Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 36,681 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
section \<open>CCW for Arbitrary Points in the Plane\<close>
theory Counterclockwise_2D_Arbitrary
imports Counterclockwise_2D_Strict
begin

subsection \<open>Interpretation of Knuth's axioms in the plane\<close>

definition lex::"point \<Rightarrow> point \<Rightarrow> bool" where
  "lex p q \<longleftrightarrow> (fst p < fst q \<or> fst p = fst q \<and> snd p < snd q \<or> p = q)"

definition psi::"point \<Rightarrow> point \<Rightarrow> point \<Rightarrow> bool" where
  "psi p q r \<longleftrightarrow> (lex p q \<and> lex q r)"

definition ccw::"point \<Rightarrow> point \<Rightarrow> point \<Rightarrow> bool" where
  "ccw p q r \<longleftrightarrow> ccw' p q r \<or> (det3 p q r = 0 \<and> (psi p q r \<or> psi q r p \<or> psi r p q))"

interpretation ccw: linorder_list0 "ccw x" for x .

lemma ccw'_imp_ccw: "ccw' a b c \<Longrightarrow> ccw a b c"
  by (simp add: ccw_def)

lemma ccw_ncoll_imp_ccw: "ccw a b c \<Longrightarrow> \<not>coll a b c \<Longrightarrow> ccw' a b c"
  by (simp add: ccw_def)

lemma ccw_translate: "ccw p (p + q) (p + r) = ccw 0 q r"
  by (auto simp: ccw_def psi_def lex_def)

lemma ccw_translate_origin: "NO_MATCH 0 p \<Longrightarrow> ccw p q r = ccw 0 (q - p) (r - p)"
  using ccw_translate[of p "q - p" "r - p"]
  by simp

lemma psi_scale:
  "psi (r *\<^sub>R a) (r *\<^sub>R b) 0 = (if r > 0 then psi a b 0 else if r < 0 then psi 0 b a else True)"
  "psi (r *\<^sub>R a) 0 (r *\<^sub>R b) = (if r > 0 then psi a 0 b else if r < 0 then psi b 0 a else True)"
  "psi 0 (r *\<^sub>R a) (r *\<^sub>R b) = (if r > 0 then psi 0 a b else if r < 0 then psi b a 0 else True)"
  by (auto simp: psi_def lex_def det3_def' not_less algebra_split_simps)

lemma ccw_scale23: "ccw 0 a b \<Longrightarrow> r > 0 \<Longrightarrow> ccw 0 (r *\<^sub>R a) (r *\<^sub>R b)"
  by (auto simp: ccw_def psi_scale)

lemma psi_notI: "distinct3 p q r \<Longrightarrow> psi p q r \<Longrightarrow> \<not> psi q p r"
  by (auto simp: algebra_simps psi_def lex_def)

lemma not_lex_eq: "\<not> lex a b \<longleftrightarrow> lex b a \<and> b \<noteq> a"
  by (auto simp: algebra_simps lex_def prod_eq_iff)

lemma lex_trans: "lex a b \<Longrightarrow> lex b c \<Longrightarrow> lex a c"
  by (auto simp: lex_def)

lemma lex_sym_eqI: "lex a b \<Longrightarrow> lex b a \<Longrightarrow> a = b"
  and lex_sym_eq_iff: "lex a b \<Longrightarrow> lex b a \<longleftrightarrow> a = b"
  by (auto simp: lex_def)

lemma lex_refl[simp]: "lex p p"
  by (metis not_lex_eq)

lemma psi_disjuncts:
  "distinct3 p q r \<Longrightarrow> psi p q r \<or> psi p r q \<or> psi q r p \<or> psi q p r \<or> psi r p q \<or> psi r q p"
  by (auto simp: psi_def not_lex_eq)

lemma nlex_ccw_left: "lex x 0 \<Longrightarrow> ccw 0 (0, 1) x"
  by (auto simp: ccw_def lex_def psi_def ccw'_def det3_def')

interpretation ccw_system123 ccw
  apply unfold_locales
  subgoal by (force simp: ccw_def ccw'_def det3_def' algebra_simps)
  subgoal by (force simp: ccw_def ccw'_def det3_def' psi_def algebra_simps lex_sym_eq_iff)
  subgoal by (drule psi_disjuncts) (force simp: ccw_def ccw'_def det3_def' algebra_simps)
  done

lemma lex_scaleR_nonneg: "lex a b \<Longrightarrow> r \<ge> 0 \<Longrightarrow> lex a (a + r *\<^sub>R (b - a))"
  by (auto simp: lex_def)

lemma lex_scale1_zero:
    "lex (v *\<^sub>R u) 0 = (if v > 0 then lex u 0 else if v < 0 then lex 0 u else True)"
  and lex_scale2_zero:
    "lex 0 (v *\<^sub>R u) = (if v > 0 then lex 0 u else if v < 0 then lex u 0 else True)"
  by (auto simp: lex_def prod_eq_iff less_eq_prod_def algebra_split_simps)

lemma nlex_add:
  assumes "lex a 0" "lex b 0"
  shows "lex (a + b) 0"
  using assms by (auto simp: lex_def)

lemma nlex_sum:
  assumes "finite X"
  assumes "\<And>x. x \<in> X \<Longrightarrow> lex (f x) 0"
  shows "lex (sum f X) 0"
  using assms
  by induction (auto intro!: nlex_add)

lemma abs_add_nlex:
  assumes "coll 0 a b"
  assumes "lex a 0"
  assumes "lex b 0"
  shows "abs (a + b) = abs a + abs b"
proof (rule antisym[OF abs_triangle_ineq])
  have "fst (\<bar>a\<bar> + \<bar>b\<bar>) \<le> fst \<bar>a + b\<bar>"
    using assms
    by (auto simp add: det3_def' abs_prod_def lex_def)
  moreover
  {
    assume H: "fst a < 0" "fst b < 0"
    hence "snd b \<le> 0 \<longleftrightarrow> snd a \<le> 0"
      using assms
      by (auto simp: lex_def det3_def' mult.commute)
        (metis mult_le_cancel_left_neg mult_zero_right)+
    hence "\<bar>snd a\<bar> + \<bar>snd b\<bar> \<le> \<bar>snd a + snd b\<bar>"
      using H by auto
  } hence "snd (\<bar>a\<bar> + \<bar>b\<bar>) \<le> snd \<bar>a + b\<bar>"
    using assms
    by (auto simp add: det3_def' abs_prod_def lex_def)
  ultimately
  show "\<bar>a\<bar> + \<bar>b\<bar> \<le> \<bar>a + b\<bar>" unfolding less_eq_prod_def ..
qed

lemma lex_sum_list: "(\<And>x. x \<in> set xs \<Longrightarrow> lex x 0) \<Longrightarrow> lex (sum_list xs) 0"
  by (induct xs) (auto simp: nlex_add)

lemma
  abs_sum_list_coll:
  assumes coll: "list_all (coll 0 x) xs"
  assumes "x \<noteq> 0"
  assumes up: "list_all (\<lambda>x. lex x 0) xs"
  shows "abs (sum_list xs) = sum_list (map abs xs)"
  using assms
proof (induct xs)
  case (Cons y ys)
  hence "coll 0 x y" "coll 0 x (sum_list ys)"
    by (auto simp: list_all_iff intro!: coll_sum_list)
  hence "coll 0 y (sum_list ys)" using \<open>x \<noteq> 0\<close>
    by (rule coll_trans)
  hence "\<bar>y + sum_list ys\<bar> = abs y + abs (sum_list ys)" using Cons
    by (subst abs_add_nlex) (auto simp: list_all_iff lex_sum_list)
  thus ?case using Cons by simp
qed simp

lemma lex_diff1: "lex (a - b) c = lex a (c + b)"
  and lex_diff2: "lex c (a - b) = lex (c + b) a"
  by (auto simp: lex_def)

lemma sum_list_eq_0_iff_nonpos:
  fixes xs::"'a::ordered_ab_group_add list"
  shows "list_all (\<lambda>x. x \<le> 0) xs \<Longrightarrow> sum_list xs = 0 \<longleftrightarrow> (\<forall>n\<in>set xs. n = 0)"
  by (auto simp: list_all_iff sum_list_sum_nth sum_nonpos_eq_0_iff)
    (auto simp add: in_set_conv_nth)

lemma sum_list_nlex_eq_zeroI:
  assumes nlex: "list_all (\<lambda>x. lex x 0) xs"
  assumes "sum_list xs = 0"
  assumes "x \<in> set xs"
  shows "x = 0"
proof -
  from assms(2) have z1: "sum_list (map fst xs) = 0" and z2: "sum_list (map snd xs) = 0"
    by (auto simp: prod_eq_iff fst_sum_list snd_sum_list)
  from nlex have "list_all (\<lambda>x. x \<le> 0) (map fst xs)"
    by (auto simp: lex_def list_all_iff)
  from sum_list_eq_0_iff_nonpos[OF this] z1 nlex
  have
    z1': "list_all (\<lambda>x. x = 0) (map fst xs)"
    and "list_all (\<lambda>x. x \<le> 0) (map snd xs)"
    by (auto simp: list_all_iff lex_def)
  from sum_list_eq_0_iff_nonpos[OF this(2)] z2
  have "list_all (\<lambda>x. x = 0) (map snd xs)" by (simp add: list_all_iff)
  with z1' show "x = 0" by (auto simp: list_all_iff zero_prod_def assms prod_eq_iff)
qed

lemma sum_list_eq0I: "(\<forall>x\<in>set xs. x = 0) \<Longrightarrow> sum_list xs = 0"
  by (induct xs) auto

lemma sum_list_nlex_eq_zero_iff:
  assumes nlex: "list_all (\<lambda>x. lex x 0) xs"
  shows "sum_list xs = 0 \<longleftrightarrow> list_all ((=) 0) xs"
  using assms
  by (auto intro: sum_list_nlex_eq_zeroI sum_list_eq0I simp: list_all_iff)

lemma
  assumes "lex p q" "lex q r" "0 \<le> a" "0 \<le> b" "0 \<le> c" "a + b + c = 1"
  assumes comb_def: "comb = a *\<^sub>R p + b *\<^sub>R q + c *\<^sub>R r"
  shows lex_convex3: "lex p comb" "lex comb r"
proof -
  from convex3_alt[OF assms(3-6), of p q r]
  obtain u v where
    uv: "a *\<^sub>R p + b *\<^sub>R q + c *\<^sub>R r = p + u *\<^sub>R (q - p) + v *\<^sub>R (r - p)" "0 \<le> u" "0 \<le> v" "u + v \<le> 1" .
  have "lex p r"
    using assms by (metis lex_trans)
  hence "lex (v *\<^sub>R (p - r)) 0" using uv
    by (simp add: lex_scale1_zero lex_diff1)
  also
  have "lex 0 (u *\<^sub>R (q - p))" using \<open>lex p q\<close> uv
    by (simp add: lex_scale2_zero lex_diff2)
  finally (lex_trans)
  show "lex p comb"
    unfolding comb_def uv
    by (simp add: lex_def prod_eq_iff algebra_simps)
  from comb_def have comb_def': "comb = c *\<^sub>R r + b *\<^sub>R q + a *\<^sub>R p" by simp
  from assms have "c + b + a = 1" by simp
  from convex3_alt[OF assms(5,4,3) this, of r q p]
  obtain u v where uv: "c *\<^sub>R r + b *\<^sub>R q + a *\<^sub>R p = r + u *\<^sub>R (q - r) + v *\<^sub>R (p - r)"
    "0 \<le> u" "0 \<le> v" "u + v \<le> 1"
    by auto
  have "lex (u *\<^sub>R (q - r)) 0"
    using uv \<open>lex q r\<close>
    by (simp add: lex_scale1_zero lex_diff1)
  also have "lex 0  (v *\<^sub>R (r - p))"
    using uv \<open>lex p r\<close>
    by (simp add: lex_scale2_zero lex_diff2)
  finally (lex_trans) show "lex comb r"
    unfolding comb_def' uv
    by (simp add: lex_def prod_eq_iff algebra_simps)
qed

lemma lex_convex_self2:
  assumes "lex p q" "0 \<le> a" "a \<le> 1"
  defines "r \<equiv> a *\<^sub>R p + (1 - a) *\<^sub>R q"
  shows "lex p r" (is ?th1)
    and "lex r q" (is ?th2)
  using lex_convex3[OF \<open>lex p q\<close>, of q a "1 - a" 0 r]
      assms
  by (simp_all add: r_def)

lemma lex_uminus0[simp]: "lex (-a) 0 = lex 0 a"
  by (auto simp: lex_def)

lemma
  lex_fst_zero_imp:
  "fst x = 0 \<Longrightarrow> lex x 0 \<Longrightarrow> lex y 0 \<Longrightarrow> \<not>coll 0 x y \<Longrightarrow> ccw' 0 y x"
  by (auto simp: ccw'_def det3_def' lex_def algebra_split_simps)

lemma lex_ccw_left: "lex x y \<Longrightarrow> r > 0 \<Longrightarrow> ccw y (y + (0, r)) x"
  by (auto simp: ccw_def ccw'_def det3_def' algebra_simps lex_def psi_def)

lemma lex_translate_origin: "NO_MATCH 0 a \<Longrightarrow> lex a b = lex 0 (b - a)"
  by (auto simp: lex_def)


subsection \<open>Order prover setup\<close>

definition "lexs p q \<longleftrightarrow> (lex p q \<and> p \<noteq> q)"

lemma lexs_irrefl: "\<not> lexs p p"
  and lexs_imp_lex: "lexs x y \<Longrightarrow> lex x y"
  and not_lexs: "(\<not> lexs x y) = (lex y x)"
  and not_lex: "(\<not> lex x y) = (lexs y x)"
  and eq_lex_refl: "x = y \<Longrightarrow> lex x y"
  by (auto simp: lexs_def lex_def prod_eq_iff)

lemma lexs_trans: "lexs x y \<Longrightarrow> lexs y z \<Longrightarrow> lexs x z"
  and lexs_lex_trans: "lexs x y \<Longrightarrow> lex y z \<Longrightarrow> lexs x z"
  and lex_lexs_trans: "lex x y \<Longrightarrow> lexs y z \<Longrightarrow> lexs x z"
  and lex_neq_trans: "lex a b \<Longrightarrow> a \<noteq> b \<Longrightarrow> lexs a b"
  and neq_lex_trans: "a \<noteq> b \<Longrightarrow> lex a b \<Longrightarrow> lexs a b"
  and lexs_imp_neq: "lexs a b \<Longrightarrow> a \<noteq> b"
  by (auto simp: lexs_def lex_def prod_eq_iff)

local_setup \<open>
   HOL_Order_Tac.declare_linorder {
    ops = {eq = @{term \<open>(=) :: point \<Rightarrow> point \<Rightarrow> bool\<close>}, le = @{term \<open>lex\<close>}, lt = @{term \<open>lexs\<close>}},
    thms = {trans = @{thm lex_trans}, refl = @{thm lex_refl}, eqD1 = @{thm eq_lex_refl},
            eqD2 = @{thm eq_lex_refl[OF sym]}, antisym = @{thm lex_sym_eqI}, contr = @{thm notE}},
    conv_thms = {less_le = @{thm eq_reflection[OF lexs_def]},
                 nless_le = @{thm eq_reflection[OF not_lexs]},
                 nle_le = @{thm eq_reflection[OF not_lex_eq]}}
  }
\<close>

subsection \<open>Contradictions\<close>

lemma
  assumes d: "distinct4 s p q r"
  shows contra1: "\<not>(lex p q \<and> lex q r \<and> lex r s \<and> indelta s p q r)" (is ?th1)
    and contra2: "\<not>(lex s p \<and> lex p q \<and> lex q r \<and> indelta s p q r)" (is ?th2)
    and contra3: "\<not>(lex p r \<and> lex p s \<and> lex q r \<and> lex q s \<and> insquare p r q s)" (is ?th3)
proof -
  {
    assume "det3 s p q = 0" "det3 s q r = 0" "det3 s r p = 0" "det3 p q r = 0"
    hence ?th1 ?th2 ?th3 using d
      by (auto simp add: det3_def' ccw'_def ccw_def psi_def algebra_simps)
  } moreover {
    assume *: "\<not>(det3 s p q = 0 \<and> det3 s q r = 0 \<and> det3 s r p = 0 \<and> det3 p q r = 0)"
    {
      assume d0: "det3 p q r = 0"
      with d have "?th1 \<and> ?th2"
        by (force simp add: det3_def' ccw'_def ccw_def psi_def algebra_simps)
    } moreover {
      assume dp: "det3 p q r \<noteq> 0"
      have "?th1 \<and> ?th2"
        unfolding de_Morgan_disj[symmetric]
      proof (rule notI, goal_cases)
        case prems: 1
        hence **: "indelta s p q r" by auto
        hence nonnegs: "det3 p q r \<ge> 0" "0 \<le> det3 s q r" "0 \<le> det3 p s r" "0 \<le> det3 p q s"
          by (auto simp: ccw_def ccw'_def det3_def' algebra_simps)
        hence det_pos: "det3 p q r > 0" using dp by simp
        have det_eq: "det3 s q r + det3 p s r + det3 p q s = det3 p q r"
          by (auto simp: ccw_def det3_def' algebra_simps)
        hence det_div_eq:
          "det3 s q r / det3 p q r + det3 p s r / det3 p q r + det3 p q s / det3 p q r = 1"
          using det_pos by (auto simp: field_simps)
        from lex_convex3[OF _ _ _ _ _ det_div_eq convex_comb_dets[OF det_pos, of s]]
        have "lex p s" "lex s r"
          using prems by (auto simp: nonnegs)
        with prems d show False by (simp add: lex_sym_eq_iff)
      qed
    } moreover have ?th3
    proof (safe, goal_cases)
      case prems: 1
      have nonnegs: "det3 p r q \<ge> 0" "det3 r q s \<ge> 0" "det3 s p r \<ge> 0" "det3 q s p \<ge> 0"
        using prems
        by (auto simp add: ccw_def ccw'_def less_eq_real_def)
      have dets_eq: "det3 p r q + det3 q s p = det3 r q s + det3 s p r"
        by (auto simp: det3_def')
      hence **: "det3 p r q = 0 \<and> det3 q s p = 0 \<Longrightarrow> det3 r q s = 0 \<and> det3 s p r = 0"
        using prems
        by (auto simp: ccw_def ccw'_def)
      moreover
      {
        fix p r q s
        assume det_pos: "det3 p r q > 0"
        assume dets_eq: "det3 p r q + det3 q s p = det3 r q s + det3 s p r"
        assume nonnegs:"det3 r q s \<ge> 0" "det3 s p r \<ge> 0" "det3 q s p \<ge> 0"
        assume g14: "lex p r" "lex p s" "lex q r" "lex q s"
        assume d: "distinct4 s p q r"

        let ?sum = "(det3 p r q + det3 q s p) / det3 p r q"
        have eqs: "det3 s p r = det3 p r s" "det3 r q s = det3 s r q" "det3 q s p = - det3 p s q"
          by (auto simp: det3_def' algebra_simps)
        from convex_comb_dets[OF det_pos, of s]
        have "((det3 p r q / det3 p r q) *\<^sub>R s + (det3 q s p / det3 p r q) *\<^sub>R r) /\<^sub>R ?sum =
            ((det3 r q s / det3 p r q) *\<^sub>R p + (det3 s p r / det3 p r q) *\<^sub>R q) /\<^sub>R ?sum"
          unfolding eqs
          by (simp add: algebra_simps prod_eq_iff)
        hence srpq: "(det3 p r q / det3 p r q / ?sum) *\<^sub>R s + (det3 q s p / det3 p r q / ?sum) *\<^sub>R r =
          (det3 r q s / det3 p r q / ?sum) *\<^sub>R p + (det3 s p r / det3 p r q  / ?sum) *\<^sub>R q"
          (is "?s *\<^sub>R s + ?r *\<^sub>R r = ?p *\<^sub>R p + ?q *\<^sub>R q")
          using det_pos
          by (simp add: algebra_simps inverse_eq_divide)
        have eqs: "?s + ?r = 1" "?p + ?q = 1"
          and s: "?s \<ge> 0" "?s \<le> 1"
          and r: "?r \<ge> 0" "?r \<le> 1"
          and p: "?p \<ge> 0" "?p \<le> 1"
          and q: "?q \<ge> 0" "?q \<le> 1"
          unfolding add_divide_distrib[symmetric]
          using det_pos nonnegs dets_eq
          by (auto)
        from eqs have eqs': "1 - ?s = ?r" "1 - ?r = ?s" "1 - ?p = ?q" "1 - ?q = ?p"
          by auto
        have comm: "?r *\<^sub>R r + ?s *\<^sub>R s = ?s *\<^sub>R s + ?r *\<^sub>R r"
          "?q *\<^sub>R q + ?p *\<^sub>R p = ?p *\<^sub>R p + ?q *\<^sub>R q"
          by simp_all
        define K
          where "K = (det3 r q s / det3 p r q / ?sum) *\<^sub>R p + (det3 s p r / det3 p r q  / ?sum) *\<^sub>R q"
        note rewrs = eqs' comm srpq K_def[symmetric]
        from lex_convex_self2[OF _ s, of s r, unfolded rewrs]
           lex_convex_self2[OF _ r, of r s, unfolded rewrs]
           lex_convex_self2[OF _ p, of p q, unfolded rewrs]
           lex_convex_self2[OF _ q, of q p, unfolded rewrs]
        have False using g14 d det_pos
          by (metis lex_trans not_lex_eq)
      } note wlog = this
      from dets_eq have 1: "det3 q s p + det3 p r q = det3 s p r + det3 r q s"
        by simp
      from d have d': "distinct4 r q p s" by auto
      note wlog[of q s p r, OF _ 1 nonnegs(3,2,1) prems(4,3,2,1) d']
        wlog[of p r q s, OF _ dets_eq nonnegs(2,3,4) prems(1-4) d]
      ultimately show False using nonnegs d *
        by (auto simp: less_eq_real_def det3_def' algebra_simps)
    qed
    ultimately have ?th1 ?th2 ?th3 by blast+
  } ultimately show ?th1 ?th2 ?th3 by force+
qed

lemma ccw'_subst_psi_disj:
  assumes "det3 t r s = 0"
  assumes "psi t r s \<or> psi t s r \<or> psi s r t"
  assumes "s \<noteq> t"
  assumes "ccw' t r p"
  shows "ccw' t s p"
proof cases
  assume "r \<noteq> s"
  from assms have "r \<noteq> t" by (auto simp: det3_def' ccw'_def algebra_simps)
  from assms have "det3 r s t = 0"
    by (auto simp: algebra_simps det3_def')
  from coll_ex_scaling[OF assms(3) this]
  obtain x where s: "r = s + x *\<^sub>R (t - s)" by auto
  from assms(4)[simplified s]
  have "0 < det3 0 (s + x *\<^sub>R (t - s) - t) (p - t)"
    by (auto simp: algebra_simps det3_def' ccw'_def)
  also have "s + x *\<^sub>R (t - s) - t = (1 - x) *\<^sub>R (s - t)"
    by (simp add: algebra_simps)
  finally have ccw': "ccw' 0 ((1 - x) *\<^sub>R (s - t)) (p - t)"
    by (simp add: ccw'_def)
  hence neq: "x \<noteq> 1" by (auto simp add: det3_def' ccw'_def)
  have tr: "fst s < fst r \<Longrightarrow> fst t = fst s \<Longrightarrow> snd t \<le> snd r"
    by (simp add: s)
  from s have "fst (r - s) = fst (x *\<^sub>R (t - s))" "snd (r - s) = snd (x *\<^sub>R (t - s))"
    by (auto simp: )
  hence "x = (if fst (t - s) = 0 then snd (r - s) / snd (t - s) else fst (r - s) / fst (t - s))"
    using \<open>s \<noteq> t\<close>
    by (auto simp add: field_simps prod_eq_iff)
  also have "\<dots> \<le> 1"
    using assms
    by (auto simp: lex_def psi_def tr)
  finally have "x < 1" using neq by simp
  thus ?thesis using ccw'
    by (auto simp: ccw'.translate_origin)
qed (insert assms, simp)

lemma lex_contr:
  assumes "distinct4 t s q r"
  assumes "lex t s" "lex s r"
  assumes "det3 t s r = 0"
  assumes "ccw' t s q"
  assumes "ccw' t q r"
  shows "False"
  using ccw'_subst_psi_disj[of t s r q] assms
  by (cases "r = t") (auto simp: det3_def' algebra_simps psi_def ccw'_def)

lemma contra4:
  assumes "distinct4 s r q p"
  assumes lex: "lex q p" "lex p r" "lex r s"
  assumes ccw: "ccw r q s" "ccw r s p" "ccw r q p"
  shows False
proof cases
  assume c: "ccw s q p"
  from c have *: "indelta s r q p"
    using assms by simp
  with contra1[OF assms(1)]
  have "\<not> (lex r q \<and> lex q p \<and> lex p s)" by blast
  hence "\<not> lex q p"
    using \<open>ccw s q p\<close> contra1 cyclic assms nondegenerate by blast
  thus False using assms by simp
next
  assume "\<not> ccw s q p"
  with ccw have "ccw q s p \<and> ccw s p r \<and> ccw p r q \<and> ccw r q s"
    by (metis assms(1) ccw'.cyclic ccw_def not_ccw'_eq psi_disjuncts)
  moreover
  from lex have "lex q r" "lex q s" "lex p r" "lex p s" by order+
  ultimately show False using contra3[of r q p s] \<open>distinct4 s r q p\<close> by blast
qed

lemma not_coll_ordered_lexI:
  assumes "l \<noteq> x0"
    and "lex x1 r"
    and "lex x1 l"
    and "lex r x0"
    and "lex l x0"
    and "ccw' x0 l x1"
    and "ccw' x0 x1 r"
  shows "det3 x0 l r \<noteq> 0"
proof
  assume "coll x0 l r"
  from \<open>coll x0 l r\<close> have 1: "coll 0 (l - x0) (r - x0)"
    by (simp add: det3_def' algebra_simps)
  from \<open>lex r x0\<close> have 2: "lex (r - x0) 0" by (auto simp add: lex_def)
  from \<open>lex l x0\<close> have 3: "lex (l - x0) 0" by (auto simp add: lex_def)
  from \<open>ccw' x0 l x1\<close> have 4: "ccw' 0 (l - x0) (x1 - x0)"
    by (simp add: det3_def' ccw'_def algebra_simps)
  from \<open>ccw' x0 x1 r\<close> have 5: "ccw' 0 (x1 - x0) (r - x0)"
    by (simp add: det3_def' ccw'_def algebra_simps)
  from \<open>lex x1 r\<close> have 6: "lex 0 (r - x0 - (x1 - x0))" by (auto simp: lex_def)
  from \<open>lex x1 l\<close> have 7: "lex 0 (l - x0 - (x1 - x0))" by (auto simp: lex_def)
  define r' where "r' = r - x0"
  define l' where "l' = l - x0"
  define x0' where "x0' = x1 - x0"
  from 1 2 3 4 5 6 7
  have rs: "coll 0 l' r'" "lex r' 0"
    "lex l' 0"
    "ccw' 0 l' x0'"
    "ccw' 0 x0' r'"
    "lex 0 (r' - x0')"
    "lex 0 (l' - x0')"
    unfolding r'_def[symmetric] l'_def[symmetric] x0'_def[symmetric]
    by auto
  from assms have "l' \<noteq> 0"
    by (auto simp: l'_def)
  from coll_scale[OF \<open>coll 0 l' _\<close> this]
  obtain y where y: "r' = y *\<^sub>R l'" by auto
  {
    assume "y > 0"
    with rs have False
      by (auto simp: det3_def' algebra_simps y ccw'_def)
  } moreover {
    assume "y < 0"
    with rs have False
      by (auto simp: lex_def not_less algebra_simps algebra_split_simps y ccw'_def)
  } moreover {
    assume "y = 0"
    from this rs have False
      by (simp add: ccw'_def y)
  } ultimately show False by arith
qed

interpretation ccw_system4 ccw
proof unfold_locales
  fix p q r t
  assume ccw: "ccw t q r" "ccw p t r" "ccw p q t"
  show "ccw p q r"
  proof (cases "det3 t q r = 0 \<and> det3 p t r = 0 \<and> det3 p q t = 0")
    case True
    {
      assume "psi t q r \<or> psi q r t \<or> psi r t q"
        "psi p t r \<or> psi t r p \<or> psi r p t"
        "psi p q t \<or> psi q t p \<or> psi t p q"
      hence "psi p q r \<or> psi q r p \<or> psi r p q"
        using lex_sym_eq_iff psi_def by blast
    }
    with True ccw show ?thesis
      by (simp add: det3_def' algebra_simps ccw_def ccw'_def)
  next
    case False
    hence "0 \<le> det3 t q r" "0 \<le> det3 p t r" "0 \<le> det3 p q t"
      using ccw by (auto simp: less_eq_real_def ccw_def ccw'_def)
    with False show ?thesis
      by (auto simp: ccw_def det3_def' algebra_simps ccw'_def intro!: disjI1)
  qed
qed

lemma lex_total: "lex t q \<and> t \<noteq> q \<or> lex q t \<and> t \<noteq> q \<or> t = q"
  by auto

lemma
  ccw_two_up_contra:
  assumes c: "ccw' t p q" "ccw' t q r"
  assumes ccws: "ccw t s p" "ccw t s q" "ccw t s r" "ccw t p q" "ccw t q r" "ccw t r p"
  assumes distinct: "distinct5 t s p q r"
  shows False
proof -
  from ccws
  have nn: "det3 t s p \<ge> 0" "det3 t s q \<ge> 0" "det3 t s r \<ge> 0" "det3 t r p \<ge> 0"
    by (auto simp add: less_eq_real_def ccw_def ccw'_def)
  with c det_identity[of t p q s r]
  have tsr: "coll t s r" and tsp: "coll t s p"
    by (auto simp: add_nonneg_eq_0_iff ccw'_def)
  moreover
  have trp: "coll t r p"
    by (metis ccw'_subst_collinear distinct not_ccw'_eq tsr tsp)
  ultimately have tpr: "coll t p r"
    by (auto simp: det3_def' algebra_simps)
  moreover
  have psi: "psi t p r \<or> psi t r p \<or> psi r p t"
    unfolding psi_def
  proof -
    have ntsr: "\<not> ccw' t s r" "\<not> ccw' t r s"
      using tsr
      by (auto simp: not_ccw'_eq det3_def' algebra_simps)
    have f8: "\<not> ccw' t r s"
      using tsr not_ccw'_eq by blast
    have f9: "\<not> ccw' t r p"
      using tpr by (simp add: not_ccw'_eq)
    have f10: "(lex t r \<and> lex r p \<or> lex r p \<and> lex p t \<or> lex p t \<and> lex t r)"
      using ccw_def ccws(6) psi_def f9 by auto

    have "\<not> ccw' t r q"
      using c(2) not_ccw'_eq by blast
    moreover
    have "\<not>coll t q s"
      using ntsr ccw'_subst_collinear distinct c(2) by blast
    hence "ccw' t s q"
      by (meson ccw_def ccws(2) not_ccw'_eq)
    moreover
    from tsr tsp \<open>coll t r p\<close> have "coll t p s" "coll t p r" "coll t r s"
      by (auto simp add: det3_def' algebra_simps)
    ultimately
    show "lex t p \<and> lex p r \<or> lex t r \<and> lex r p \<or> lex r p \<and> lex p t"
      by (metis ccw'_subst_psi_disj distinct ccw_def ccws(3) contra4 tsp ntsr(1) f10 lex_total
        psi_def trp)
  qed
  moreover
  from distinct have "r \<noteq> t" by auto
  ultimately
  have "ccw' t r q" using c(1)
    by (rule ccw'_subst_psi_disj)
  thus False
    using c(2) by (simp add: ccw'_contra)
qed

lemma
  ccw_transitive_contr:
  fixes t s p q r
  assumes ccws: "ccw t s p" "ccw t s q" "ccw t s r" "ccw t p q" "ccw t q r" "ccw t r p"
  assumes distinct: "distinct5 t s p q r"
  shows False
proof -
  from ccws distinct have *: "ccw p t r" "ccw p q t" by (metis cyclic)+
  with distinct have "ccw r p q" using interior[OF _ _ ccws(5) *, of UNIV]
    by (auto intro: cyclic)

  from ccws have nonnegs: "det3 t s p \<ge> 0" "det3 t s q \<ge> 0" "det3 t s r \<ge> 0" "det3 t p q \<ge> 0"
    "det3 t q r \<ge> 0" "det3 t r p \<ge> 0"
    by (auto simp add: less_eq_real_def ccw_def ccw'_def)
  {
    assume "ccw' t p q" "ccw' t q r" "ccw' t r p"
    hence False
      using ccw_two_up_contra ccws distinct by blast
  } moreover {
    assume c: "coll t q r" "coll t r p"
    with distinct four_points_aligned(1)[OF c, of s]
    have "coll t p q"
      by auto
    hence "(psi t p q \<or> psi p q t \<or> psi q t p)"
      "psi t q r \<or> psi q r t \<or> psi r t q"
      "psi t r p \<or> psi r p t \<or> psi p t r"
      using ccws(4,5,6) c
      by (simp_all add: ccw_def ccw'_def)
    hence False
      using distinct
      by (auto simp: psi_def ccw'_def)
  } moreover {
    assume c: "det3 t p q = 0" "det3 t q r > 0" "det3 t r p = 0"
    have "\<And>x. det3 t q r = 0 \<or> t = x \<or> r = q \<or> q = x \<or> r = p \<or> p = x \<or> r = x"
      by (meson c(1) c(3) distinct four_points_aligned(1))
    hence False
      by (metis (full_types) c(2) distinct less_irrefl)
  } moreover {
    assume c: "det3 t p q = 0" "det3 t q r = 0" "det3 t r p > 0"
    have "\<And>x. det3 t r p = 0 \<or> t = x \<or> r = x \<or> q = x \<or> p = x"
      by (meson c(1) c(2) distinct four_points_aligned(1))
    hence False
      by (metis (no_types) c(3) distinct less_numeral_extra(3))
  } moreover {
    assume c: "ccw' t p q" "ccw' t q r"
    from ccw_two_up_contra[OF this ccws distinct]
    have False .
  } moreover {
    assume c: "ccw' t p q" "ccw' t r p"
    from ccw_two_up_contra[OF this(2,1), of s] ccws distinct
    have False by auto
  } moreover {
    assume c: "ccw' t q r" "ccw' t r p"
    from ccw_two_up_contra[OF this, of s] ccws distinct
    have False by auto
  } ultimately show "False"
    using \<open>0 \<le> det3 t p q\<close>
    \<open>0 \<le> det3 t q r\<close>\<open>0 \<le> det3 t r p\<close>
    by (auto simp: less_eq_real_def ccw'_def)
qed

interpretation ccw: ccw_system ccw
  by unfold_locales (metis ccw_transitive_contr nondegenerate)

lemma ccw_scaleR1:
  "det3 0 xr P \<noteq> 0 \<Longrightarrow> 0 < e \<Longrightarrow> ccw 0 xr P \<Longrightarrow> ccw 0 (e*\<^sub>Rxr) P"
  by (simp add: ccw_def)

lemma ccw_scaleR2:
  "det3 0 xr P \<noteq> 0 \<Longrightarrow> 0 < e \<Longrightarrow> ccw 0 xr P \<Longrightarrow> ccw 0 xr (e*\<^sub>RP)"
  by (simp add: ccw_def)

lemma ccw_translate3_aux:
  assumes "\<not>coll 0 a b"
  assumes "x < 1"
  assumes "ccw 0 (a - x*\<^sub>Ra) (b - x *\<^sub>R a)"
  shows "ccw 0 a b"
proof -
  from assms have "\<not> coll 0 (a - x*\<^sub>Ra) (b - x *\<^sub>R a)"
    by simp
  with assms have "ccw' 0 ((1 - x) *\<^sub>R a) (b - x *\<^sub>R a)"
    by (simp add: algebra_simps ccw_def)
  thus "ccw 0 a b"
    using \<open>x < 1\<close>
    by (simp add: ccw_def)
qed

lemma ccw_translate3_minus: "det3 0 a b \<noteq> 0 \<Longrightarrow> x < 1 \<Longrightarrow> ccw 0 a (b - x *\<^sub>R a) \<Longrightarrow> ccw 0 a b"
  using ccw_translate3_aux[of a b x] ccw_scaleR1[of a "b - x *\<^sub>R a" "1-x" ]
  by (auto simp add: algebra_simps)

lemma ccw_translate3: "det3 0 a b \<noteq> 0 \<Longrightarrow> x < 1 \<Longrightarrow> ccw 0 a b \<Longrightarrow> ccw 0 a (x *\<^sub>R a + b)"
  by (rule ccw_translate3_minus) (auto simp add: algebra_simps)

lemma ccw_switch23: "det3 0 P Q \<noteq> 0 \<Longrightarrow> (\<not> ccw 0 Q P \<longleftrightarrow> ccw 0 P Q)"
  by (auto simp: ccw_def algebra_simps not_ccw'_eq ccw'_not_coll)

lemma ccw0_upward: "fst a > 0 \<Longrightarrow> snd a = 0 \<Longrightarrow> snd b > snd a \<Longrightarrow> ccw 0 a b"
  by (auto simp: ccw_def det3_def' algebra_simps ccw'_def)

lemma ccw_uminus3[simp]: "det3 a b c \<noteq> 0 \<Longrightarrow> ccw (-a) (-b) (-c) = ccw a b c"
  by (auto simp: ccw_def ccw'_def algebra_simps det3_def')

lemma coll_minus_eq: "coll (x - a) (x - b) (x - c) = coll a b c"
  by (auto simp: det3_def' algebra_simps)

lemma ccw_minus3: "\<not> coll a b c \<Longrightarrow> ccw (x - a) (x - b) (x - c) \<longleftrightarrow> ccw a b c"
  by (simp add: ccw_def coll_minus_eq)

lemma ccw0_uminus[simp]: "\<not> coll 0 a b \<Longrightarrow> ccw 0 (-a) (-b) \<longleftrightarrow> ccw 0 a b"
  using ccw_uminus3[of 0 a b]
  by simp

lemma lex_convex2:
  assumes "lex p q" "lex p r" "0 \<le> u" "u \<le> 1"
  shows "lex p (u *\<^sub>R q + (1 - u) *\<^sub>R r)"
proof cases
  note \<open>lex p q\<close>
  also
  assume "lex q r"
  hence "lex q (u *\<^sub>R q + (1 - u) *\<^sub>R r)"
    using \<open>0 \<le> u\<close> \<open>u \<le> 1\<close>
    by (rule lex_convex_self2)
  finally (lex_trans) show ?thesis .
next
  note \<open>lex p r\<close>
  also
  assume "\<not> lex q r"
  hence "lex r q"
    by simp
  hence "lex r ((1 - u) *\<^sub>R r + (1 - (1 - u)) *\<^sub>R q)"
    using \<open>0 \<le> u\<close> \<open>u \<le> 1\<close>
    by (intro lex_convex_self2) simp_all
  finally (lex_trans) show ?thesis by (simp add: ac_simps)
qed

lemma lex_convex2':
  assumes "lex q p" "lex r p" "0 \<le> u" "u \<le> 1"
  shows "lex (u *\<^sub>R q + (1 - u) *\<^sub>R r) p"
proof -
  have "lex (- p) (u *\<^sub>R (-q) + (1 - u) *\<^sub>R (-r))"
    using assms
    by (intro lex_convex2) (auto simp: lex_def)
  thus ?thesis
    by (auto simp: lex_def algebra_simps)
qed

lemma psi_convex1:
  assumes "psi c a b"
  assumes "psi d a b"
  assumes "0 \<le> u" "0 \<le> v" "u + v = 1"
  shows "psi (u *\<^sub>R c + v *\<^sub>R d) a b"
proof -
  from assms have v: "v = (1 - u)" by simp
  show ?thesis
    using assms
    by (auto simp: psi_def v intro!: lex_convex2' lex_convex2)
qed

lemma psi_convex2:
  assumes "psi a c b"
  assumes "psi a d b"
  assumes "0 \<le> u" "0 \<le> v" "u + v = 1"
  shows "psi a (u *\<^sub>R c + v *\<^sub>R d) b"
proof -
  from assms have v: "v = (1 - u)" by simp
  show ?thesis
    using assms
    by (auto simp: psi_def v intro!: lex_convex2' lex_convex2)
qed

lemma psi_convex3:
  assumes "psi a b c"
  assumes "psi a b d"
  assumes "0 \<le> u" "0 \<le> v" "u + v = 1"
  shows "psi a b (u *\<^sub>R c + v *\<^sub>R d)"
proof -
  from assms have v: "v = (1 - u)" by simp
  show ?thesis
    using assms
    by (auto simp: psi_def v intro!: lex_convex2)
qed

lemma coll_convex:
  assumes "coll a b c" "coll a b d"
  assumes "0 \<le> u" "0 \<le> v" "u + v = 1"
  shows "coll a b (u *\<^sub>R c + v *\<^sub>R d)"
proof cases
  assume "a \<noteq> b"
  with assms(1, 2)
  obtain x y where xy: "c - a = x *\<^sub>R (b - a)" "d - a = y *\<^sub>R (b - a)"
    by (auto simp: det3_translate_origin dest!: coll_scale)
  from assms have "(u + v) *\<^sub>R a = a" by simp
  hence "u *\<^sub>R c + v *\<^sub>R d - a = u *\<^sub>R (c - a) + v *\<^sub>R (d - a)"
    by (simp add: algebra_simps)
  also have "\<dots> = u *\<^sub>R x *\<^sub>R (b - a) + v *\<^sub>R y *\<^sub>R (b - a)"
    by (simp add: xy)
  also have "\<dots> = (u * x + v * y) *\<^sub>R (b - a)" by (simp add: algebra_simps)
  also have "coll 0 (b - a) \<dots>"
    by (simp add: coll_scaleR_right_eq)
  finally show ?thesis
    by (auto simp: det3_translate_origin)
qed simp

lemma (in ccw_vector_space) convex3:
  assumes "u \<ge> 0" "v \<ge> 0" "u + v = 1" "ccw a b d" "ccw a b c"
  shows "ccw a b (u *\<^sub>R c + v *\<^sub>R d)"
proof -
  have "v = 1 - u" using assms by simp
  hence "ccw 0 (b - a) (u *\<^sub>R (c - a) + v *\<^sub>R (d - a))"
    using assms
    by (cases "u = 0" "v = 0" rule: bool.exhaust[case_product bool.exhaust])
      (auto simp add: translate_origin intro!: add3)
  also
  have "(u + v) *\<^sub>R a = a" by (simp add: assms)
  hence "u *\<^sub>R (c - a) + v *\<^sub>R (d - a) = u *\<^sub>R c + v *\<^sub>R d - a"
    by (auto simp: algebra_simps)
  finally show ?thesis by (simp add: translate_origin)
qed

lemma ccw_self[simp]: "ccw a a b" "ccw b a a"
  by (auto simp: ccw_def psi_def intro: cyclic)

lemma ccw_sefl'[simp]: "ccw a b a"
  by (rule cyclic) simp

lemma ccw_convex':
  assumes uv: "u \<ge> 0" "v \<ge> 0" "u + v = 1"
  assumes "ccw a b c" and 1: "coll a b c"
  assumes "ccw a b d" and 2: "\<not> coll a b d"
  shows "ccw a b (u *\<^sub>R c + v *\<^sub>R d)"
proof -
  from assms have u: "0 \<le> u" "u \<le> 1" and v: "v = 1 - u"
    by (auto simp: algebra_simps)
  let ?c = "u *\<^sub>R c + v *\<^sub>R d"
  from 1 have abd: "ccw' a b d"
    using assms by (auto simp: ccw_def)
  {
    assume 2: "\<not> coll a b c"
    from 2 have "ccw' a b c"
      using assms by (auto simp: ccw_def)
    with abd have "ccw' a b ?c"
      using assms by (auto intro!: ccw'.convex3)
    hence ?thesis
      by (simp add: ccw_def)
  } moreover {
    assume 2: "coll a b c"
    {
      assume "a = b"
      hence ?thesis by simp
    } moreover {
      assume "v = 0"
      hence ?thesis
        by (auto simp: v assms)
    } moreover {
      assume "v \<noteq> 0" "a \<noteq> b"
      have "coll c a b" using 2 by (auto simp: det3_def' algebra_simps)
      from coll_ex_scaling[OF \<open>a \<noteq> b\<close> this]
      obtain r where c: "c = a + r *\<^sub>R (b - a)" by auto
      have *: "u *\<^sub>R (a + r *\<^sub>R (b - a)) + v *\<^sub>R d - a = (u * r) *\<^sub>R (b - a)  + (1 - u) *\<^sub>R (d - a)"
        by (auto simp: algebra_simps v)
      have "ccw' a b ?c"
        using \<open>v \<noteq> 0\<close> uv abd
        by (simp add: ccw'.translate_origin c *)
      hence ?thesis by (simp add: ccw_def)
    } ultimately have ?thesis by blast
  } ultimately show ?thesis by blast
qed

lemma ccw_convex:
  assumes uv: "u \<ge> 0" "v \<ge> 0" "u + v = 1"
  assumes "ccw a b c"
  assumes "ccw a b d"
  assumes lex: "coll a b c \<Longrightarrow> coll a b d \<Longrightarrow> lex b a"
  shows "ccw a b (u *\<^sub>R c + v *\<^sub>R d)"
proof -
  from assms have u: "0 \<le> u" "u \<le> 1" and v: "v = 1 - u"
    by (auto simp: algebra_simps)
  let ?c = "u *\<^sub>R c + v *\<^sub>R d"
  {
    assume coll: "coll a b c \<and> coll a b d"
    hence "coll a b ?c"
      by (auto intro!: coll_convex assms)
    moreover
    from coll have "psi a b c \<or> psi b c a \<or> psi c a b" "psi a b d \<or> psi b d a \<or> psi d a b"
      using assms by (auto simp add: ccw_def ccw'_not_coll)
    hence "psi a b ?c \<or> psi b ?c a \<or> psi ?c a b"
      using coll uv lex
      by (auto simp: psi_def ccw_def not_lex lexs_def v intro: lex_convex2 lex_convex2')
    ultimately have ?thesis
      by (simp add: ccw_def)
  } moreover {
    assume 1: "\<not> coll a b d" and 2: "\<not> coll a b c"
    from 1 have abd: "ccw' a b d"
      using assms by (auto simp: ccw_def)
    from 2 have "ccw' a b c"
      using assms by (auto simp: ccw_def)
    with abd have "ccw' a b ?c"
      using assms by (auto intro!: ccw'.convex3)
    hence ?thesis
      by (simp add: ccw_def)
  } moreover {
    assume "\<not> coll a b d" "coll a b c"
    have ?thesis
      by (rule ccw_convex') fact+
  } moreover {
    assume 1: "coll a b d" and 2: "\<not> coll a b c"
    have "0 \<le> 1 - u" using assms by (auto )
    from ccw_convex'[OF this \<open>0 \<le> u\<close> _ \<open>ccw a b d\<close> 1 \<open>ccw a b c\<close> 2]
    have ?thesis by (simp add: algebra_simps v)
  } ultimately show ?thesis by blast
qed

interpretation ccw: ccw_convex ccw S "\<lambda>a b. lex b a" for S
  by unfold_locales (rule ccw_convex)

lemma ccw_sorted_scaleR: "ccw.sortedP 0 xs \<Longrightarrow> r > 0 \<Longrightarrow> ccw.sortedP 0 (map ((*\<^sub>R) r) xs)"
  by (induct xs)
    (auto intro!: ccw.sortedP.Cons ccw_scale23 elim!: ccw.sortedP_Cons simp del: scaleR_Pair)

lemma ccw_sorted_implies_ccw'_sortedP:
  assumes nonaligned: "\<And>y z. y \<in> set Ps \<Longrightarrow> z \<in> set Ps \<Longrightarrow> y \<noteq> z \<Longrightarrow> \<not> coll 0 y z"
  assumes sorted: "linorder_list0.sortedP (ccw 0) Ps"
  assumes "distinct Ps"
  shows "linorder_list0.sortedP (ccw' 0 ) Ps"
  using assms
proof (induction Ps)
  case (Cons P Ps)
  {
    fix p assume p: "p \<in> set Ps"
    moreover
    from p Cons.prems have "ccw 0 P p"
      by (auto elim!: linorder_list0.sortedP_Cons intro: Cons)
    ultimately
    have "ccw' 0 P p"
      using \<open>distinct (P#Ps)\<close>
      by (intro ccw_ncoll_imp_ccw Cons) auto
  }
  moreover
  have "linorder_list0.sortedP (ccw' 0) Ps"
    using Cons.prems
    by (intro Cons) (auto elim!: linorder_list0.sortedP_Cons intro: Cons)
  ultimately
  show ?case
    by (auto intro!: linorder_list0.Cons )
qed (auto intro: linorder_list0.Nil)

end