Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,039 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
(*<*)
\<comment>\<open> ********************************************************************
* Project : AGM Theory
* Version : 1.0
*
* Authors : Valentin Fouillard, Safouan Taha, Frederic Boulanger
and Nicolas Sabouret
*
* This file : AGM Remainders
*
* Copyright (c) 2021 Université Paris Saclay, France
*
******************************************************************************\<close>
theory AGM_Remainder
imports AGM_Logic
begin
(*>*)
section \<open>Remainders\<close>
text\<open>In AGM, one important feature is to eliminate some proposition from a set of propositions by ensuring
that the set of retained clauses is maximal and that nothing among these clauses allows to retrieve the eliminated proposition\<close>
subsection \<open>Remainders in a Tarskian logic\<close>
text \<open>In a general context of a Tarskian logic, we consider a descriptive definition (by comprehension)\<close>
context Tarskian_logic
begin
definition remainder::\<open>'a set \<Rightarrow> 'a \<Rightarrow> 'a set set\<close> (infix \<open>.\<bottom>.\<close> 55)
where rem: \<open>A .\<bottom>. \<phi> \<equiv> {B. B \<subseteq> A \<and> \<not> B \<turnstile> \<phi> \<and> (\<forall>B'\<subseteq> A. B \<subset> B' \<longrightarrow> B' \<turnstile> \<phi>)}\<close>
lemma rem_inclusion: \<open>B \<in> A .\<bottom>. \<phi> \<Longrightarrow> B \<subseteq> A\<close>
by (auto simp add:rem split:if_splits)
lemma rem_closure: "K = Cn(A) \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B = Cn(B)"
apply(cases \<open>K .\<bottom>. \<phi> = {}\<close>, simp)
by (simp add:rem infer_def) (metis idempotency_L inclusion_L monotonicity_L psubsetI)
lemma remainder_extensionality: \<open>Cn({\<phi>}) = Cn({\<psi>}) \<Longrightarrow> A .\<bottom>. \<phi> = A .\<bottom>. \<psi>\<close>
unfolding rem infer_def apply safe
by (simp_all add: Cn_same) blast+
lemma nonconsequence_remainder: \<open>A .\<bottom>. \<phi> = {A} \<longleftrightarrow> \<not> A \<turnstile> \<phi>\<close>
unfolding rem by auto
\<comment> \<open>As we will see further, the other direction requires compactness!\<close>
lemma taut2emptyrem: \<open>\<tturnstile> \<phi> \<Longrightarrow> A .\<bottom>. \<phi> = {}\<close>
unfolding rem by (simp add: infer_def validD_L)
end
subsection \<open>Remainders in a supraclassical logic\<close>
text\<open>In case of a supraclassical logic, remainders get impressive properties\<close>
context Supraclassical_logic
begin
\<comment> \<open>As an effect of being maximal, a remainder keeps the eliminated proposition in its propositions hypothesis\<close>
lemma remainder_recovery: \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<psi> \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B \<turnstile> \<phi> .\<longrightarrow>. \<psi>\<close>
proof -
{ fix \<psi> and B
assume a:\<open>K = Cn(A)\<close> and c:\<open>\<psi> \<in> K\<close> and d:\<open>B \<in> K .\<bottom>. \<phi>\<close> and e:\<open>\<phi> .\<longrightarrow>. \<psi> \<notin> Cn(B)\<close>
with a have f:\<open>\<phi> .\<longrightarrow>. \<psi> \<in> K\<close> using impI2 infer_def by blast
with d e have \<open>\<phi> \<in> Cn(B \<union> {\<phi> .\<longrightarrow>. \<psi>})\<close>
apply (simp add:rem, elim conjE)
by (metis dual_order.order_iff_strict inclusion_L insert_subset)
with d have False using rem imp_recovery1
by (metis (no_types, lifting) CollectD infer_def)
}
thus \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<psi> \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B \<turnstile> \<phi> .\<longrightarrow>. \<psi>\<close>
using idempotency_L by auto
qed
\<comment> \<open>When you remove some proposition \<open>\<phi>\<close> several other propositions can be lost.
An important lemma states that the resulting remainder is also a remainder of any lost proposition\<close>
lemma remainder_recovery_bis: \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<psi> \<Longrightarrow> \<not> B \<turnstile> \<psi> \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B \<in> K .\<bottom>. \<psi>\<close>
proof-
assume a:\<open>K = Cn(A)\<close> and b:\<open>\<not> B \<turnstile> \<psi>\<close> and c:\<open>B \<in> K .\<bottom>. \<phi>\<close> and d:\<open>K \<turnstile> \<psi>\<close>
hence d:\<open>B \<turnstile> \<phi> .\<longrightarrow>. \<psi>\<close> using remainder_recovery by simp
with c show \<open>B \<in> K .\<bottom>. \<psi>\<close>
by (simp add:rem) (meson b dual_order.trans infer_def insert_subset monotonicity_L mp_PL order_refl psubset_imp_subset)
qed
corollary remainder_recovery_imp: \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<psi> \<Longrightarrow> \<tturnstile> (\<psi> .\<longrightarrow>. \<phi>) \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B \<in> K .\<bottom>. \<psi>\<close>
apply(rule remainder_recovery_bis, simp_all)
by (simp add:rem) (meson infer_def mp_PL validD_L)
\<comment> \<open>If we integrate back the eliminated proposition into the remainder, we retrieve the original set!\<close>
lemma remainder_expansion: \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<psi> \<Longrightarrow> \<not> B \<turnstile> \<psi> \<Longrightarrow> B \<in> K .\<bottom>. \<phi> \<Longrightarrow> B \<oplus> \<psi> = K\<close>
proof
assume a:\<open>K = Cn(A)\<close> and b:\<open>K \<turnstile> \<psi>\<close> and c:\<open>\<not> B \<turnstile> \<psi>\<close> and d:\<open>B \<in> K .\<bottom>. \<phi>\<close>
then show \<open>B \<oplus> \<psi> \<subseteq> K\<close>
by (metis Un_insert_right expansion_def idempotency_L infer_def insert_subset
monotonicity_L rem_inclusion sup_bot.right_neutral)
next
assume a:\<open>K = Cn(A)\<close> and b:\<open>K \<turnstile> \<psi>\<close> and c:\<open>\<not> B \<turnstile> \<psi>\<close> and d:\<open>B \<in> K .\<bottom>. \<phi>\<close>
{ fix \<chi>
assume \<open>\<chi> \<in> K\<close>
hence e:\<open>B \<turnstile> \<phi> .\<longrightarrow>.\<chi>\<close> using remainder_recovery[OF a _ d, of \<chi>] assumption_L by blast
have \<open>\<psi> \<in> K\<close> using a b idempotency_L infer_def by blast
hence f:\<open>B \<union> {\<psi>} \<turnstile> \<phi>\<close> using b c d apply(simp add:rem)
by (meson inclusion_L insert_iff insert_subsetI less_le_not_le subset_iff)
from e f have \<open>B \<union> {\<psi>} \<turnstile> \<chi>\<close> using imp_PL imp_trans by blast
}
then show \<open>K \<subseteq> B \<oplus> \<psi>\<close>
by (simp add: expansion_def subsetI)
qed
text\<open>To eliminate a conjunction, we only need to remove one side\<close>
lemma remainder_conj: \<open>K = Cn(A) \<Longrightarrow> K \<turnstile> \<phi> .\<and>. \<psi> \<Longrightarrow> K .\<bottom>. (\<phi> .\<and>. \<psi>) = (K .\<bottom>. \<phi>) \<union> (K .\<bottom>. \<psi>)\<close>
apply(intro subset_antisym Un_least subsetI, simp add:rem)
apply (meson conj_PL infer_def)
using remainder_recovery_imp[of K A \<open>\<phi> .\<and>. \<psi>\<close> \<phi>]
apply (meson assumption_L conjE1_PL singletonI subsetI valid_imp_PL)
using remainder_recovery_imp[of K A \<open>\<phi> .\<and>. \<psi>\<close> \<psi>]
by (meson assumption_L conjE2_PL singletonI subsetI valid_imp_PL)
end
subsection \<open>Remainders in a compact logic\<close>
text\<open>In case of a supraclassical logic, remainders get impressive properties\<close>
context Compact_logic
begin
text \<open>The following lemma is the Lindembaum's lemma requiring the Zorn's lemma (already available in standard Isabelle/HOL).
For more details, please refer to the book "Theory of logical calculi" @{cite wojcicki2013theory}.
This very important lemma states that we can get a maximal set (remainder \<open>B'\<close>) starting from any set
\<open>B\<close> if this latter does not infer the proposition \<open>\<phi>\<close> we want to eliminate\<close>
lemma upper_remainder: \<open>B \<subseteq> A \<Longrightarrow> \<not> B \<turnstile> \<phi> \<Longrightarrow> \<exists>B'. B \<subseteq> B' \<and> B' \<in> A .\<bottom>. \<phi>\<close>
proof -
assume a:\<open>B \<subseteq> A\<close> and b:\<open>\<not> B \<turnstile> \<phi>\<close>
have c:\<open>\<not> \<tturnstile> \<phi>\<close>
using b infer_def validD_L by blast
define \<B> where "\<B> \<equiv> {B'. B \<subseteq> B' \<and> B' \<subseteq> A \<and> \<not> B' \<turnstile> \<phi>}"
have d:\<open>subset.chain \<B> C \<Longrightarrow> subset.chain {B. \<not> B \<turnstile> \<phi>} C\<close> for C
unfolding \<B>_def
by (simp add: le_fun_def less_eq_set_def subset_chain_def)
have e:\<open>C \<noteq> {} \<Longrightarrow> subset.chain \<B> C \<Longrightarrow> B \<subseteq> \<Union> C\<close> for C
by (metis (no_types, lifting) \<B>_def subset_chain_def less_eq_Sup mem_Collect_eq subset_iff)
{ fix C
assume f:\<open>C \<noteq> {}\<close> and g:\<open>subset.chain \<B> C\<close>
have \<open>\<Union> C \<in> \<B>\<close>
using \<B>_def e[OF f g] chain_closure[OF c d[OF g]]
by simp (metis (no_types, lifting) CollectD Sup_least Sup_subset_mono g subset.chain_def subset_trans)
} note f=this
have \<open>subset.chain \<B> C \<Longrightarrow> \<exists>U\<in>\<B>. \<forall>X\<in>C. X \<subseteq> U\<close> for C
apply (cases \<open>C \<noteq> {}\<close>)
apply (meson Union_upper f)
using \<B>_def a b by blast
with subset_Zorn[OF this, simplified] obtain B' where f:\<open>B'\<in> \<B> \<and> (\<forall>X\<in>\<B>. B' \<subseteq> X \<longrightarrow> X = B')\<close> by auto
then show ?thesis
by (simp add:rem \<B>_def, rule_tac x=B' in exI) (metis psubsetE subset_trans)
qed
\<comment> \<open>An immediate corollary ruling tautologies\<close>
corollary emptyrem2taut: \<open>A .\<bottom>. \<phi> = {} \<Longrightarrow> \<tturnstile> \<phi>\<close>
by (metis bot.extremum empty_iff upper_remainder valid_def)
end
end
|