                ((x2 * x2 + y2 * y2 + z2 * z2) - &1) +
                (x2 pow 2 - &1) * ((x1 * x1 + y1 * y1 + z1 * z1) - &1) +
                (y2 * z1 - y1 * z2) pow 2`] THEN
    ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; REAL_ADD_LID] THEN
    REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE]) in
  let lemma1 = prove
   (`!p u v w:real^3.
          norm(u - p) = &1 /\ norm(v - p) = &1 /\ norm(w - p) = &1
          ==> angle(u,p,w) <= angle(u,p,v) + angle(v,p,w)`,
    GEOM_ORIGIN_TAC `p:real^3` THEN
    REWRITE_TAC[angle; VECTOR_SUB_RZERO] THEN
    GEOM_BASIS_MULTIPLE_TAC 1 `v:real^3` THEN
    X_GEN_TAC `vb:real` THEN
    SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_GE_1; LE_REFL] THEN
    SIMP_TAC[REAL_ARITH `&0 <= vb ==> (abs(vb) * &1 = &1 <=> vb = &1)`] THEN
    DISCH_THEN(K ALL_TAC) THEN ASM_CASES_TAC `vb = &1` THEN
    ASM_REWRITE_TAC[VECTOR_MUL_LID] THEN POP_ASSUM(K ALL_TAC) THEN
    REPEAT GEN_TAC THEN
    SUBGOAL_THEN `~(basis 1:real^3 = vec 0)` ASSUME_TAC THENL
     [ASM_SIMP_TAC[BASIS_NONZERO; DIMINDEX_GE_1; LE_REFL]; ALL_TAC] THEN
    MAP_EVERY ASM_CASES_TAC
     [`u:real^3 = vec 0`; `w:real^3 = vec 0`] THEN
    ASM_REWRITE_TAC[NORM_0; REAL_OF_NUM_EQ; ARITH_EQ] THEN
    REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH
     `&0 <= x /\ x <= pi /\ &0 <= y /\ y <= pi /\ &0 <= z /\ z <= pi /\
      (&0 <= y + z /\ y + z <= pi ==> x <= y + z)
      ==> x <= y + z`) THEN
    REWRITE_TAC[VECTOR_ANGLE_RANGE] THEN STRIP_TAC THEN
    W(MP_TAC o PART_MATCH (rand o rand) COS_MONO_LE_EQ o snd) THEN
    ASM_REWRITE_TAC[VECTOR_ANGLE_RANGE] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
    ASM_SIMP_TAC[COS_ADD; COS_VECTOR_ANGLE; VECTOR_SUB_RZERO] THEN
    REWRITE_TAC[REAL_MUL_LID; REAL_DIV_1] THEN
    MATCH_MP_TAC(REAL_ARITH
     `abs(x - z) <= abs(y) /\ &0 <= y ==> x - y <= z`) THEN
    ASM_SIMP_TAC[SIN_VECTOR_ANGLE_POS; REAL_LE_MUL; REAL_LE_SQUARE_ABS] THEN
    ASM_REWRITE_TAC[REAL_POW_MUL; SIN_SQUARED_VECTOR_ANGLE] THEN
    ASM_REWRITE_TAC[VECTOR_SUB_RZERO; REAL_MUL_LID; REAL_DIV_1] THEN
    REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NORM_EQ_1])) THEN
    MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`u:real^3`; `w:real^3`] THEN
    POP_ASSUM_LIST(K ALL_TAC) THEN REWRITE_TAC[FORALL_VECTOR_3] THEN
    SIMP_TAC[DOT_BASIS; DIMINDEX_GE_1; LE_REFL; NORM_BASIS] THEN
    REWRITE_TAC[REAL_MUL_LID; REAL_DIV_1] THEN
    REWRITE_TAC[DOT_3; VECTOR_3] THEN SIMP_TAC[lemma0]) in
  let lemma2 = prove
   (`!p u v w:real^3. angle(u,p,w) <= angle(u,p,v) + angle(v,p,w)`,
    GEOM_ORIGIN_TAC `p:real^3` THEN REPEAT GEN_TAC THEN
    ASM_CASES_TAC `u:real^3 = vec 0` THENL
     [MATCH_MP_TAC(REAL_ARITH `x = pi / &2 /\ y = pi / &2 /\ &0 <= z
                               ==> x <= y + z`) THEN
      REWRITE_TAC[angle; VECTOR_ANGLE_RANGE] THEN
      ASM_REWRITE_TAC[vector_angle; VECTOR_SUB_RZERO];
      ALL_TAC] THEN
    ASM_CASES_TAC `v:real^3 = vec 0` THENL
     [MATCH_MP_TAC(REAL_ARITH `x <= pi /\ y = pi / &2 /\ z = pi / &2
                               ==> x <= y + z`) THEN
      REWRITE_TAC[angle; VECTOR_ANGLE_RANGE] THEN
      ASM_REWRITE_TAC[vector_angle; VECTOR_SUB_RZERO];
      ALL_TAC] THEN
    ASM_CASES_TAC `w:real^3 = vec 0` THENL
     [MATCH_MP_TAC(REAL_ARITH `x = pi / &2 /\ &0 <= y /\ z = pi / &2
                               ==> x <= y + z`) THEN
      REWRITE_TAC[angle; VECTOR_ANGLE_RANGE] THEN
      ASM_REWRITE_TAC[vector_angle; VECTOR_SUB_RZERO];
      ALL_TAC] THEN
    MP_TAC(ISPECL [`vec 0:real^3`; `inv(norm u) % u:real^3`;
                   `inv(norm v) % v:real^3`; `inv(norm w) % w:real^3`]
          lemma1) THEN
    ASM_SIMP_TAC[angle; VECTOR_SUB_RZERO; NORM_MUL] THEN
    ASM_SIMP_TAC[REAL_ABS_INV; REAL_ABS_NORM; REAL_MUL_LINV; NORM_EQ_0] THEN
    ASM_REWRITE_TAC[VECTOR_ANGLE_LMUL; VECTOR_ANGLE_RMUL] THEN
    ASM_REWRITE_TAC[REAL_INV_EQ_0; NORM_EQ_0; REAL_LE_INV_EQ; NORM_POS_LE]) in
  DISJ_CASES_TAC(ARITH_RULE
    `dimindex(:3) <= dimindex(:N) \/ dimindex(:N) <= dimindex(:3)`)
  THENL
   [ALL_TAC;
    FIRST_ASSUM(ACCEPT_TAC o C GEOM_DROP_DIMENSION_RULE
      lemma2)] THEN
  GEOM_ORIGIN_TAC `p:real^N` THEN REPEAT GEN_TAC THEN
  SUBGOAL_THEN `subspace(span{u:real^N,v,w}) /\
                dim(span{u,v,w}) <= dimindex(:3) /\
                dimindex(:3) <= dimindex(:N)`
  MP_TAC THENL
   [ASM_REWRITE_TAC[SUBSPACE_SPAN; DIM_SPAN] THEN
    MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD{u:real^N,v,w}` THEN
    SIMP_TAC[DIM_LE_CARD; FINITE_INSERT; FINITE_EMPTY] THEN
    SIMP_TAC[DIMINDEX_3; CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN
    ARITH_TAC;
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o MATCH_MP ISOMETRY_UNIV_SUPERSET_SUBSPACE) THEN
  DISCH_THEN(X_CHOOSE_THEN `f:real^3->real^N` STRIP_ASSUME_TAC) THEN
  FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP LINEAR_0) THEN
  SUBGOAL_THEN `{u:real^N,v,w} SUBSET IMAGE f (:real^3)` MP_TAC THENL
   [ASM_MESON_TAC[SUBSET; SPAN_INC]; ALL_TAC] THEN
  REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_IMAGE; IN_UNIV] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  MP_TAC(end_itlist CONJ
   (mapfilter (ISPEC `f:real^3->real^N`) (!invariant_under_linear))) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
  REWRITE_TAC[lemma2]);;

let VECTOR_ANGLE_TRIANGLE_LAW = prove
 (`!u v w:real^N. vector_angle u w <= vector_angle u v + vector_angle v w`,
  REWRITE_TAC[VECTOR_ANGLE_ANGLE; ANGLE_TRIANGLE_LAW]);;