Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 36,681 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 |
section \<open>CCW for Arbitrary Points in the Plane\<close>
theory Counterclockwise_2D_Arbitrary
imports Counterclockwise_2D_Strict
begin
subsection \<open>Interpretation of Knuth's axioms in the plane\<close>
definition lex::"point \<Rightarrow> point \<Rightarrow> bool" where
"lex p q \<longleftrightarrow> (fst p < fst q \<or> fst p = fst q \<and> snd p < snd q \<or> p = q)"
definition psi::"point \<Rightarrow> point \<Rightarrow> point \<Rightarrow> bool" where
"psi p q r \<longleftrightarrow> (lex p q \<and> lex q r)"
definition ccw::"point \<Rightarrow> point \<Rightarrow> point \<Rightarrow> bool" where
"ccw p q r \<longleftrightarrow> ccw' p q r \<or> (det3 p q r = 0 \<and> (psi p q r \<or> psi q r p \<or> psi r p q))"
interpretation ccw: linorder_list0 "ccw x" for x .
lemma ccw'_imp_ccw: "ccw' a b c \<Longrightarrow> ccw a b c"
by (simp add: ccw_def)
lemma ccw_ncoll_imp_ccw: "ccw a b c \<Longrightarrow> \<not>coll a b c \<Longrightarrow> ccw' a b c"
by (simp add: ccw_def)
lemma ccw_translate: "ccw p (p + q) (p + r) = ccw 0 q r"
by (auto simp: ccw_def psi_def lex_def)
lemma ccw_translate_origin: "NO_MATCH 0 p \<Longrightarrow> ccw p q r = ccw 0 (q - p) (r - p)"
using ccw_translate[of p "q - p" "r - p"]
by simp
lemma psi_scale:
"psi (r *\<^sub>R a) (r *\<^sub>R b) 0 = (if r > 0 then psi a b 0 else if r < 0 then psi 0 b a else True)"
"psi (r *\<^sub>R a) 0 (r *\<^sub>R b) = (if r > 0 then psi a 0 b else if r < 0 then psi b 0 a else True)"
"psi 0 (r *\<^sub>R a) (r *\<^sub>R b) = (if r > 0 then psi 0 a b else if r < 0 then psi b a 0 else True)"
by (auto simp: psi_def lex_def det3_def' not_less algebra_split_simps)
lemma ccw_scale23: "ccw 0 a b \<Longrightarrow> r > 0 \<Longrightarrow> ccw 0 (r *\<^sub>R a) (r *\<^sub>R b)"
by (auto simp: ccw_def psi_scale)
lemma psi_notI: "distinct3 p q r \<Longrightarrow> psi p q r \<Longrightarrow> \<not> psi q p r"
by (auto simp: algebra_simps psi_def lex_def)
lemma not_lex_eq: "\<not> lex a b \<longleftrightarrow> lex b a \<and> b \<noteq> a"
by (auto simp: algebra_simps lex_def prod_eq_iff)
lemma lex_trans: "lex a b \<Longrightarrow> lex b c \<Longrightarrow> lex a c"
by (auto simp: lex_def)
lemma lex_sym_eqI: "lex a b \<Longrightarrow> lex b a \<Longrightarrow> a = b"
and lex_sym_eq_iff: "lex a b \<Longrightarrow> lex b a \<longleftrightarrow> a = b"
by (auto simp: lex_def)
lemma lex_refl[simp]: "lex p p"
by (metis not_lex_eq)
lemma psi_disjuncts:
"distinct3 p q r \<Longrightarrow> psi p q r \<or> psi p r q \<or> psi q r p \<or> psi q p r \<or> psi r p q \<or> psi r q p"
by (auto simp: psi_def not_lex_eq)
lemma nlex_ccw_left: "lex x 0 \<Longrightarrow> ccw 0 (0, 1) x"
by (auto simp: ccw_def lex_def psi_def ccw'_def det3_def')
interpretation ccw_system123 ccw
apply unfold_locales
subgoal by (force simp: ccw_def ccw'_def det3_def' algebra_simps)
subgoal by (force simp: ccw_def ccw'_def det3_def' psi_def algebra_simps lex_sym_eq_iff)
subgoal by (drule psi_disjuncts) (force simp: ccw_def ccw'_def det3_def' algebra_simps)
done
lemma lex_scaleR_nonneg: "lex a b \<Longrightarrow> r \<ge> 0 \<Longrightarrow> lex a (a + r *\<^sub>R (b - a))"
by (auto simp: lex_def)
lemma lex_scale1_zero:
"lex (v *\<^sub>R u) 0 = (if v > 0 then lex u 0 else if v < 0 then lex 0 u else True)"
and lex_scale2_zero:
"lex 0 (v *\<^sub>R u) = (if v > 0 then lex 0 u else if v < 0 then lex u 0 else True)"
by (auto simp: lex_def prod_eq_iff less_eq_prod_def algebra_split_simps)
lemma nlex_add:
assumes "lex a 0" "lex b 0"
shows "lex (a + b) 0"
using assms by (auto simp: lex_def)
lemma nlex_sum:
assumes "finite X"
assumes "\<And>x. x \<in> X \<Longrightarrow> lex (f x) 0"
shows "lex (sum f X) 0"
using assms
by induction (auto intro!: nlex_add)
lemma abs_add_nlex:
assumes "coll 0 a b"
assumes "lex a 0"
assumes "lex b 0"
shows "abs (a + b) = abs a + abs b"
proof (rule antisym[OF abs_triangle_ineq])
have "fst (\<bar>a\<bar> + \<bar>b\<bar>) \<le> fst \<bar>a + b\<bar>"
using assms
by (auto simp add: det3_def' abs_prod_def lex_def)
moreover
{
assume H: "fst a < 0" "fst b < 0"
hence "snd b \<le> 0 \<longleftrightarrow> snd a \<le> 0"
using assms
by (auto simp: lex_def det3_def' mult.commute)
(metis mult_le_cancel_left_neg mult_zero_right)+
hence "\<bar>snd a\<bar> + \<bar>snd b\<bar> \<le> \<bar>snd a + snd b\<bar>"
using H by auto
} hence "snd (\<bar>a\<bar> + \<bar>b\<bar>) \<le> snd \<bar>a + b\<bar>"
using assms
by (auto simp add: det3_def' abs_prod_def lex_def)
ultimately
show "\<bar>a\<bar> + \<bar>b\<bar> \<le> \<bar>a + b\<bar>" unfolding less_eq_prod_def ..
qed
lemma lex_sum_list: "(\<And>x. x \<in> set xs \<Longrightarrow> lex x 0) \<Longrightarrow> lex (sum_list xs) 0"
by (induct xs) (auto simp: nlex_add)
lemma
abs_sum_list_coll:
assumes coll: "list_all (coll 0 x) xs"
assumes "x \<noteq> 0"
assumes up: "list_all (\<lambda>x. lex x 0) xs"
shows "abs (sum_list xs) = sum_list (map abs xs)"
using assms
proof (induct xs)
case (Cons y ys)
hence "coll 0 x y" "coll 0 x (sum_list ys)"
by (auto simp: list_all_iff intro!: coll_sum_list)
hence "coll 0 y (sum_list ys)" using \<open>x \<noteq> 0\<close>
by (rule coll_trans)
hence "\<bar>y + sum_list ys\<bar> = abs y + abs (sum_list ys)" using Cons
by (subst abs_add_nlex) (auto simp: list_all_iff lex_sum_list)
thus ?case using Cons by simp
qed simp
lemma lex_diff1: "lex (a - b) c = lex a (c + b)"
and lex_diff2: "lex c (a - b) = lex (c + b) a"
by (auto simp: lex_def)
lemma sum_list_eq_0_iff_nonpos:
fixes xs::"'a::ordered_ab_group_add list"
shows "list_all (\<lambda>x. x \<le> 0) xs \<Longrightarrow> sum_list xs = 0 \<longleftrightarrow> (\<forall>n\<in>set xs. n = 0)"
by (auto simp: list_all_iff sum_list_sum_nth sum_nonpos_eq_0_iff)
(auto simp add: in_set_conv_nth)
lemma sum_list_nlex_eq_zeroI:
assumes nlex: "list_all (\<lambda>x. lex x 0) xs"
assumes "sum_list xs = 0"
assumes "x \<in> set xs"
shows "x = 0"
proof -
from assms(2) have z1: "sum_list (map fst xs) = 0" and z2: "sum_list (map snd xs) = 0"
by (auto simp: prod_eq_iff fst_sum_list snd_sum_list)
from nlex have "list_all (\<lambda>x. x \<le> 0) (map fst xs)"
by (auto simp: lex_def list_all_iff)
from sum_list_eq_0_iff_nonpos[OF this] z1 nlex
have
z1': "list_all (\<lambda>x. x = 0) (map fst xs)"
and "list_all (\<lambda>x. x \<le> 0) (map snd xs)"
by (auto simp: list_all_iff lex_def)
from sum_list_eq_0_iff_nonpos[OF this(2)] z2
have "list_all (\<lambda>x. x = 0) (map snd xs)" by (simp add: list_all_iff)
with z1' show "x = 0" by (auto simp: list_all_iff zero_prod_def assms prod_eq_iff)
qed
lemma sum_list_eq0I: "(\<forall>x\<in>set xs. x = 0) \<Longrightarrow> sum_list xs = 0"
by (induct xs) auto
lemma sum_list_nlex_eq_zero_iff:
assumes nlex: "list_all (\<lambda>x. lex x 0) xs"
shows "sum_list xs = 0 \<longleftrightarrow> list_all ((=) 0) xs"
using assms
by (auto intro: sum_list_nlex_eq_zeroI sum_list_eq0I simp: list_all_iff)
lemma
assumes "lex p q" "lex q r" "0 \<le> a" "0 \<le> b" "0 \<le> c" "a + b + c = 1"
assumes comb_def: "comb = a *\<^sub>R p + b *\<^sub>R q + c *\<^sub>R r"
shows lex_convex3: "lex p comb" "lex comb r"
proof -
from convex3_alt[OF assms(3-6), of p q r]
obtain u v where
uv: "a *\<^sub>R p + b *\<^sub>R q + c *\<^sub>R r = p + u *\<^sub>R (q - p) + v *\<^sub>R (r - p)" "0 \<le> u" "0 \<le> v" "u + v \<le> 1" .
have "lex p r"
using assms by (metis lex_trans)
hence "lex (v *\<^sub>R (p - r)) 0" using uv
by (simp add: lex_scale1_zero lex_diff1)
also
have "lex 0 (u *\<^sub>R (q - p))" using \<open>lex p q\<close> uv
by (simp add: lex_scale2_zero lex_diff2)
finally (lex_trans)
show "lex p comb"
unfolding comb_def uv
by (simp add: lex_def prod_eq_iff algebra_simps)
from comb_def have comb_def': "comb = c *\<^sub>R r + b *\<^sub>R q + a *\<^sub>R p" by simp
from assms have "c + b + a = 1" by simp
from convex3_alt[OF assms(5,4,3) this, of r q p]
obtain u v where uv: "c *\<^sub>R r + b *\<^sub>R q + a *\<^sub>R p = r + u *\<^sub>R (q - r) + v *\<^sub>R (p - r)"
"0 \<le> u" "0 \<le> v" "u + v \<le> 1"
by auto
have "lex (u *\<^sub>R (q - r)) 0"
using uv \<open>lex q r\<close>
by (simp add: lex_scale1_zero lex_diff1)
also have "lex 0 (v *\<^sub>R (r - p))"
using uv \<open>lex p r\<close>
by (simp add: lex_scale2_zero lex_diff2)
finally (lex_trans) show "lex comb r"
unfolding comb_def' uv
by (simp add: lex_def prod_eq_iff algebra_simps)
qed
lemma lex_convex_self2:
assumes "lex p q" "0 \<le> a" "a \<le> 1"
defines "r \<equiv> a *\<^sub>R p + (1 - a) *\<^sub>R q"
shows "lex p r" (is ?th1)
and "lex r q" (is ?th2)
using lex_convex3[OF \<open>lex p q\<close>, of q a "1 - a" 0 r]
assms
by (simp_all add: r_def)
lemma lex_uminus0[simp]: "lex (-a) 0 = lex 0 a"
by (auto simp: lex_def)
lemma
lex_fst_zero_imp:
"fst x = 0 \<Longrightarrow> lex x 0 \<Longrightarrow> lex y 0 \<Longrightarrow> \<not>coll 0 x y \<Longrightarrow> ccw' 0 y x"
by (auto simp: ccw'_def det3_def' lex_def algebra_split_simps)
lemma lex_ccw_left: "lex x y \<Longrightarrow> r > 0 \<Longrightarrow> ccw y (y + (0, r)) x"
by (auto simp: ccw_def ccw'_def det3_def' algebra_simps lex_def psi_def)
lemma lex_translate_origin: "NO_MATCH 0 a \<Longrightarrow> lex a b = lex 0 (b - a)"
by (auto simp: lex_def)
subsection \<open>Order prover setup\<close>
definition "lexs p q \<longleftrightarrow> (lex p q \<and> p \<noteq> q)"
lemma lexs_irrefl: "\<not> lexs p p"
and lexs_imp_lex: "lexs x y \<Longrightarrow> lex x y"
and not_lexs: "(\<not> lexs x y) = (lex y x)"
and not_lex: "(\<not> lex x y) = (lexs y x)"
and eq_lex_refl: "x = y \<Longrightarrow> lex x y"
by (auto simp: lexs_def lex_def prod_eq_iff)
lemma lexs_trans: "lexs x y \<Longrightarrow> lexs y z \<Longrightarrow> lexs x z"
and lexs_lex_trans: "lexs x y \<Longrightarrow> lex y z \<Longrightarrow> lexs x z"
and lex_lexs_trans: "lex x y \<Longrightarrow> lexs y z \<Longrightarrow> lexs x z"
and lex_neq_trans: "lex a b \<Longrightarrow> a \<noteq> b \<Longrightarrow> lexs a b"
and neq_lex_trans: "a \<noteq> b \<Longrightarrow> lex a b \<Longrightarrow> lexs a b"
and lexs_imp_neq: "lexs a b \<Longrightarrow> a \<noteq> b"
by (auto simp: lexs_def lex_def prod_eq_iff)
local_setup \<open>
HOL_Order_Tac.declare_linorder {
ops = {eq = @{term \<open>(=) :: point \<Rightarrow> point \<Rightarrow> bool\<close>}, le = @{term \<open>lex\<close>}, lt = @{term \<open>lexs\<close>}},
thms = {trans = @{thm lex_trans}, refl = @{thm lex_refl}, eqD1 = @{thm eq_lex_refl},
eqD2 = @{thm eq_lex_refl[OF sym]}, antisym = @{thm lex_sym_eqI}, contr = @{thm notE}},
conv_thms = {less_le = @{thm eq_reflection[OF lexs_def]},
nless_le = @{thm eq_reflection[OF not_lexs]},
nle_le = @{thm eq_reflection[OF not_lex_eq]}}
}
\<close>
subsection \<open>Contradictions\<close>
lemma
assumes d: "distinct4 s p q r"
shows contra1: "\<not>(lex p q \<and> lex q r \<and> lex r s \<and> indelta s p q r)" (is ?th1)
and contra2: "\<not>(lex s p \<and> lex p q \<and> lex q r \<and> indelta s p q r)" (is ?th2)
and contra3: "\<not>(lex p r \<and> lex p s \<and> lex q r \<and> lex q s \<and> insquare p r q s)" (is ?th3)
proof -
{
assume "det3 s p q = 0" "det3 s q r = 0" "det3 s r p = 0" "det3 p q r = 0"
hence ?th1 ?th2 ?th3 using d
by (auto simp add: det3_def' ccw'_def ccw_def psi_def algebra_simps)
} moreover {
assume *: "\<not>(det3 s p q = 0 \<and> det3 s q r = 0 \<and> det3 s r p = 0 \<and> det3 p q r = 0)"
{
assume d0: "det3 p q r = 0"
with d have "?th1 \<and> ?th2"
by (force simp add: det3_def' ccw'_def ccw_def psi_def algebra_simps)
} moreover {
assume dp: "det3 p q r \<noteq> 0"
have "?th1 \<and> ?th2"
unfolding de_Morgan_disj[symmetric]
proof (rule notI, goal_cases)
case prems: 1
hence **: "indelta s p q r" by auto
hence nonnegs: "det3 p q r \<ge> 0" "0 \<le> det3 s q r" "0 \<le> det3 p s r" "0 \<le> det3 p q s"
by (auto simp: ccw_def ccw'_def det3_def' algebra_simps)
hence det_pos: "det3 p q r > 0" using dp by simp
have det_eq: "det3 s q r + det3 p s r + det3 p q s = det3 p q r"
by (auto simp: ccw_def det3_def' algebra_simps)
hence det_div_eq:
"det3 s q r / det3 p q r + det3 p s r / det3 p q r + det3 p q s / det3 p q r = 1"
using det_pos by (auto simp: field_simps)
from lex_convex3[OF _ _ _ _ _ det_div_eq convex_comb_dets[OF det_pos, of s]]
have "lex p s" "lex s r"
using prems by (auto simp: nonnegs)
with prems d show False by (simp add: lex_sym_eq_iff)
qed
} moreover have ?th3
proof (safe, goal_cases)
case prems: 1
have nonnegs: "det3 p r q \<ge> 0" "det3 r q s \<ge> 0" "det3 s p r \<ge> 0" "det3 q s p \<ge> 0"
using prems
by (auto simp add: ccw_def ccw'_def less_eq_real_def)
have dets_eq: "det3 p r q + det3 q s p = det3 r q s + det3 s p r"
by (auto simp: det3_def')
hence **: "det3 p r q = 0 \<and> det3 q s p = 0 \<Longrightarrow> det3 r q s = 0 \<and> det3 s p r = 0"
using prems
by (auto simp: ccw_def ccw'_def)
moreover
{
fix p r q s
assume det_pos: "det3 p r q > 0"
assume dets_eq: "det3 p r q + det3 q s p = det3 r q s + det3 s p r"
assume nonnegs:"det3 r q s \<ge> 0" "det3 s p r \<ge> 0" "det3 q s p \<ge> 0"
assume g14: "lex p r" "lex p s" "lex q r" "lex q s"
assume d: "distinct4 s p q r"
let ?sum = "(det3 p r q + det3 q s p) / det3 p r q"
have eqs: "det3 s p r = det3 p r s" "det3 r q s = det3 s r q" "det3 q s p = - det3 p s q"
by (auto simp: det3_def' algebra_simps)
from convex_comb_dets[OF det_pos, of s]
have "((det3 p r q / det3 p r q) *\<^sub>R s + (det3 q s p / det3 p r q) *\<^sub>R r) /\<^sub>R ?sum =
((det3 r q s / det3 p r q) *\<^sub>R p + (det3 s p r / det3 p r q) *\<^sub>R q) /\<^sub>R ?sum"
unfolding eqs
by (simp add: algebra_simps prod_eq_iff)
hence srpq: "(det3 p r q / det3 p r q / ?sum) *\<^sub>R s + (det3 q s p / det3 p r q / ?sum) *\<^sub>R r =
(det3 r q s / det3 p r q / ?sum) *\<^sub>R p + (det3 s p r / det3 p r q / ?sum) *\<^sub>R q"
(is "?s *\<^sub>R s + ?r *\<^sub>R r = ?p *\<^sub>R p + ?q *\<^sub>R q")
using det_pos
by (simp add: algebra_simps inverse_eq_divide)
have eqs: "?s + ?r = 1" "?p + ?q = 1"
and s: "?s \<ge> 0" "?s \<le> 1"
and r: "?r \<ge> 0" "?r \<le> 1"
and p: "?p \<ge> 0" "?p \<le> 1"
and q: "?q \<ge> 0" "?q \<le> 1"
unfolding add_divide_distrib[symmetric]
using det_pos nonnegs dets_eq
by (auto)
from eqs have eqs': "1 - ?s = ?r" "1 - ?r = ?s" "1 - ?p = ?q" "1 - ?q = ?p"
by auto
have comm: "?r *\<^sub>R r + ?s *\<^sub>R s = ?s *\<^sub>R s + ?r *\<^sub>R r"
"?q *\<^sub>R q + ?p *\<^sub>R p = ?p *\<^sub>R p + ?q *\<^sub>R q"
by simp_all
define K
where "K = (det3 r q s / det3 p r q / ?sum) *\<^sub>R p + (det3 s p r / det3 p r q / ?sum) *\<^sub>R q"
note rewrs = eqs' comm srpq K_def[symmetric]
from lex_convex_self2[OF _ s, of s r, unfolded rewrs]
lex_convex_self2[OF _ r, of r s, unfolded rewrs]
lex_convex_self2[OF _ p, of p q, unfolded rewrs]
lex_convex_self2[OF _ q, of q p, unfolded rewrs]
have False using g14 d det_pos
by (metis lex_trans not_lex_eq)
} note wlog = this
from dets_eq have 1: "det3 q s p + det3 p r q = det3 s p r + det3 r q s"
by simp
from d have d': "distinct4 r q p s" by auto
note wlog[of q s p r, OF _ 1 nonnegs(3,2,1) prems(4,3,2,1) d']
wlog[of p r q s, OF _ dets_eq nonnegs(2,3,4) prems(1-4) d]
ultimately show False using nonnegs d *
by (auto simp: less_eq_real_def det3_def' algebra_simps)
qed
ultimately have ?th1 ?th2 ?th3 by blast+
} ultimately show ?th1 ?th2 ?th3 by force+
qed
lemma ccw'_subst_psi_disj:
assumes "det3 t r s = 0"
assumes "psi t r s \<or> psi t s r \<or> psi s r t"
assumes "s \<noteq> t"
assumes "ccw' t r p"
shows "ccw' t s p"
proof cases
assume "r \<noteq> s"
from assms have "r \<noteq> t" by (auto simp: det3_def' ccw'_def algebra_simps)
from assms have "det3 r s t = 0"
by (auto simp: algebra_simps det3_def')
from coll_ex_scaling[OF assms(3) this]
obtain x where s: "r = s + x *\<^sub>R (t - s)" by auto
from assms(4)[simplified s]
have "0 < det3 0 (s + x *\<^sub>R (t - s) - t) (p - t)"
by (auto simp: algebra_simps det3_def' ccw'_def)
also have "s + x *\<^sub>R (t - s) - t = (1 - x) *\<^sub>R (s - t)"
by (simp add: algebra_simps)
finally have ccw': "ccw' 0 ((1 - x) *\<^sub>R (s - t)) (p - t)"
by (simp add: ccw'_def)
hence neq: "x \<noteq> 1" by (auto simp add: det3_def' ccw'_def)
have tr: "fst s < fst r \<Longrightarrow> fst t = fst s \<Longrightarrow> snd t \<le> snd r"
by (simp add: s)
from s have "fst (r - s) = fst (x *\<^sub>R (t - s))" "snd (r - s) = snd (x *\<^sub>R (t - s))"
by (auto simp: )
hence "x = (if fst (t - s) = 0 then snd (r - s) / snd (t - s) else fst (r - s) / fst (t - s))"
using \<open>s \<noteq> t\<close>
by (auto simp add: field_simps prod_eq_iff)
also have "\<dots> \<le> 1"
using assms
by (auto simp: lex_def psi_def tr)
finally have "x < 1" using neq by simp
thus ?thesis using ccw'
by (auto simp: ccw'.translate_origin)
qed (insert assms, simp)
lemma lex_contr:
assumes "distinct4 t s q r"
assumes "lex t s" "lex s r"
assumes "det3 t s r = 0"
assumes "ccw' t s q"
assumes "ccw' t q r"
shows "False"
using ccw'_subst_psi_disj[of t s r q] assms
by (cases "r = t") (auto simp: det3_def' algebra_simps psi_def ccw'_def)
lemma contra4:
assumes "distinct4 s r q p"
assumes lex: "lex q p" "lex p r" "lex r s"
assumes ccw: "ccw r q s" "ccw r s p" "ccw r q p"
shows False
proof cases
assume c: "ccw s q p"
from c have *: "indelta s r q p"
using assms by simp
with contra1[OF assms(1)]
have "\<not> (lex r q \<and> lex q p \<and> lex p s)" by blast
hence "\<not> lex q p"
using \<open>ccw s q p\<close> contra1 cyclic assms nondegenerate by blast
thus False using assms by simp
next
assume "\<not> ccw s q p"
with ccw have "ccw q s p \<and> ccw s p r \<and> ccw p r q \<and> ccw r q s"
by (metis assms(1) ccw'.cyclic ccw_def not_ccw'_eq psi_disjuncts)
moreover
from lex have "lex q r" "lex q s" "lex p r" "lex p s" by order+
ultimately show False using contra3[of r q p s] \<open>distinct4 s r q p\<close> by blast
qed
lemma not_coll_ordered_lexI:
assumes "l \<noteq> x0"
and "lex x1 r"
and "lex x1 l"
and "lex r x0"
and "lex l x0"
and "ccw' x0 l x1"
and "ccw' x0 x1 r"
shows "det3 x0 l r \<noteq> 0"
proof
assume "coll x0 l r"
from \<open>coll x0 l r\<close> have 1: "coll 0 (l - x0) (r - x0)"
by (simp add: det3_def' algebra_simps)
from \<open>lex r x0\<close> have 2: "lex (r - x0) 0" by (auto simp add: lex_def)
from \<open>lex l x0\<close> have 3: "lex (l - x0) 0" by (auto simp add: lex_def)
from \<open>ccw' x0 l x1\<close> have 4: "ccw' 0 (l - x0) (x1 - x0)"
by (simp add: det3_def' ccw'_def algebra_simps)
from \<open>ccw' x0 x1 r\<close> have 5: "ccw' 0 (x1 - x0) (r - x0)"
by (simp add: det3_def' ccw'_def algebra_simps)
from \<open>lex x1 r\<close> have 6: "lex 0 (r - x0 - (x1 - x0))" by (auto simp: lex_def)
from \<open>lex x1 l\<close> have 7: "lex 0 (l - x0 - (x1 - x0))" by (auto simp: lex_def)
define r' where "r' = r - x0"
define l' where "l' = l - x0"
define x0' where "x0' = x1 - x0"
from 1 2 3 4 5 6 7
have rs: "coll 0 l' r'" "lex r' 0"
"lex l' 0"
"ccw' 0 l' x0'"
"ccw' 0 x0' r'"
"lex 0 (r' - x0')"
"lex 0 (l' - x0')"
unfolding r'_def[symmetric] l'_def[symmetric] x0'_def[symmetric]
by auto
from assms have "l' \<noteq> 0"
by (auto simp: l'_def)
from coll_scale[OF \<open>coll 0 l' _\<close> this]
obtain y where y: "r' = y *\<^sub>R l'" by auto
{
assume "y > 0"
with rs have False
by (auto simp: det3_def' algebra_simps y ccw'_def)
} moreover {
assume "y < 0"
with rs have False
by (auto simp: lex_def not_less algebra_simps algebra_split_simps y ccw'_def)
} moreover {
assume "y = 0"
from this rs have False
by (simp add: ccw'_def y)
} ultimately show False by arith
qed
interpretation ccw_system4 ccw
proof unfold_locales
fix p q r t
assume ccw: "ccw t q r" "ccw p t r" "ccw p q t"
show "ccw p q r"
proof (cases "det3 t q r = 0 \<and> det3 p t r = 0 \<and> det3 p q t = 0")
case True
{
assume "psi t q r \<or> psi q r t \<or> psi r t q"
"psi p t r \<or> psi t r p \<or> psi r p t"
"psi p q t \<or> psi q t p \<or> psi t p q"
hence "psi p q r \<or> psi q r p \<or> psi r p q"
using lex_sym_eq_iff psi_def by blast
}
with True ccw show ?thesis
by (simp add: det3_def' algebra_simps ccw_def ccw'_def)
next
case False
hence "0 \<le> det3 t q r" "0 \<le> det3 p t r" "0 \<le> det3 p q t"
using ccw by (auto simp: less_eq_real_def ccw_def ccw'_def)
with False show ?thesis
by (auto simp: ccw_def det3_def' algebra_simps ccw'_def intro!: disjI1)
qed
qed
lemma lex_total: "lex t q \<and> t \<noteq> q \<or> lex q t \<and> t \<noteq> q \<or> t = q"
by auto
lemma
ccw_two_up_contra:
assumes c: "ccw' t p q" "ccw' t q r"
assumes ccws: "ccw t s p" "ccw t s q" "ccw t s r" "ccw t p q" "ccw t q r" "ccw t r p"
assumes distinct: "distinct5 t s p q r"
shows False
proof -
from ccws
have nn: "det3 t s p \<ge> 0" "det3 t s q \<ge> 0" "det3 t s r \<ge> 0" "det3 t r p \<ge> 0"
by (auto simp add: less_eq_real_def ccw_def ccw'_def)
with c det_identity[of t p q s r]
have tsr: "coll t s r" and tsp: "coll t s p"
by (auto simp: add_nonneg_eq_0_iff ccw'_def)
moreover
have trp: "coll t r p"
by (metis ccw'_subst_collinear distinct not_ccw'_eq tsr tsp)
ultimately have tpr: "coll t p r"
by (auto simp: det3_def' algebra_simps)
moreover
have psi: "psi t p r \<or> psi t r p \<or> psi r p t"
unfolding psi_def
proof -
have ntsr: "\<not> ccw' t s r" "\<not> ccw' t r s"
using tsr
by (auto simp: not_ccw'_eq det3_def' algebra_simps)
have f8: "\<not> ccw' t r s"
using tsr not_ccw'_eq by blast
have f9: "\<not> ccw' t r p"
using tpr by (simp add: not_ccw'_eq)
have f10: "(lex t r \<and> lex r p \<or> lex r p \<and> lex p t \<or> lex p t \<and> lex t r)"
using ccw_def ccws(6) psi_def f9 by auto
have "\<not> ccw' t r q"
using c(2) not_ccw'_eq by blast
moreover
have "\<not>coll t q s"
using ntsr ccw'_subst_collinear distinct c(2) by blast
hence "ccw' t s q"
by (meson ccw_def ccws(2) not_ccw'_eq)
moreover
from tsr tsp \<open>coll t r p\<close> have "coll t p s" "coll t p r" "coll t r s"
by (auto simp add: det3_def' algebra_simps)
ultimately
show "lex t p \<and> lex p r \<or> lex t r \<and> lex r p \<or> lex r p \<and> lex p t"
by (metis ccw'_subst_psi_disj distinct ccw_def ccws(3) contra4 tsp ntsr(1) f10 lex_total
psi_def trp)
qed
moreover
from distinct have "r \<noteq> t" by auto
ultimately
have "ccw' t r q" using c(1)
by (rule ccw'_subst_psi_disj)
thus False
using c(2) by (simp add: ccw'_contra)
qed
lemma
ccw_transitive_contr:
fixes t s p q r
assumes ccws: "ccw t s p" "ccw t s q" "ccw t s r" "ccw t p q" "ccw t q r" "ccw t r p"
assumes distinct: "distinct5 t s p q r"
shows False
proof -
from ccws distinct have *: "ccw p t r" "ccw p q t" by (metis cyclic)+
with distinct have "ccw r p q" using interior[OF _ _ ccws(5) *, of UNIV]
by (auto intro: cyclic)
from ccws have nonnegs: "det3 t s p \<ge> 0" "det3 t s q \<ge> 0" "det3 t s r \<ge> 0" "det3 t p q \<ge> 0"
"det3 t q r \<ge> 0" "det3 t r p \<ge> 0"
by (auto simp add: less_eq_real_def ccw_def ccw'_def)
{
assume "ccw' t p q" "ccw' t q r" "ccw' t r p"
hence False
using ccw_two_up_contra ccws distinct by blast
} moreover {
assume c: "coll t q r" "coll t r p"
with distinct four_points_aligned(1)[OF c, of s]
have "coll t p q"
by auto
hence "(psi t p q \<or> psi p q t \<or> psi q t p)"
"psi t q r \<or> psi q r t \<or> psi r t q"
"psi t r p \<or> psi r p t \<or> psi p t r"
using ccws(4,5,6) c
by (simp_all add: ccw_def ccw'_def)
hence False
using distinct
by (auto simp: psi_def ccw'_def)
} moreover {
assume c: "det3 t p q = 0" "det3 t q r > 0" "det3 t r p = 0"
have "\<And>x. det3 t q r = 0 \<or> t = x \<or> r = q \<or> q = x \<or> r = p \<or> p = x \<or> r = x"
by (meson c(1) c(3) distinct four_points_aligned(1))
hence False
by (metis (full_types) c(2) distinct less_irrefl)
} moreover {
assume c: "det3 t p q = 0" "det3 t q r = 0" "det3 t r p > 0"
have "\<And>x. det3 t r p = 0 \<or> t = x \<or> r = x \<or> q = x \<or> p = x"
by (meson c(1) c(2) distinct four_points_aligned(1))
hence False
by (metis (no_types) c(3) distinct less_numeral_extra(3))
} moreover {
assume c: "ccw' t p q" "ccw' t q r"
from ccw_two_up_contra[OF this ccws distinct]
have False .
} moreover {
assume c: "ccw' t p q" "ccw' t r p"
from ccw_two_up_contra[OF this(2,1), of s] ccws distinct
have False by auto
} moreover {
assume c: "ccw' t q r" "ccw' t r p"
from ccw_two_up_contra[OF this, of s] ccws distinct
have False by auto
} ultimately show "False"
using \<open>0 \<le> det3 t p q\<close>
\<open>0 \<le> det3 t q r\<close>\<open>0 \<le> det3 t r p\<close>
by (auto simp: less_eq_real_def ccw'_def)
qed
interpretation ccw: ccw_system ccw
by unfold_locales (metis ccw_transitive_contr nondegenerate)
lemma ccw_scaleR1:
"det3 0 xr P \<noteq> 0 \<Longrightarrow> 0 < e \<Longrightarrow> ccw 0 xr P \<Longrightarrow> ccw 0 (e*\<^sub>Rxr) P"
by (simp add: ccw_def)
lemma ccw_scaleR2:
"det3 0 xr P \<noteq> 0 \<Longrightarrow> 0 < e \<Longrightarrow> ccw 0 xr P \<Longrightarrow> ccw 0 xr (e*\<^sub>RP)"
by (simp add: ccw_def)
lemma ccw_translate3_aux:
assumes "\<not>coll 0 a b"
assumes "x < 1"
assumes "ccw 0 (a - x*\<^sub>Ra) (b - x *\<^sub>R a)"
shows "ccw 0 a b"
proof -
from assms have "\<not> coll 0 (a - x*\<^sub>Ra) (b - x *\<^sub>R a)"
by simp
with assms have "ccw' 0 ((1 - x) *\<^sub>R a) (b - x *\<^sub>R a)"
by (simp add: algebra_simps ccw_def)
thus "ccw 0 a b"
using \<open>x < 1\<close>
by (simp add: ccw_def)
qed
lemma ccw_translate3_minus: "det3 0 a b \<noteq> 0 \<Longrightarrow> x < 1 \<Longrightarrow> ccw 0 a (b - x *\<^sub>R a) \<Longrightarrow> ccw 0 a b"
using ccw_translate3_aux[of a b x] ccw_scaleR1[of a "b - x *\<^sub>R a" "1-x" ]
by (auto simp add: algebra_simps)
lemma ccw_translate3: "det3 0 a b \<noteq> 0 \<Longrightarrow> x < 1 \<Longrightarrow> ccw 0 a b \<Longrightarrow> ccw 0 a (x *\<^sub>R a + b)"
by (rule ccw_translate3_minus) (auto simp add: algebra_simps)
lemma ccw_switch23: "det3 0 P Q \<noteq> 0 \<Longrightarrow> (\<not> ccw 0 Q P \<longleftrightarrow> ccw 0 P Q)"
by (auto simp: ccw_def algebra_simps not_ccw'_eq ccw'_not_coll)
lemma ccw0_upward: "fst a > 0 \<Longrightarrow> snd a = 0 \<Longrightarrow> snd b > snd a \<Longrightarrow> ccw 0 a b"
by (auto simp: ccw_def det3_def' algebra_simps ccw'_def)
lemma ccw_uminus3[simp]: "det3 a b c \<noteq> 0 \<Longrightarrow> ccw (-a) (-b) (-c) = ccw a b c"
by (auto simp: ccw_def ccw'_def algebra_simps det3_def')
lemma coll_minus_eq: "coll (x - a) (x - b) (x - c) = coll a b c"
by (auto simp: det3_def' algebra_simps)
lemma ccw_minus3: "\<not> coll a b c \<Longrightarrow> ccw (x - a) (x - b) (x - c) \<longleftrightarrow> ccw a b c"
by (simp add: ccw_def coll_minus_eq)
lemma ccw0_uminus[simp]: "\<not> coll 0 a b \<Longrightarrow> ccw 0 (-a) (-b) \<longleftrightarrow> ccw 0 a b"
using ccw_uminus3[of 0 a b]
by simp
lemma lex_convex2:
assumes "lex p q" "lex p r" "0 \<le> u" "u \<le> 1"
shows "lex p (u *\<^sub>R q + (1 - u) *\<^sub>R r)"
proof cases
note \<open>lex p q\<close>
also
assume "lex q r"
hence "lex q (u *\<^sub>R q + (1 - u) *\<^sub>R r)"
using \<open>0 \<le> u\<close> \<open>u \<le> 1\<close>
by (rule lex_convex_self2)
finally (lex_trans) show ?thesis .
next
note \<open>lex p r\<close>
also
assume "\<not> lex q r"
hence "lex r q"
by simp
hence "lex r ((1 - u) *\<^sub>R r + (1 - (1 - u)) *\<^sub>R q)"
using \<open>0 \<le> u\<close> \<open>u \<le> 1\<close>
by (intro lex_convex_self2) simp_all
finally (lex_trans) show ?thesis by (simp add: ac_simps)
qed
lemma lex_convex2':
assumes "lex q p" "lex r p" "0 \<le> u" "u \<le> 1"
shows "lex (u *\<^sub>R q + (1 - u) *\<^sub>R r) p"
proof -
have "lex (- p) (u *\<^sub>R (-q) + (1 - u) *\<^sub>R (-r))"
using assms
by (intro lex_convex2) (auto simp: lex_def)
thus ?thesis
by (auto simp: lex_def algebra_simps)
qed
lemma psi_convex1:
assumes "psi c a b"
assumes "psi d a b"
assumes "0 \<le> u" "0 \<le> v" "u + v = 1"
shows "psi (u *\<^sub>R c + v *\<^sub>R d) a b"
proof -
from assms have v: "v = (1 - u)" by simp
show ?thesis
using assms
by (auto simp: psi_def v intro!: lex_convex2' lex_convex2)
qed
lemma psi_convex2:
assumes "psi a c b"
assumes "psi a d b"
assumes "0 \<le> u" "0 \<le> v" "u + v = 1"
shows "psi a (u *\<^sub>R c + v *\<^sub>R d) b"
proof -
from assms have v: "v = (1 - u)" by simp
show ?thesis
using assms
by (auto simp: psi_def v intro!: lex_convex2' lex_convex2)
qed
lemma psi_convex3:
assumes "psi a b c"
assumes "psi a b d"
assumes "0 \<le> u" "0 \<le> v" "u + v = 1"
shows "psi a b (u *\<^sub>R c + v *\<^sub>R d)"
proof -
from assms have v: "v = (1 - u)" by simp
show ?thesis
using assms
by (auto simp: psi_def v intro!: lex_convex2)
qed
lemma coll_convex:
assumes "coll a b c" "coll a b d"
assumes "0 \<le> u" "0 \<le> v" "u + v = 1"
shows "coll a b (u *\<^sub>R c + v *\<^sub>R d)"
proof cases
assume "a \<noteq> b"
with assms(1, 2)
obtain x y where xy: "c - a = x *\<^sub>R (b - a)" "d - a = y *\<^sub>R (b - a)"
by (auto simp: det3_translate_origin dest!: coll_scale)
from assms have "(u + v) *\<^sub>R a = a" by simp
hence "u *\<^sub>R c + v *\<^sub>R d - a = u *\<^sub>R (c - a) + v *\<^sub>R (d - a)"
by (simp add: algebra_simps)
also have "\<dots> = u *\<^sub>R x *\<^sub>R (b - a) + v *\<^sub>R y *\<^sub>R (b - a)"
by (simp add: xy)
also have "\<dots> = (u * x + v * y) *\<^sub>R (b - a)" by (simp add: algebra_simps)
also have "coll 0 (b - a) \<dots>"
by (simp add: coll_scaleR_right_eq)
finally show ?thesis
by (auto simp: det3_translate_origin)
qed simp
lemma (in ccw_vector_space) convex3:
assumes "u \<ge> 0" "v \<ge> 0" "u + v = 1" "ccw a b d" "ccw a b c"
shows "ccw a b (u *\<^sub>R c + v *\<^sub>R d)"
proof -
have "v = 1 - u" using assms by simp
hence "ccw 0 (b - a) (u *\<^sub>R (c - a) + v *\<^sub>R (d - a))"
using assms
by (cases "u = 0" "v = 0" rule: bool.exhaust[case_product bool.exhaust])
(auto simp add: translate_origin intro!: add3)
also
have "(u + v) *\<^sub>R a = a" by (simp add: assms)
hence "u *\<^sub>R (c - a) + v *\<^sub>R (d - a) = u *\<^sub>R c + v *\<^sub>R d - a"
by (auto simp: algebra_simps)
finally show ?thesis by (simp add: translate_origin)
qed
lemma ccw_self[simp]: "ccw a a b" "ccw b a a"
by (auto simp: ccw_def psi_def intro: cyclic)
lemma ccw_sefl'[simp]: "ccw a b a"
by (rule cyclic) simp
lemma ccw_convex':
assumes uv: "u \<ge> 0" "v \<ge> 0" "u + v = 1"
assumes "ccw a b c" and 1: "coll a b c"
assumes "ccw a b d" and 2: "\<not> coll a b d"
shows "ccw a b (u *\<^sub>R c + v *\<^sub>R d)"
proof -
from assms have u: "0 \<le> u" "u \<le> 1" and v: "v = 1 - u"
by (auto simp: algebra_simps)
let ?c = "u *\<^sub>R c + v *\<^sub>R d"
from 1 have abd: "ccw' a b d"
using assms by (auto simp: ccw_def)
{
assume 2: "\<not> coll a b c"
from 2 have "ccw' a b c"
using assms by (auto simp: ccw_def)
with abd have "ccw' a b ?c"
using assms by (auto intro!: ccw'.convex3)
hence ?thesis
by (simp add: ccw_def)
} moreover {
assume 2: "coll a b c"
{
assume "a = b"
hence ?thesis by simp
} moreover {
assume "v = 0"
hence ?thesis
by (auto simp: v assms)
} moreover {
assume "v \<noteq> 0" "a \<noteq> b"
have "coll c a b" using 2 by (auto simp: det3_def' algebra_simps)
from coll_ex_scaling[OF \<open>a \<noteq> b\<close> this]
obtain r where c: "c = a + r *\<^sub>R (b - a)" by auto
have *: "u *\<^sub>R (a + r *\<^sub>R (b - a)) + v *\<^sub>R d - a = (u * r) *\<^sub>R (b - a) + (1 - u) *\<^sub>R (d - a)"
by (auto simp: algebra_simps v)
have "ccw' a b ?c"
using \<open>v \<noteq> 0\<close> uv abd
by (simp add: ccw'.translate_origin c *)
hence ?thesis by (simp add: ccw_def)
} ultimately have ?thesis by blast
} ultimately show ?thesis by blast
qed
lemma ccw_convex:
assumes uv: "u \<ge> 0" "v \<ge> 0" "u + v = 1"
assumes "ccw a b c"
assumes "ccw a b d"
assumes lex: "coll a b c \<Longrightarrow> coll a b d \<Longrightarrow> lex b a"
shows "ccw a b (u *\<^sub>R c + v *\<^sub>R d)"
proof -
from assms have u: "0 \<le> u" "u \<le> 1" and v: "v = 1 - u"
by (auto simp: algebra_simps)
let ?c = "u *\<^sub>R c + v *\<^sub>R d"
{
assume coll: "coll a b c \<and> coll a b d"
hence "coll a b ?c"
by (auto intro!: coll_convex assms)
moreover
from coll have "psi a b c \<or> psi b c a \<or> psi c a b" "psi a b d \<or> psi b d a \<or> psi d a b"
using assms by (auto simp add: ccw_def ccw'_not_coll)
hence "psi a b ?c \<or> psi b ?c a \<or> psi ?c a b"
using coll uv lex
by (auto simp: psi_def ccw_def not_lex lexs_def v intro: lex_convex2 lex_convex2')
ultimately have ?thesis
by (simp add: ccw_def)
} moreover {
assume 1: "\<not> coll a b d" and 2: "\<not> coll a b c"
from 1 have abd: "ccw' a b d"
using assms by (auto simp: ccw_def)
from 2 have "ccw' a b c"
using assms by (auto simp: ccw_def)
with abd have "ccw' a b ?c"
using assms by (auto intro!: ccw'.convex3)
hence ?thesis
by (simp add: ccw_def)
} moreover {
assume "\<not> coll a b d" "coll a b c"
have ?thesis
by (rule ccw_convex') fact+
} moreover {
assume 1: "coll a b d" and 2: "\<not> coll a b c"
have "0 \<le> 1 - u" using assms by (auto )
from ccw_convex'[OF this \<open>0 \<le> u\<close> _ \<open>ccw a b d\<close> 1 \<open>ccw a b c\<close> 2]
have ?thesis by (simp add: algebra_simps v)
} ultimately show ?thesis by blast
qed
interpretation ccw: ccw_convex ccw S "\<lambda>a b. lex b a" for S
by unfold_locales (rule ccw_convex)
lemma ccw_sorted_scaleR: "ccw.sortedP 0 xs \<Longrightarrow> r > 0 \<Longrightarrow> ccw.sortedP 0 (map ((*\<^sub>R) r) xs)"
by (induct xs)
(auto intro!: ccw.sortedP.Cons ccw_scale23 elim!: ccw.sortedP_Cons simp del: scaleR_Pair)
lemma ccw_sorted_implies_ccw'_sortedP:
assumes nonaligned: "\<And>y z. y \<in> set Ps \<Longrightarrow> z \<in> set Ps \<Longrightarrow> y \<noteq> z \<Longrightarrow> \<not> coll 0 y z"
assumes sorted: "linorder_list0.sortedP (ccw 0) Ps"
assumes "distinct Ps"
shows "linorder_list0.sortedP (ccw' 0 ) Ps"
using assms
proof (induction Ps)
case (Cons P Ps)
{
fix p assume p: "p \<in> set Ps"
moreover
from p Cons.prems have "ccw 0 P p"
by (auto elim!: linorder_list0.sortedP_Cons intro: Cons)
ultimately
have "ccw' 0 P p"
using \<open>distinct (P#Ps)\<close>
by (intro ccw_ncoll_imp_ccw Cons) auto
}
moreover
have "linorder_list0.sortedP (ccw' 0) Ps"
using Cons.prems
by (intro Cons) (auto elim!: linorder_list0.sortedP_Cons intro: Cons)
ultimately
show ?case
by (auto intro!: linorder_list0.Cons )
qed (auto intro: linorder_list0.Nil)
end
|