Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,089 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
(* ========================================================================= *)
(* Cross products in real^3. *)
(* ========================================================================= *)
needs "Multivariate/topology.ml";;
prioritize_vector();;
(* ------------------------------------------------------------------------- *)
(* The definition. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("cross",(20,"right"));;
let cross = new_definition
`(a:real^3) cross (b:real^3) =
vector [a$2 * b$3 - a$3 * b$2;
a$3 * b$1 - a$1 * b$3;
a$1 * b$2 - a$2 * b$1] :real^3`;;
(* ------------------------------------------------------------------------- *)
(* Some simple automation. *)
(* ------------------------------------------------------------------------- *)
let VEC3_TAC =
SIMP_TAC[CART_EQ; LAMBDA_BETA; FORALL_3; SUM_3; DIMINDEX_3; VECTOR_3;
vector_add; vec; dot; cross; orthogonal; basis; DET_3;
vector_neg; vector_sub; vector_mul; ARITH] THEN
CONV_TAC REAL_RING;;
let VEC3_RULE tm = prove(tm,VEC3_TAC);;
(* ------------------------------------------------------------------------- *)
(* Basic lemmas. *)
(* ------------------------------------------------------------------------- *)
let ORTHOGONAL_CROSS = prove
(`!x y. orthogonal (x cross y) x /\ orthogonal (x cross y) y /\
orthogonal x (x cross y) /\ orthogonal y (x cross y)`,
VEC3_TAC);;
let CROSS_LZERO = prove
(`!x. (vec 0) cross x = vec 0`,
VEC3_TAC);;
let CROSS_RZERO = prove
(`!x. x cross (vec 0) = vec 0`,
VEC3_TAC);;
let CROSS_SKEW = prove
(`!x y. (x cross y) = --(y cross x)`,
VEC3_TAC);;
let CROSS_REFL = prove
(`!x. x cross x = vec 0`,
VEC3_TAC);;
let CROSS_LADD = prove
(`!x y z. (x + y) cross z = (x cross z) + (y cross z)`,
VEC3_TAC);;
let CROSS_RADD = prove
(`!x y z. x cross (y + z) = (x cross y) + (x cross z)`,
VEC3_TAC);;
let CROSS_LMUL = prove
(`!c x y. (c % x) cross y = c % (x cross y)`,
VEC3_TAC);;
let CROSS_RMUL = prove
(`!c x y. x cross (c % y) = c % (x cross y)`,
VEC3_TAC);;
let CROSS_LNEG = prove
(`!x y. (--x) cross y = --(x cross y)`,
VEC3_TAC);;
let CROSS_RNEG = prove
(`!x y. x cross (--y) = --(x cross y)`,
VEC3_TAC);;
let CROSS_LSUB = prove
(`!x y z. (x - y) cross z = x cross z - y cross z`,
VEC3_TAC);;
let CROSS_RSUB = prove
(`!x y z. x cross (y - z) = x cross y - x cross z`,
VEC3_TAC);;
let CROSS_JACOBI = prove
(`!x y z.
x cross (y cross z) + y cross (z cross x) + z cross (x cross y) = vec 0`,
VEC3_TAC);;
let CROSS_LAGRANGE = prove
(`!x y z. x cross (y cross z) = (x dot z) % y - (x dot y) % z`,
VEC3_TAC);;
let CROSS_TRIPLE = prove
(`!x y z. (x cross y) dot z = (y cross z) dot x`,
VEC3_TAC);;
let DOT_CROSS_SELF = prove
(`(!x y. x dot (x cross y) = &0) /\
(!x y. x dot (y cross x) = &0) /\
(!x y. (x cross y) dot y = &0) /\
(!x y. (y cross x) dot y = &0)`,
VEC3_TAC);;
let CROSS_COMPONENTS = prove
(`!x y. (x cross y)$1 = x$2 * y$3 - y$2 * x$3 /\
(x cross y)$2 = x$3 * y$1 - y$3 * x$1 /\
(x cross y)$3 = x$1 * y$2 - y$1 * x$2`,
VEC3_TAC);;
let CROSS_BASIS = prove
(`(basis 1) cross (basis 2) = basis 3 /\
(basis 2) cross (basis 1) = --(basis 3) /\
(basis 2) cross (basis 3) = basis 1 /\
(basis 3) cross (basis 2) = --(basis 1) /\
(basis 3) cross (basis 1) = basis 2 /\
(basis 1) cross (basis 3) = --(basis 2)`,
VEC3_TAC);;
let CROSS_BASIS_NONZERO = prove
(`!u. ~(u = vec 0)
==> ~(u cross basis 1 = vec 0) \/
~(u cross basis 2 = vec 0) \/
~(u cross basis 3 = vec 0)`,
VEC3_TAC);;
let CROSS_DOT_CANCEL = prove
(`!x y z.
x dot y = x dot z /\ x cross y = x cross z /\ ~(x = vec 0) ==> y = z`,
ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN REWRITE_TAC[GSYM DOT_EQ_0] THEN
VEC3_TAC);;
let NORM_CROSS_DOT = prove
(`!x y. norm(x cross y) pow 2 + (x dot y) pow 2 = (norm(x) * norm y) pow 2`,
REWRITE_TAC[REAL_POW_MUL; NORM_POW_2] THEN VEC3_TAC);;
let DOT_CROSS_DET = prove
(`!x y z. x dot (y cross z) = det(vector[x;y;z]:real^3^3)`,
VEC3_TAC);;
let CROSS_CROSS_DET = prove
(`!w x y z. (w cross x) cross (y cross z) =
det(vector[w;x;z]:real^3^3) % y -
det(vector[w;x;y]:real^3^3) % z`,
VEC3_TAC);;
let DOT_CROSS = prove
(`!w x y z. (w cross x) dot (y cross z) =
(w dot y) * (x dot z) - (w dot z) * (x dot y)`,
VEC3_TAC);;
let NORM_CROSS = prove
(`!x y. norm(x cross y) pow 2 =
norm(x) pow 2 * norm(y) pow 2 - (x dot y) pow 2`,
REWRITE_TAC[NORM_POW_2] THEN VEC3_TAC);;
let CROSS_EQ_0 = prove
(`!x y. x cross y = vec 0 <=> collinear{vec 0,x,y}`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM NORM_EQ_0] THEN
ONCE_REWRITE_TAC[REAL_RING `x = &0 <=> x pow 2 = &0`] THEN
REWRITE_TAC[NORM_CROSS; REAL_SUB_0; GSYM REAL_POW_MUL] THEN
REWRITE_TAC[GSYM REAL_EQ_SQUARE_ABS; GSYM NORM_CAUCHY_SCHWARZ_EQUAL] THEN
SIMP_TAC[real_abs; REAL_LE_MUL; NORM_POS_LE; EQ_SYM_EQ]);;
let CROSS_0 = prove
(`(!x. vec 0 cross x = vec 0) /\
(!x. x cross vec 0 = vec 0)`,
VEC3_TAC);;
let CROSS_EQ_SELF = prove
(`(!x y. x cross y = x <=> x = vec 0) /\
(!x y. x cross y = y <=> y = vec 0)`,
MESON_TAC[ORTHOGONAL_CROSS; CROSS_0; ORTHOGONAL_REFL]);;
let NORM_AND_CROSS_EQ_0 = prove
(`!x y. x dot y = &0 /\ x cross y = vec 0 <=> x = vec 0 \/ y = vec 0`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN
ASM_REWRITE_TAC[CROSS_0; DOT_LZERO] THEN ASM_CASES_TAC `y:real^3 = vec 0` THEN
ASM_REWRITE_TAC[CROSS_0; DOT_RZERO] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[GSYM DOT_EQ_0; DOT_CROSS; REAL_MUL_LZERO] THEN
ASM_REWRITE_TAC[REAL_SUB_RZERO; REAL_ENTIRE; DOT_EQ_0]);;
let BILINEAR_CROSS = prove
(`bilinear(cross)`,
REWRITE_TAC[linear; bilinear; CROSS_LADD; CROSS_RADD;
CROSS_LMUL; CROSS_RMUL]);;
(* ------------------------------------------------------------------------- *)
(* Preservation by rotation, or other orthogonal transformation up to sign. *)
(* ------------------------------------------------------------------------- *)
let CROSS_MATRIX_MUL = prove
(`!A x y. transp A ** ((A ** x) cross (A ** y)) = det A % (x cross y)`,
SIMP_TAC[CART_EQ; DIMINDEX_3; FORALL_3; SUM_3; matrix_vector_mul;
CROSS_COMPONENTS; LAMBDA_BETA; ARITH; transp; DET_3;
VECTOR_MUL_COMPONENT] THEN
REAL_ARITH_TAC);;
let CROSS_ORTHOGONAL_MATRIX = prove
(`!A x y. orthogonal_matrix A
==> (A ** x) cross (A ** y) = det A % (A ** (x cross y))`,
MP_TAC CROSS_MATRIX_MUL THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
REWRITE_TAC[orthogonal_matrix] THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
DISCH_THEN(MP_TAC o AP_TERM `matrix_vector_mul (A:real^3^3)`) THEN
ASM_REWRITE_TAC[MATRIX_VECTOR_MUL_ASSOC; MATRIX_VECTOR_MUL_LID] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[MATRIX_VECTOR_MUL_RMUL]);;
let CROSS_ROTATION_MATRIX = prove
(`!A x y. rotation_matrix A
==> (A ** x) cross (A ** y) = A ** (x cross y)`,
SIMP_TAC[rotation_matrix; CROSS_ORTHOGONAL_MATRIX; VECTOR_MUL_LID]);;
let CROSS_ROTOINVERSION_MATRIX = prove
(`!A x y. rotoinversion_matrix A
==> (A ** x) cross (A ** y) = --(A ** (x cross y))`,
SIMP_TAC[rotoinversion_matrix; CROSS_ORTHOGONAL_MATRIX; VECTOR_MUL_LID;
VECTOR_MUL_LNEG]);;
let CROSS_ORTHOGONAL_TRANSFORMATION = prove
(`!f x y.
orthogonal_transformation f
==> (f x) cross (f y) = det(matrix f) % f(x cross y)`,
GEN_TAC THEN
MP_TAC(ISPEC `matrix(f:real^3->real^3)` CROSS_ORTHOGONAL_MATRIX) THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN
ANTS_TAC THENL
[ASM_MESON_TAC[ORTHOGONAL_TRANSFORMATION_MATRIX;
ORTHOGONAL_TRANSFORMATION_LINEAR];
ASM_SIMP_TAC[MATRIX_WORKS; ORTHOGONAL_TRANSFORMATION_LINEAR]]);;
let CROSS_LINEAR_IMAGE = prove
(`!f x y. linear f /\ (!x. norm(f x) = norm x) /\ det(matrix f) = &1
==> (f x) cross (f y) = f(x cross y)`,
SIMP_TAC[ORTHOGONAL_TRANSFORMATION; CONJ_ASSOC; VECTOR_MUL_LID;
CROSS_ORTHOGONAL_TRANSFORMATION]);;
(* ------------------------------------------------------------------------- *)
(* Continuity. *)
(* ------------------------------------------------------------------------- *)
let CONTINUOUS_CROSS = prove
(`!net:(A)net f g.
f continuous net /\ g continuous net
==> (\x. (f x) cross (g x)) continuous net`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[CONTINUOUS_COMPONENTWISE_LIFT] THEN
REWRITE_TAC[cross; VECTOR_3; DIMINDEX_3; FORALL_3; LIFT_SUB] THEN
REPEAT CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_SUB THEN
REWRITE_TAC[LIFT_CMUL] THEN CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_MUL THEN
ASM_SIMP_TAC[o_DEF; CONTINUOUS_LIFT_COMPONENT_COMPOSE]);;
let CONTINUOUS_ON_CROSS = prove
(`!f:real^N->real^3 g s.
f continuous_on s /\ g continuous_on s
==> (\x. (f x) cross (g x)) continuous_on s`,
SIMP_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; CONTINUOUS_CROSS]);;
(* ------------------------------------------------------------------------- *)
(* Prove a weaker variant for more convenient interface with functions *)
(* intended to work in 1 dimension. *)
(* ------------------------------------------------------------------------- *)
let CROSS_LINEAR_IMAGE_WEAK = prove
(`!f x y. linear f /\ (!x. norm(f x) = norm x) /\
(2 <= dimindex(:3) ==> det(matrix f) = &1)
==> (f x) cross (f y) = f(x cross y)`,
REWRITE_TAC[DIMINDEX_3; ARITH] THEN
SIMP_TAC[ORTHOGONAL_TRANSFORMATION; CONJ_ASSOC; VECTOR_MUL_LID;
CROSS_ORTHOGONAL_TRANSFORMATION]);;
add_linear_invariants [CROSS_LINEAR_IMAGE_WEAK];;
|