Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 75,491 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 |
(* Title: Abstract Rewriting
Author: Christian Sternagel <christian.sternagel@uibk.ac.at>
Rene Thiemann <rene.tiemann@uibk.ac.at>
Maintainer: Christian Sternagel and Rene Thiemann
License: LGPL
*)
(*
Copyright 2010 Christian Sternagel and René Thiemann
This file is part of IsaFoR/CeTA.
IsaFoR/CeTA is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version.
IsaFoR/CeTA is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with IsaFoR/CeTA. If not, see <http://www.gnu.org/licenses/>.
*)
section \<open>Relative Rewriting\<close>
theory Relative_Rewriting
imports Abstract_Rewriting
begin
text \<open>Considering a relation @{term R} relative to another relation @{term S}, i.e.,
@{term R}-steps may be preceded and followed by arbitrary many @{term S}-steps.\<close>
abbreviation (input) relto :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel" where
"relto R S \<equiv> S^* O R O S^*"
definition SN_rel_on :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where
"SN_rel_on R S \<equiv> SN_on (relto R S)"
definition SN_rel_on_alt :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a set \<Rightarrow> bool" where
"SN_rel_on_alt R S T = (\<forall>f. chain (R \<union> S) f \<and> f 0 \<in> T \<longrightarrow> \<not> (INFM j. (f j, f (Suc j)) \<in> R))"
abbreviation SN_rel :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> bool" where
"SN_rel R S \<equiv> SN_rel_on R S UNIV"
abbreviation SN_rel_alt :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> bool" where
"SN_rel_alt R S \<equiv> SN_rel_on_alt R S UNIV"
lemma relto_absorb [simp]: "relto R E O E\<^sup>* = relto R E" "E\<^sup>* O relto R E = relto R E"
using O_assoc and rtrancl_idemp_self_comp by (metis)+
lemma steps_preserve_SN_on_relto:
assumes steps: "(a, b) \<in> (R \<union> S)^*"
and SN: "SN_on (relto R S) {a}"
shows "SN_on (relto R S) {b}"
proof -
let ?RS = "relto R S"
have "(R \<union> S)^* \<subseteq> S^* \<union> ?RS^*" by regexp
with steps have "(a,b) \<in> S^* \<or> (a,b) \<in> ?RS^*" by auto
thus ?thesis
proof
assume "(a,b) \<in> ?RS^*"
from steps_preserve_SN_on[OF this SN] show ?thesis .
next
assume Ssteps: "(a,b) \<in> S^*"
show ?thesis
proof
fix f
assume "f 0 \<in> {b}" and "chain ?RS f"
hence f0: "f 0 = b" and steps: "\<And>i. (f i, f (Suc i)) \<in> ?RS" by auto
let ?g = "\<lambda> i. if i = 0 then a else f i"
have "\<not> SN_on ?RS {a}" unfolding SN_on_def not_not
proof (rule exI[of _ ?g], intro conjI allI)
fix i
show "(?g i, ?g (Suc i)) \<in> ?RS"
proof (cases i)
case (Suc j)
show ?thesis using steps[of i] unfolding Suc by simp
next
case 0
from steps[of 0, unfolded f0] Ssteps have steps: "(a,f (Suc 0)) \<in> S^* O ?RS" by blast
have "(a,f (Suc 0)) \<in> ?RS"
by (rule subsetD[OF _ steps], regexp)
thus ?thesis unfolding 0 by simp
qed
qed simp
with SN show False by simp
qed
qed
qed
lemma step_preserves_SN_on_relto: assumes st: "(s,t) \<in> R \<union> E"
and SN: "SN_on (relto R E) {s}"
shows "SN_on (relto R E) {t}"
by (rule steps_preserve_SN_on_relto[OF _ SN], insert st, auto)
lemma SN_rel_on_imp_SN_rel_on_alt: "SN_rel_on R S T \<Longrightarrow> SN_rel_on_alt R S T"
proof (unfold SN_rel_on_def)
assume SN: "SN_on (relto R S) T"
show ?thesis
proof (unfold SN_rel_on_alt_def, intro allI impI)
fix f
assume steps: "chain (R \<union> S) f \<and> f 0 \<in> T"
with SN have SN: "SN_on (relto R S) {f 0}"
and steps: "\<And> i. (f i, f (Suc i)) \<in> R \<union> S" unfolding SN_defs by auto
obtain r where r: "\<And> j. r j \<equiv> (f j, f (Suc j)) \<in> R" by auto
show "\<not> (INFM j. (f j, f (Suc j)) \<in> R)"
proof (rule ccontr)
assume "\<not> ?thesis"
hence ih: "infinitely_many r" unfolding infinitely_many_def r by blast
obtain r_index where "r_index = infinitely_many.index r" by simp
with infinitely_many.index_p[OF ih] infinitely_many.index_ordered[OF ih] infinitely_many.index_not_p_between[OF ih]
have r_index: "\<And> i. r (r_index i) \<and> r_index i < r_index (Suc i) \<and> (\<forall> j. r_index i < j \<and> j < r_index (Suc i) \<longrightarrow> \<not> r j)" by auto
obtain g where g: "\<And> i. g i \<equiv> f (r_index i)" ..
{
fix i
let ?ri = "r_index i"
let ?rsi = "r_index (Suc i)"
from r_index have isi: "?ri < ?rsi" by auto
obtain ri rsi where ri: "ri = ?ri" and rsi: "rsi = ?rsi" by auto
with r_index[of i] steps have inter: "\<And> j. ri < j \<and> j < rsi \<Longrightarrow> (f j, f (Suc j)) \<in> S" unfolding r by auto
from ri isi rsi have risi: "ri < rsi" by simp
{
fix n
assume "Suc n \<le> rsi - ri"
hence "(f (Suc ri), f (Suc (n + ri))) \<in> S^*"
proof (induct n, simp)
case (Suc n)
hence stepps: "(f (Suc ri), f (Suc (n+ri))) \<in> S^*" by simp
have "(f (Suc (n+ri)), f (Suc (Suc n + ri))) \<in> S"
using inter[of "Suc n + ri"] Suc(2) by auto
with stepps show ?case by simp
qed
}
from this[of "rsi - ri - 1"] risi have
"(f (Suc ri), f rsi) \<in> S^*" by simp
with ri rsi have ssteps: "(f (Suc ?ri), f ?rsi) \<in> S^*" by simp
with r_index[of i] have "(f ?ri, f ?rsi) \<in> R O S^*" unfolding r by auto
hence "(g i, g (Suc i)) \<in> S^* O R O S^*" using rtrancl_refl unfolding g by auto
}
hence nSN: "\<not> SN_on (S^* O R O S^*) {g 0}" unfolding SN_defs by blast
have SN: "SN_on (S^* O R O S^*) {f (r_index 0)}"
proof (rule steps_preserve_SN_on_relto[OF _ SN])
show "(f 0, f (r_index 0)) \<in> (R \<union> S)^*"
unfolding rtrancl_fun_conv
by (rule exI[of _ f], rule exI[of _ "r_index 0"], insert steps, auto)
qed
with nSN show False unfolding g ..
qed
qed
qed
lemma SN_rel_on_alt_imp_SN_rel_on: "SN_rel_on_alt R S T \<Longrightarrow> SN_rel_on R S T"
proof (unfold SN_rel_on_def)
assume SN: "SN_rel_on_alt R S T"
show "SN_on (relto R S) T"
proof
fix f
assume start: "f 0 \<in> T" and "chain (relto R S) f"
hence steps: "\<And> i. (f i, f (Suc i)) \<in> S^* O R O S^*" by auto
let ?prop = "\<lambda> i ai bi. (f i, bi) \<in> S^* \<and> (bi, ai) \<in> R \<and> (ai, f (Suc (i))) \<in> S^*"
{
fix i
from steps obtain bi ai where "?prop i ai bi" by blast
hence "\<exists> ai bi. ?prop i ai bi" by blast
}
hence "\<forall> i. \<exists> bi ai. ?prop i ai bi" by blast
from choice[OF this] obtain b where "\<forall> i. \<exists> ai. ?prop i ai (b i)" by blast
from choice[OF this] obtain a where steps: "\<And> i. ?prop i (a i) (b i)" by blast
from steps[of 0] have fa0: "(f 0, a 0) \<in> S^* O R" by auto
let ?prop = "\<lambda> i li. (b i, a i) \<in> R \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S) \<and> last (a i # li) = b (Suc i)"
{
fix i
from steps[of i] steps[of "Suc i"] have "(a i, f (Suc i)) \<in> S^*" and "(f (Suc i), b (Suc i)) \<in> S^*" by auto
from rtrancl_trans[OF this] steps[of i] have R: "(b i, a i) \<in> R" and S: "(a i, b (Suc i)) \<in> S^*" by blast+
from S[unfolded rtrancl_list_conv] obtain li where "last (a i # li) = b (Suc i) \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S)" ..
with R have "?prop i li" by blast
hence "\<exists> li. ?prop i li" ..
}
hence "\<forall> i. \<exists> li. ?prop i li" ..
from choice[OF this] obtain l where steps: "\<And> i. ?prop i (l i)" by auto
let ?p = "\<lambda> i. ?prop i (l i)"
from steps have steps: "\<And> i. ?p i" by blast
let ?l = "\<lambda> i. a i # l i"
let ?l' = "\<lambda> i. length (?l i)"
let ?g = "\<lambda> i. inf_concat_simple ?l' i"
obtain g where g: "\<And> i. g i = (let (ii,jj) = ?g i in ?l ii ! jj)" by auto
have g0: "g 0 = a 0" unfolding g Let_def by simp
with fa0 have fg0: "(f 0, g 0) \<in> S^* O R" by auto
have fg0: "(f 0, g 0) \<in> (R \<union> S)^*"
by (rule subsetD[OF _ fg0], regexp)
have len: "\<And> i j n. ?g n = (i,j) \<Longrightarrow> j < length (?l i)"
proof -
fix i j n
assume n: "?g n = (i,j)"
show "j < length (?l i)"
proof (cases n)
case 0
with n have "j = 0" by auto
thus ?thesis by simp
next
case (Suc nn)
obtain ii jj where nn: "?g nn = (ii,jj)" by (cases "?g nn", auto)
show ?thesis
proof (cases "Suc jj < length (?l ii)")
case True
with nn Suc have "?g n = (ii, Suc jj)" by auto
with n True show ?thesis by simp
next
case False
with nn Suc have "?g n = (Suc ii, 0)" by auto
with n show ?thesis by simp
qed
qed
qed
have gsteps: "\<And> i. (g i, g (Suc i)) \<in> R \<union> S"
proof -
fix n
obtain i j where n: "?g n = (i, j)" by (cases "?g n", auto)
show "(g n, g (Suc n)) \<in> R \<union> S"
proof (cases "Suc j < length (?l i)")
case True
with n have "?g (Suc n) = (i, Suc j)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = ?l i ! (Suc j)" unfolding g by auto
thus ?thesis using steps[of i] True by auto
next
case False
with n have "?g (Suc n) = (Suc i, 0)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = a (Suc i)" unfolding g by auto
from gn len[OF n] False have "j = length (?l i) - 1" by auto
with gn have gn: "g n = last (?l i)" using last_conv_nth[of "?l i"] by auto
from gn gsn show ?thesis using steps[of i] steps[of "Suc i"] by auto
qed
qed
have infR: "INFM j. (g j, g (Suc j)) \<in> R" unfolding INFM_nat_le
proof
fix n
obtain i j where n: "?g n = (i,j)" by (cases "?g n", auto)
from len[OF n] have j: "j < ?l' i" .
let ?k = "?l' i - 1 - j"
obtain k where k: "k = j + ?k" by auto
from j k have k2: "k = ?l' i - 1" and k3: "j + ?k < ?l' i" by auto
from inf_concat_simple_add[OF n, of ?k, OF k3]
have gnk: "?g (n + ?k) = (i, k)" by (simp only: k)
hence "g (n + ?k) = ?l i ! k" unfolding g by auto
hence gnk2: "g (n + ?k) = last (?l i)" using last_conv_nth[of "?l i"] k2 by auto
from k2 gnk have "?g (Suc (n+?k)) = (Suc i, 0)" by auto
hence gnsk2: "g (Suc (n+?k)) = a (Suc i)" unfolding g by auto
from steps[of i] steps[of "Suc i"] have main: "(g (n+?k), g (Suc (n+?k))) \<in> R"
by (simp only: gnk2 gnsk2)
show "\<exists> j \<ge> n. (g j, g (Suc j)) \<in> R"
by (rule exI[of _ "n + ?k"], auto simp: main[simplified])
qed
from fg0[unfolded rtrancl_fun_conv] obtain gg n where start: "gg 0 = f 0"
and n: "gg n = g 0" and steps: "\<And> i. i < n \<Longrightarrow> (gg i, gg (Suc i)) \<in> R \<union> S" by auto
let ?h = "\<lambda> i. if i < n then gg i else g (i - n)"
obtain h where h: "h = ?h" by auto
{
fix i
assume i: "i \<le> n"
have "h i = gg i" using i unfolding h
by (cases "i < n", auto simp: n)
} note gg = this
from gg[of 0] \<open>f 0 \<in> T\<close> have h0: "h 0 \<in> T" unfolding start by auto
{
fix i
have "(h i, h (Suc i)) \<in> R \<union> S"
proof (cases "i < n")
case True
from steps[of i] gg[of i] gg[of "Suc i"] True show ?thesis by auto
next
case False
hence "i = n + (i - n)" by auto
then obtain k where i: "i = n + k" by auto
from gsteps[of k] show ?thesis unfolding h i by simp
qed
} note hsteps = this
from SN[unfolded SN_rel_on_alt_def, rule_format, OF conjI[OF allI[OF hsteps] h0]]
have "\<not> (INFM j. (h j, h (Suc j)) \<in> R)" .
moreover have "INFM j. (h j, h (Suc j)) \<in> R" unfolding INFM_nat_le
proof (rule)
fix m
from infR[unfolded INFM_nat_le, rule_format, of m]
obtain i where i: "i \<ge> m" and g: "(g i, g (Suc i)) \<in> R" by auto
show "\<exists> n \<ge> m. (h n , h (Suc n)) \<in> R"
by (rule exI[of _ "i + n"], unfold h, insert g i, auto)
qed
ultimately show False ..
qed
qed
lemma SN_rel_on_conv: "SN_rel_on = SN_rel_on_alt"
by (intro ext) (blast intro: SN_rel_on_imp_SN_rel_on_alt SN_rel_on_alt_imp_SN_rel_on)
lemmas SN_rel_defs = SN_rel_on_def SN_rel_on_alt_def
lemma SN_rel_on_alt_r_empty : "SN_rel_on_alt {} S T"
unfolding SN_rel_defs by auto
lemma SN_rel_on_alt_s_empty : "SN_rel_on_alt R {} = SN_on R"
by (intro ext, unfold SN_rel_defs SN_defs, auto)
lemma SN_rel_on_mono':
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> R' \<union> S'" and SN: "SN_rel_on R' S' T"
shows "SN_rel_on R S T"
proof -
note conv = SN_rel_on_conv SN_rel_on_alt_def INFM_nat_le
show ?thesis unfolding conv
proof(intro allI impI)
fix f
assume "chain (R \<union> S) f \<and> f 0 \<in> T"
with R S have "chain (R' \<union> S') f \<and> f 0 \<in> T" by auto
from SN[unfolded conv, rule_format, OF this]
show "\<not> (\<forall> m. \<exists> n \<ge> m. (f n, f (Suc n)) \<in> R)" using R by auto
qed
qed
lemma relto_mono:
assumes "R \<subseteq> R'" and "S \<subseteq> S'"
shows "relto R S \<subseteq> relto R' S'"
using assms rtrancl_mono by blast
lemma SN_rel_on_mono:
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> S'"
and SN: "SN_rel_on R' S' T"
shows "SN_rel_on R S T"
using SN
unfolding SN_rel_on_def using SN_on_mono[OF _ relto_mono[OF R S]] by blast
lemmas SN_rel_on_alt_mono = SN_rel_on_mono[unfolded SN_rel_on_conv]
lemma SN_rel_on_imp_SN_on:
assumes "SN_rel_on R S T" shows "SN_on R T"
proof
fix f
assume "chain R f"
and f0: "f 0 \<in> T"
hence "\<And>i. (f i, f (Suc i)) \<in> relto R S" by blast
thus False using assms f0 unfolding SN_rel_on_def SN_defs by blast
qed
lemma relto_Id: "relto R (S \<union> Id) = relto R S" by simp
lemma SN_rel_on_Id:
shows "SN_rel_on R (S \<union> Id) T = SN_rel_on R S T"
unfolding SN_rel_on_def by (simp only: relto_Id)
lemma SN_rel_on_empty[simp]: "SN_rel_on R {} T = SN_on R T"
unfolding SN_rel_on_def by auto
lemma SN_rel_on_ideriv: "SN_rel_on R S T = (\<not> (\<exists> as. ideriv R S as \<and> as 0 \<in> T))" (is "?L = ?R")
proof
assume ?L
show ?R
proof
assume "\<exists> as. ideriv R S as \<and> as 0 \<in> T"
then obtain as where id: "ideriv R S as" and T: "as 0 \<in> T" by auto
note id = id[unfolded ideriv_def]
from \<open>?L\<close>[unfolded SN_rel_on_conv SN_rel_on_alt_def, THEN spec[of _ as]]
id T obtain i where i: "\<And> j. j \<ge> i \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto
with id[unfolded INFM_nat, THEN conjunct2, THEN spec[of _ "Suc i"]] show False by auto
qed
next
assume ?R
show ?L
unfolding SN_rel_on_conv SN_rel_on_alt_def
proof(intro allI impI)
fix as
assume "chain (R \<union> S) as \<and> as 0 \<in> T"
with \<open>?R\<close>[unfolded ideriv_def] have "\<not> (INFM i. (as i, as (Suc i)) \<in> R)" by auto
from this[unfolded INFM_nat] obtain i where i: "\<And>j. i < j \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto
show "\<not> (INFM j. (as j, as (Suc j)) \<in> R)" unfolding INFM_nat using i by blast
qed
qed
lemma SN_rel_to_SN_rel_alt: "SN_rel R S \<Longrightarrow> SN_rel_alt R S"
proof (unfold SN_rel_on_def)
assume SN: "SN (relto R S)"
show ?thesis
proof (unfold SN_rel_on_alt_def, intro allI impI)
fix f
presume steps: "chain (R \<union> S) f"
obtain r where r: "\<And>j. r j \<equiv> (f j, f (Suc j)) \<in> R" by auto
show "\<not> (INFM j. (f j, f (Suc j)) \<in> R)"
proof (rule ccontr)
assume "\<not> ?thesis"
hence ih: "infinitely_many r" unfolding infinitely_many_def r by blast
obtain r_index where "r_index = infinitely_many.index r" by simp
with infinitely_many.index_p[OF ih] infinitely_many.index_ordered[OF ih] infinitely_many.index_not_p_between[OF ih]
have r_index: "\<And> i. r (r_index i) \<and> r_index i < r_index (Suc i) \<and> (\<forall> j. r_index i < j \<and> j < r_index (Suc i) \<longrightarrow> \<not> r j)" by auto
obtain g where g: "\<And> i. g i \<equiv> f (r_index i)" ..
{
fix i
let ?ri = "r_index i"
let ?rsi = "r_index (Suc i)"
from r_index have isi: "?ri < ?rsi" by auto
obtain ri rsi where ri: "ri = ?ri" and rsi: "rsi = ?rsi" by auto
with r_index[of i] steps have inter: "\<And> j. ri < j \<and> j < rsi \<Longrightarrow> (f j, f (Suc j)) \<in> S" unfolding r by auto
from ri isi rsi have risi: "ri < rsi" by simp
{
fix n
assume "Suc n \<le> rsi - ri"
hence "(f (Suc ri), f (Suc (n + ri))) \<in> S^*"
proof (induct n, simp)
case (Suc n)
hence stepps: "(f (Suc ri), f (Suc (n+ri))) \<in> S^*" by simp
have "(f (Suc (n+ri)), f (Suc (Suc n + ri))) \<in> S"
using inter[of "Suc n + ri"] Suc(2) by auto
with stepps show ?case by simp
qed
}
from this[of "rsi - ri - 1"] risi have
"(f (Suc ri), f rsi) \<in> S^*" by simp
with ri rsi have ssteps: "(f (Suc ?ri), f ?rsi) \<in> S^*" by simp
with r_index[of i] have "(f ?ri, f ?rsi) \<in> R O S^*" unfolding r by auto
hence "(g i, g (Suc i)) \<in> S^* O R O S^*" using rtrancl_refl unfolding g by auto
}
hence "\<not> SN (S^* O R O S^*)" unfolding SN_defs by blast
with SN show False by simp
qed
qed simp
qed
lemma SN_rel_alt_to_SN_rel : "SN_rel_alt R S \<Longrightarrow> SN_rel R S"
proof (unfold SN_rel_on_def)
assume SN: "SN_rel_alt R S"
show "SN (relto R S)"
proof
fix f
assume "chain (relto R S) f"
hence steps: "\<And>i. (f i, f (Suc i)) \<in> S^* O R O S^*" by auto
let ?prop = "\<lambda> i ai bi. (f i, bi) \<in> S^* \<and> (bi, ai) \<in> R \<and> (ai, f (Suc (i))) \<in> S^*"
{
fix i
from steps obtain bi ai where "?prop i ai bi" by blast
hence "\<exists> ai bi. ?prop i ai bi" by blast
}
hence "\<forall> i. \<exists> bi ai. ?prop i ai bi" by blast
from choice[OF this] obtain b where "\<forall> i. \<exists> ai. ?prop i ai (b i)" by blast
from choice[OF this] obtain a where steps: "\<And> i. ?prop i (a i) (b i)" by blast
let ?prop = "\<lambda> i li. (b i, a i) \<in> R \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S) \<and> last (a i # li) = b (Suc i)"
{
fix i
from steps[of i] steps[of "Suc i"] have "(a i, f (Suc i)) \<in> S^*" and "(f (Suc i), b (Suc i)) \<in> S^*" by auto
from rtrancl_trans[OF this] steps[of i] have R: "(b i, a i) \<in> R" and S: "(a i, b (Suc i)) \<in> S^*" by blast+
from S[unfolded rtrancl_list_conv] obtain li where "last (a i # li) = b (Suc i) \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S)" ..
with R have "?prop i li" by blast
hence "\<exists> li. ?prop i li" ..
}
hence "\<forall> i. \<exists> li. ?prop i li" ..
from choice[OF this] obtain l where steps: "\<And> i. ?prop i (l i)" by auto
let ?p = "\<lambda> i. ?prop i (l i)"
from steps have steps: "\<And> i. ?p i" by blast
let ?l = "\<lambda> i. a i # l i"
let ?l' = "\<lambda> i. length (?l i)"
let ?g = "\<lambda> i. inf_concat_simple ?l' i"
obtain g where g: "\<And> i. g i = (let (ii,jj) = ?g i in ?l ii ! jj)" by auto
have len: "\<And> i j n. ?g n = (i,j) \<Longrightarrow> j < length (?l i)"
proof -
fix i j n
assume n: "?g n = (i,j)"
show "j < length (?l i)"
proof (cases n)
case 0
with n have "j = 0" by auto
thus ?thesis by simp
next
case (Suc nn)
obtain ii jj where nn: "?g nn = (ii,jj)" by (cases "?g nn", auto)
show ?thesis
proof (cases "Suc jj < length (?l ii)")
case True
with nn Suc have "?g n = (ii, Suc jj)" by auto
with n True show ?thesis by simp
next
case False
with nn Suc have "?g n = (Suc ii, 0)" by auto
with n show ?thesis by simp
qed
qed
qed
have gsteps: "\<And> i. (g i, g (Suc i)) \<in> R \<union> S"
proof -
fix n
obtain i j where n: "?g n = (i, j)" by (cases "?g n", auto)
show "(g n, g (Suc n)) \<in> R \<union> S"
proof (cases "Suc j < length (?l i)")
case True
with n have "?g (Suc n) = (i, Suc j)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = ?l i ! (Suc j)" unfolding g by auto
thus ?thesis using steps[of i] True by auto
next
case False
with n have "?g (Suc n) = (Suc i, 0)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = a (Suc i)" unfolding g by auto
from gn len[OF n] False have "j = length (?l i) - 1" by auto
with gn have gn: "g n = last (?l i)" using last_conv_nth[of "?l i"] by auto
from gn gsn show ?thesis using steps[of i] steps[of "Suc i"] by auto
qed
qed
have infR: "INFM j. (g j, g (Suc j)) \<in> R" unfolding INFM_nat_le
proof
fix n
obtain i j where n: "?g n = (i,j)" by (cases "?g n", auto)
from len[OF n] have j: "j < ?l' i" .
let ?k = "?l' i - 1 - j"
obtain k where k: "k = j + ?k" by auto
from j k have k2: "k = ?l' i - 1" and k3: "j + ?k < ?l' i" by auto
from inf_concat_simple_add[OF n, of ?k, OF k3]
have gnk: "?g (n + ?k) = (i, k)" by (simp only: k)
hence "g (n + ?k) = ?l i ! k" unfolding g by auto
hence gnk2: "g (n + ?k) = last (?l i)" using last_conv_nth[of "?l i"] k2 by auto
from k2 gnk have "?g (Suc (n+?k)) = (Suc i, 0)" by auto
hence gnsk2: "g (Suc (n+?k)) = a (Suc i)" unfolding g by auto
from steps[of i] steps[of "Suc i"] have main: "(g (n+?k), g (Suc (n+?k))) \<in> R"
by (simp only: gnk2 gnsk2)
show "\<exists> j \<ge> n. (g j, g (Suc j)) \<in> R"
by (rule exI[of _ "n + ?k"], auto simp: main[simplified])
qed
from SN[unfolded SN_rel_on_alt_def] gsteps infR show False by blast
qed
qed
lemma SN_rel_alt_r_empty : "SN_rel_alt {} S"
unfolding SN_rel_defs by auto
lemma SN_rel_alt_s_empty : "SN_rel_alt R {} = SN R"
unfolding SN_rel_defs SN_defs by auto
lemma SN_rel_mono':
"R \<subseteq> R' \<Longrightarrow> S \<subseteq> R' \<union> S' \<Longrightarrow> SN_rel R' S' \<Longrightarrow> SN_rel R S"
unfolding SN_rel_on_conv SN_rel_defs INFM_nat_le
by (metis contra_subsetD sup.left_idem sup.mono)
lemma SN_rel_mono:
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> S'" and SN: "SN_rel R' S'"
shows "SN_rel R S"
using SN unfolding SN_rel_defs using SN_subset[OF _ relto_mono[OF R S]] by blast
lemmas SN_rel_alt_mono = SN_rel_mono[unfolded SN_rel_on_conv]
lemma SN_rel_imp_SN : assumes "SN_rel R S" shows "SN R"
proof
fix f
assume "\<forall> i. (f i, f (Suc i)) \<in> R"
hence "\<And> i. (f i, f (Suc i)) \<in> relto R S" by blast
thus False using assms unfolding SN_rel_defs SN_defs by fast
qed
lemma relto_trancl_conv : "(relto R S)^+ = ((R \<union> S))^* O R O ((R \<union> S))^*" by regexp
lemma SN_rel_Id:
shows "SN_rel R (S \<union> Id) = SN_rel R S"
unfolding SN_rel_defs by (simp only: relto_Id)
lemma relto_rtrancl: "relto R (S^*) = relto R S" by regexp
lemma SN_rel_empty[simp]: "SN_rel R {} = SN R"
unfolding SN_rel_defs by auto
lemma SN_rel_ideriv: "SN_rel R S = (\<not> (\<exists> as. ideriv R S as))" (is "?L = ?R")
proof
assume ?L
show ?R
proof
assume "\<exists> as. ideriv R S as"
then obtain as where id: "ideriv R S as" by auto
note id = id[unfolded ideriv_def]
from \<open>?L\<close>[unfolded SN_rel_on_conv SN_rel_defs, THEN spec[of _ as]]
id obtain i where i: "\<And> j. j \<ge> i \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto
with id[unfolded INFM_nat, THEN conjunct2, THEN spec[of _ "Suc i"]] show False by auto
qed
next
assume ?R
show ?L
unfolding SN_rel_on_conv SN_rel_defs
proof (intro allI impI)
fix as
presume "chain (R \<union> S) as"
with \<open>?R\<close>[unfolded ideriv_def] have "\<not> (INFM i. (as i, as (Suc i)) \<in> R)" by auto
from this[unfolded INFM_nat] obtain i where i: "\<And> j. i < j \<Longrightarrow> (as j, as (Suc j)) \<notin> R" by auto
show "\<not> (INFM j. (as j, as (Suc j)) \<in> R)" unfolding INFM_nat using i by blast
qed simp
qed
lemma SN_rel_map:
fixes R Rw R' Rw' :: "'a rel"
defines A: "A \<equiv> R' \<union> Rw'"
assumes SN: "SN_rel R' Rw'"
and R: "\<And>s t. (s,t) \<in> R \<Longrightarrow> (f s, f t) \<in> A^* O R' O A^*"
and Rw: "\<And>s t. (s,t) \<in> Rw \<Longrightarrow> (f s, f t) \<in> A^*"
shows "SN_rel R Rw"
unfolding SN_rel_defs
proof
fix g
assume steps: "chain (relto R Rw) g"
let ?f = "\<lambda>i. (f (g i))"
obtain h where h: "h = ?f" by auto
{
fix i
let ?m = "\<lambda> (x,y). (f x, f y)"
{
fix s t
assume "(s,t) \<in> Rw^*"
hence "?m (s,t) \<in> A^*"
proof (induct)
case base show ?case by simp
next
case (step t u)
from Rw[OF step(2)] step(3)
show ?case by auto
qed
} note Rw = this
from steps have "(g i, g (Suc i)) \<in> relto R Rw" ..
from this
obtain s t where gs: "(g i,s) \<in> Rw^*" and st: "(s,t) \<in> R" and tg: "(t, g (Suc i)) \<in> Rw^*" by auto
from Rw[OF gs] R[OF st] Rw[OF tg]
have step: "(?f i, ?f (Suc i)) \<in> A^* O (A^* O R' O A^*) O A^*"
by fast
have "(?f i, ?f (Suc i)) \<in> A^* O R' O A^*"
by (rule subsetD[OF _ step], regexp)
hence "(h i, h (Suc i)) \<in> (relto R' Rw')^+"
unfolding A h relto_trancl_conv .
}
hence "\<not> SN ((relto R' Rw')^+)" by auto
with SN_imp_SN_trancl[OF SN[unfolded SN_rel_on_def]]
show False by simp
qed
datatype SN_rel_ext_type = top_s | top_ns | normal_s | normal_ns
fun SN_rel_ext_step :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> SN_rel_ext_type \<Rightarrow> 'a rel" where
"SN_rel_ext_step P Pw R Rw top_s = P"
| "SN_rel_ext_step P Pw R Rw top_ns = Pw"
| "SN_rel_ext_step P Pw R Rw normal_s = R"
| "SN_rel_ext_step P Pw R Rw normal_ns = Rw"
(* relative termination with four relations as required in DP-framework *)
definition SN_rel_ext :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> 'a rel \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" where
"SN_rel_ext P Pw R Rw M \<equiv> (\<not> (\<exists>f t.
(\<forall> i. (f i, f (Suc i)) \<in> SN_rel_ext_step P Pw R Rw (t i))
\<and> (\<forall> i. M (f i))
\<and> (INFM i. t i \<in> {top_s,top_ns})
\<and> (INFM i. t i \<in> {top_s,normal_s})))"
lemma SN_rel_ext_step_mono: assumes "P \<subseteq> P'" "Pw \<subseteq> Pw'" "R \<subseteq> R'" "Rw \<subseteq> Rw'"
shows "SN_rel_ext_step P Pw R Rw t \<subseteq> SN_rel_ext_step P' Pw' R' Rw' t"
using assms
by (cases t, auto)
lemma SN_rel_ext_mono: assumes subset: "P \<subseteq> P'" "Pw \<subseteq> Pw'" "R \<subseteq> R'" "Rw \<subseteq> Rw'" and
SN: "SN_rel_ext P' Pw' R' Rw' M" shows "SN_rel_ext P Pw R Rw M"
using SN_rel_ext_step_mono[OF subset] SN unfolding SN_rel_ext_def by blast
lemma SN_rel_ext_trans:
fixes P Pw R Rw :: "'a rel" and M :: "'a \<Rightarrow> bool"
defines M': "M' \<equiv> {(s,t). M t}"
defines A: "A \<equiv> (P \<union> Pw \<union> R \<union> Rw) \<inter> M'"
assumes "SN_rel_ext P Pw R Rw M"
shows "SN_rel_ext (A^* O (P \<inter> M') O A^*) (A^* O ((P \<union> Pw) \<inter> M') O A^*) (A^* O ((P \<union> R) \<inter> M') O A^*) (A^*) M" (is "SN_rel_ext ?P ?Pw ?R ?Rw M")
proof (rule ccontr)
let ?relt = "SN_rel_ext_step ?P ?Pw ?R ?Rw"
let ?rel = "SN_rel_ext_step P Pw R Rw"
assume "\<not> ?thesis"
from this[unfolded SN_rel_ext_def]
obtain f ty
where steps: "\<And> i. (f i, f (Suc i)) \<in> ?relt (ty i)"
and min: "\<And> i. M (f i)"
and inf1: "INFM i. ty i \<in> {top_s, top_ns}"
and inf2: "INFM i. ty i \<in> {top_s, normal_s}"
by auto
let ?Un = "\<lambda> tt. \<Union> (?rel ` tt)"
let ?UnM = "\<lambda> tt. (\<Union> (?rel ` tt)) \<inter> M'"
let ?A = "?UnM {top_s,top_ns,normal_s,normal_ns}"
let ?P' = "?UnM {top_s}"
let ?Pw' = "?UnM {top_s,top_ns}"
let ?R' = "?UnM {top_s,normal_s}"
let ?Rw' = "?UnM {top_s,top_ns,normal_s,normal_ns}"
have A: "A = ?A" unfolding A by auto
have P: "(P \<inter> M') = ?P'" by auto
have Pw: "(P \<union> Pw) \<inter> M' = ?Pw'" by auto
have R: "(P \<union> R) \<inter> M' = ?R'" by auto
have Rw: "A = ?Rw'" unfolding A ..
{
fix s t tt
assume m: "M s" and st: "(s,t) \<in> ?UnM tt"
hence "\<exists> typ \<in> tt. (s,t) \<in> ?rel typ \<and> M s \<and> M t" unfolding M' by auto
} note one_step = this
let ?seq = "\<lambda> s t g n ty. s = g 0 \<and> t = g n \<and> (\<forall> i < n. (g i, g (Suc i)) \<in> ?rel (ty i)) \<and> (\<forall> i \<le> n. M (g i))"
{
fix s t
assume m: "M s" and st: "(s,t) \<in> A^*"
from st[unfolded rtrancl_fun_conv]
obtain g n where g0: "g 0 = s" and gn: "g n = t" and steps: "\<And> i. i < n \<Longrightarrow> (g i, g (Suc i)) \<in> ?A" unfolding A by auto
{
fix i
assume "i \<le> n"
have "M (g i)"
proof (cases i)
case 0
show ?thesis unfolding 0 g0 by (rule m)
next
case (Suc j)
with \<open>i \<le> n\<close> have "j < n" by auto
from steps[OF this] show ?thesis unfolding Suc M' by auto
qed
} note min = this
{
fix i
assume i: "i < n" hence i': "i \<le> n" by auto
from i' one_step[OF min steps[OF i]]
have "\<exists> ty. (g i, g (Suc i)) \<in> ?rel ty" by blast
}
hence "\<forall> i. (\<exists> ty. i < n \<longrightarrow> (g i, g (Suc i)) \<in> ?rel ty)" by auto
from choice[OF this]
obtain tt where steps: "\<And> i. i < n \<Longrightarrow> (g i, g (Suc i)) \<in> ?rel (tt i)" by auto
from g0 gn steps min
have "?seq s t g n tt" by auto
hence "\<exists> g n tt. ?seq s t g n tt" by blast
} note A_steps = this
let ?seqtt = "\<lambda> s t tt g n ty. s = g 0 \<and> t = g n \<and> n > 0 \<and> (\<forall> i<n. (g i, g (Suc i)) \<in> ?rel (ty i)) \<and> (\<forall> i \<le> n. M (g i)) \<and> (\<exists> i < n. ty i \<in> tt)"
{
fix s t tt
assume m: "M s" and st: "(s,t) \<in> A^* O ?UnM tt O A^*"
then obtain u v where su: "(s,u) \<in> A^*" and uv: "(u,v) \<in> ?UnM tt" and vt: "(v,t) \<in> A^*"
by auto
from A_steps[OF m su] obtain g1 n1 ty1 where seq1: "?seq s u g1 n1 ty1" by auto
from uv have "M v" unfolding M' by auto
from A_steps[OF this vt] obtain g2 n2 ty2 where seq2: "?seq v t g2 n2 ty2" by auto
from seq1 have "M u" by auto
from one_step[OF this uv] obtain ty where ty: "ty \<in> tt" and uv: "(u,v) \<in> ?rel ty" by auto
let ?g = "\<lambda> i. if i \<le> n1 then g1 i else g2 (i - (Suc n1))"
let ?ty = "\<lambda> i. if i < n1 then ty1 i else if i = n1 then ty else ty2 (i - (Suc n1))"
let ?n = "Suc (n1 + n2)"
have ex: "\<exists> i < ?n. ?ty i \<in> tt"
by (rule exI[of _ n1], simp add: ty)
have steps: "\<forall> i < ?n. (?g i, ?g (Suc i)) \<in> ?rel (?ty i)"
proof (intro allI impI)
fix i
assume "i < ?n"
show "(?g i, ?g (Suc i)) \<in> ?rel (?ty i)"
proof (cases "i \<le> n1")
case True
with seq1 seq2 uv show ?thesis by auto
next
case False
hence "i = Suc n1 + (i - Suc n1)" by auto
then obtain k where i: "i = Suc n1 + k" by auto
with \<open>i < ?n\<close> have "k < n2" by auto
thus ?thesis using seq2 unfolding i by auto
qed
qed
from steps seq1 seq2 ex
have seq: "?seqtt s t tt ?g ?n ?ty" by auto
have "\<exists> g n ty. ?seqtt s t tt g n ty"
by (intro exI, rule seq)
} note A_tt_A = this
let ?tycon = "\<lambda> ty1 ty2 tt ty' n. ty1 = ty2 \<longrightarrow> (\<exists>i < n. ty' i \<in> tt)"
let ?seqt = "\<lambda> i ty g n ty'. f i = g 0 \<and> f (Suc i) = g n \<and> (\<forall> j < n. (g j, g (Suc j)) \<in> ?rel (ty' j)) \<and> (\<forall> j \<le> n. M (g j))
\<and> (?tycon (ty i) top_s {top_s} ty' n)
\<and> (?tycon (ty i) top_ns {top_s,top_ns} ty' n)
\<and> (?tycon (ty i) normal_s {top_s,normal_s} ty' n)"
{
fix i
have "\<exists> g n ty'. ?seqt i ty g n ty'"
proof (cases "ty i")
case top_s
from steps[of i, unfolded top_s]
have "(f i, f (Suc i)) \<in> ?P" by auto
from A_tt_A[OF min this[unfolded P]]
show ?thesis unfolding top_s by auto
next
case top_ns
from steps[of i, unfolded top_ns]
have "(f i, f (Suc i)) \<in> ?Pw" by auto
from A_tt_A[OF min this[unfolded Pw]]
show ?thesis unfolding top_ns by auto
next
case normal_s
from steps[of i, unfolded normal_s]
have "(f i, f (Suc i)) \<in> ?R" by auto
from A_tt_A[OF min this[unfolded R]]
show ?thesis unfolding normal_s by auto
next
case normal_ns
from steps[of i, unfolded normal_ns]
have "(f i, f (Suc i)) \<in> ?Rw" by auto
from A_steps[OF min this]
show ?thesis unfolding normal_ns by auto
qed
}
hence "\<forall> i. \<exists> g n ty'. ?seqt i ty g n ty'" by auto
from choice[OF this] obtain g where "\<forall> i. \<exists> n ty'. ?seqt i ty (g i) n ty'" by auto
from choice[OF this] obtain n where "\<forall> i. \<exists> ty'. ?seqt i ty (g i) (n i) ty'" by auto
from choice[OF this] obtain ty' where "\<forall> i. ?seqt i ty (g i) (n i) (ty' i)" by auto
hence partial: "\<And> i. ?seqt i ty (g i) (n i) (ty' i)" ..
(* it remains to concatenate all these finite sequences to an infinite one *)
let ?ind = "inf_concat n"
let ?g = "\<lambda> k. (\<lambda> (i,j). g i j) (?ind k)"
let ?ty = "\<lambda> k. (\<lambda> (i,j). ty' i j) (?ind k)"
have inf: "INFM i. 0 < n i"
unfolding INFM_nat_le
proof (intro allI)
fix m
from inf1[unfolded INFM_nat_le]
obtain k where k: "k \<ge> m" and ty: "ty k \<in> {top_s, top_ns}" by auto
show "\<exists> k \<ge> m. 0 < n k"
proof (intro exI conjI, rule k)
from partial[of k] ty show "0 < n k" by (cases "n k", auto)
qed
qed
note bounds = inf_concat_bounds[OF inf]
note inf_Suc = inf_concat_Suc[OF inf]
note inf_mono = inf_concat_mono[OF inf]
have "\<not> SN_rel_ext P Pw R Rw M"
unfolding SN_rel_ext_def simp_thms
proof (rule exI[of _ ?g], rule exI[of _ ?ty], intro conjI allI)
fix k
obtain i j where ik: "?ind k = (i,j)" by force
from bounds[OF this] have j: "j < n i" by auto
show "M (?g k)" unfolding ik using partial[of i] j by auto
next
fix k
obtain i j where ik: "?ind k = (i,j)" by force
from bounds[OF this] have j: "j < n i" by auto
from partial[of i] j have step: "(g i j, g i (Suc j)) \<in> ?rel (ty' i j)" by auto
obtain i' j' where isk: "?ind (Suc k) = (i',j')" by force
have i'j': "g i' j' = g i (Suc j)"
proof (rule inf_Suc[OF _ ik isk])
fix i
from partial[of i]
have "g i (n i) = f (Suc i)" by simp
also have "... = g (Suc i) 0" using partial[of "Suc i"] by simp
finally show "g i (n i) = g (Suc i) 0" .
qed
show "(?g k, ?g (Suc k)) \<in> ?rel (?ty k)"
unfolding ik isk split i'j'
by (rule step)
next
show "INFM i. ?ty i \<in> {top_s, top_ns}"
unfolding INFM_nat_le
proof (intro allI)
fix k
obtain i j where ik: "?ind k = (i,j)" by force
from inf1[unfolded INFM_nat] obtain i' where i': "i' > i" and ty: "ty i' \<in> {top_s, top_ns}" by auto
from partial[of i'] ty obtain j' where j': "j' < n i'" and ty': "ty' i' j' \<in> {top_s, top_ns}" by auto
from inf_concat_surj[of _ n, OF j'] obtain k' where ik': "?ind k' = (i',j')" ..
from inf_mono[OF ik ik' i'] have k: "k \<le> k'" by simp
show "\<exists> k' \<ge> k. ?ty k' \<in> {top_s, top_ns}"
by (intro exI conjI, rule k, unfold ik' split, rule ty')
qed
next
show "INFM i. ?ty i \<in> {top_s, normal_s}"
unfolding INFM_nat_le
proof (intro allI)
fix k
obtain i j where ik: "?ind k = (i,j)" by force
from inf2[unfolded INFM_nat] obtain i' where i': "i' > i" and ty: "ty i' \<in> {top_s, normal_s}" by auto
from partial[of i'] ty obtain j' where j': "j' < n i'" and ty': "ty' i' j' \<in> {top_s, normal_s}" by auto
from inf_concat_surj[of _ n, OF j'] obtain k' where ik': "?ind k' = (i',j')" ..
from inf_mono[OF ik ik' i'] have k: "k \<le> k'" by simp
show "\<exists> k' \<ge> k. ?ty k' \<in> {top_s, normal_s}"
by (intro exI conjI, rule k, unfold ik' split, rule ty')
qed
qed
with assms show False by auto
qed
lemma SN_rel_ext_map: fixes P Pw R Rw P' Pw' R' Rw' :: "'a rel" and M M' :: "'a \<Rightarrow> bool"
defines Ms: "Ms \<equiv> {(s,t). M' t}"
defines A: "A \<equiv> (P' \<union> Pw' \<union> R' \<union> Rw') \<inter> Ms"
assumes SN: "SN_rel_ext P' Pw' R' Rw' M'"
and P: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> P \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms) O A^*) \<and> I t"
and Pw: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> Pw \<Longrightarrow> (f s, f t) \<in> (A^* O ((P' \<union> Pw') \<inter> Ms) O A^*) \<and> I t"
and R: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> R \<Longrightarrow> (f s, f t) \<in> (A^* O ((P' \<union> R') \<inter> Ms) O A^*) \<and> I t"
and Rw: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> (s,t) \<in> Rw \<Longrightarrow> (f s, f t) \<in> A^* \<and> I t"
shows "SN_rel_ext P Pw R Rw M"
proof -
note SN = SN_rel_ext_trans[OF SN]
let ?P = "(A^* O (P' \<inter> Ms) O A^*)"
let ?Pw = "(A^* O ((P' \<union> Pw') \<inter> Ms) O A^*)"
let ?R = "(A^* O ((P' \<union> R') \<inter> Ms) O A^*)"
let ?Rw = "A^*"
let ?relt = "SN_rel_ext_step ?P ?Pw ?R ?Rw"
let ?rel = "SN_rel_ext_step P Pw R Rw"
show ?thesis
proof (rule ccontr)
assume "\<not> ?thesis"
from this[unfolded SN_rel_ext_def]
obtain g ty
where steps: "\<And> i. (g i, g (Suc i)) \<in> ?rel (ty i)"
and min: "\<And> i. M (g i)"
and inf1: "INFM i. ty i \<in> {top_s, top_ns}"
and inf2: "INFM i. ty i \<in> {top_s, normal_s}"
by auto
from inf1[unfolded INFM_nat] obtain k where k: "ty k \<in> {top_s, top_ns}" by auto
let ?k = "Suc k"
let ?i = "shift id ?k"
let ?f = "\<lambda> i. f (shift g ?k i)"
let ?ty = "shift ty ?k"
{
fix i
assume ty: "ty i \<in> {top_s,top_ns}"
note m = min[of i]
note ms = min[of "Suc i"]
from P[OF m ms]
Pw[OF m ms]
steps[of i]
ty
have "(f (g i), f (g (Suc i))) \<in> ?relt (ty i) \<and> I (g (Suc i))"
by (cases "ty i", auto)
} note stepsP = this
{
fix i
assume I: "I (g i)"
note m = min[of i]
note ms = min[of "Suc i"]
from P[OF m ms]
Pw[OF m ms]
R[OF I m ms]
Rw[OF I m ms]
steps[of i]
have "(f (g i), f (g (Suc i))) \<in> ?relt (ty i) \<and> I (g (Suc i))"
by (cases "ty i", auto)
} note stepsI = this
{
fix i
have "I (g (?i i))"
proof (induct i)
case 0
show ?case using stepsP[OF k] by simp
next
case (Suc i)
from stepsI[OF Suc] show ?case by simp
qed
} note I = this
have "\<not> SN_rel_ext ?P ?Pw ?R ?Rw M'"
unfolding SN_rel_ext_def simp_thms
proof (rule exI[of _ ?f], rule exI[of _ ?ty], intro allI conjI)
fix i
show "(?f i, ?f (Suc i)) \<in> ?relt (?ty i)"
using stepsI[OF I[of i]] by auto
next
show "INFM i. ?ty i \<in> {top_s, top_ns}"
unfolding Infm_shift[of "\<lambda>i. i \<in> {top_s,top_ns}" ty ?k]
by (rule inf1)
next
show "INFM i. ?ty i \<in> {top_s, normal_s}"
unfolding Infm_shift[of "\<lambda>i. i \<in> {top_s,normal_s}" ty ?k]
by (rule inf2)
next
fix i
have A: "A \<subseteq> Ms" unfolding A by auto
from rtrancl_mono[OF this] have As: "A^* \<subseteq> Ms^*" by auto
have PM: "?P \<subseteq> Ms^* O Ms O Ms^*" using As by auto
have PwM: "?Pw \<subseteq> Ms^* O Ms O Ms^*" using As by auto
have RM: "?R \<subseteq> Ms^* O Ms O Ms^*" using As by auto
have RwM: "?Rw \<subseteq> Ms^*" using As by auto
from PM PwM RM have "?P \<union> ?Pw \<union> ?R \<subseteq> Ms^* O Ms O Ms^*" (is "?PPR \<subseteq> _") by auto
also have "... \<subseteq> Ms^+" by regexp
also have "... = Ms"
proof
have "Ms^+ \<subseteq> Ms^* O Ms" by regexp
also have "... \<subseteq> Ms" unfolding Ms by auto
finally show "Ms^+ \<subseteq> Ms" .
qed regexp
finally have PPR: "?PPR \<subseteq> Ms" .
show "M' (?f i)"
proof (induct i)
case 0
from stepsP[OF k] k
have "(f (g k), f (g (Suc k))) \<in> ?PPR" by (cases "ty k", auto)
with PPR show ?case unfolding Ms by simp blast
next
case (Suc i)
show ?case
proof (cases "?ty i = normal_ns")
case False
hence "?ty i \<in> {top_s,top_ns,normal_s}"
by (cases "?ty i", auto)
with stepsI[OF I[of i]] have "(?f i, ?f (Suc i)) \<in> ?PPR"
by auto
from subsetD[OF PPR this] have "(?f i, ?f (Suc i)) \<in> Ms" .
thus ?thesis unfolding Ms by auto
next
case True
with stepsI[OF I[of i]] have "(?f i, ?f (Suc i)) \<in> ?Rw" by auto
with RwM have mem: "(?f i, ?f (Suc i)) \<in> Ms^*" by auto
thus ?thesis
proof (cases)
case base
with Suc show ?thesis by simp
next
case step
thus ?thesis unfolding Ms by simp
qed
qed
qed
qed
with SN
show False unfolding A Ms by simp
qed
qed
(* and a version where it is assumed that f always preserves M and that R' and Rw' preserve M' *)
lemma SN_rel_ext_map_min: fixes P Pw R Rw P' Pw' R' Rw' :: "'a rel" and M M' :: "'a \<Rightarrow> bool"
defines Ms: "Ms \<equiv> {(s,t). M' t}"
defines A: "A \<equiv> P' \<inter> Ms \<union> Pw' \<inter> Ms \<union> R' \<union> Rw'"
assumes SN: "SN_rel_ext P' Pw' R' Rw' M'"
and M: "\<And> t. M t \<Longrightarrow> M' (f t)"
and M': "\<And> s t. M' s \<Longrightarrow> (s,t) \<in> R' \<union> Rw' \<Longrightarrow> M' t"
and P: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> P \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms) O A^*) \<and> I t"
and Pw: "\<And> s t. M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> Pw \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms \<union> Pw' \<inter> Ms) O A^*) \<and> I t"
and R: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> R \<Longrightarrow> (f s, f t) \<in> (A^* O (P' \<inter> Ms \<union> R') O A^*) \<and> I t"
and Rw: "\<And> s t. I s \<Longrightarrow> M s \<Longrightarrow> M t \<Longrightarrow> M' (f s) \<Longrightarrow> M' (f t) \<Longrightarrow> (s,t) \<in> Rw \<Longrightarrow> (f s, f t) \<in> A^* \<and> I t"
shows "SN_rel_ext P Pw R Rw M"
proof -
let ?Ms = "{(s,t). M' t}"
let ?A = "(P' \<union> Pw' \<union> R' \<union> Rw') \<inter> ?Ms"
{
fix s t
assume s: "M' s" and "(s,t) \<in> A"
with M'[OF s, of t] have "(s,t) \<in> ?A \<and> M' t" unfolding Ms A by auto
} note Aone = this
{
fix s t
assume s: "M' s" and steps: "(s,t) \<in> A^*"
from steps have "(s,t) \<in> ?A^* \<and> M' t"
proof (induct)
case base from s show ?case by simp
next
case (step t u)
note one = Aone[OF step(3)[THEN conjunct2] step(2)]
from step(3) one
have steps: "(s,u) \<in> ?A^* O ?A" by blast
have "(s,u) \<in> ?A^*"
by (rule subsetD[OF _ steps], regexp)
with one show ?case by simp
qed
} note Amany = this
let ?P = "(A^* O (P' \<inter> Ms) O A^*)"
let ?Pw = "(A^* O (P' \<inter> Ms \<union> Pw' \<inter> Ms) O A^*)"
let ?R = "(A^* O (P' \<inter> Ms \<union> R') O A^*)"
let ?Rw = "A^*"
let ?P' = "(?A^* O (P' \<inter> ?Ms) O ?A^*)"
let ?Pw' = "(?A^* O ((P' \<union> Pw') \<inter> ?Ms) O ?A^*)"
let ?R' = "(?A^* O ((P' \<union> R') \<inter> ?Ms) O ?A^*)"
let ?Rw' = "?A^*"
show ?thesis
proof (rule SN_rel_ext_map[OF SN])
fix s t
assume s: "M s" and t: "M t" and step: "(s,t) \<in> P"
from P[OF s t M[OF s] M[OF t] step]
have "(f s, f t) \<in> ?P" and I: "I t" by auto
then obtain u v where su: "(f s, u) \<in> A^*" and uv: "(u,v) \<in> P' \<inter> Ms"
and vt: "(v,f t) \<in> A^*" by auto
from Amany[OF M[OF s] su] have su: "(f s, u) \<in> ?A^*" and u: "M' u" by auto
from uv have v: "M' v" unfolding Ms by auto
from Amany[OF v vt] have vt: "(v, f t) \<in> ?A^*" by auto
from su uv vt I
show "(f s, f t) \<in> ?P' \<and> I t" unfolding Ms by auto
next
fix s t
assume s: "M s" and t: "M t" and step: "(s,t) \<in> Pw"
from Pw[OF s t M[OF s] M[OF t] step]
have "(f s, f t) \<in> ?Pw" and I: "I t" by auto
then obtain u v where su: "(f s, u) \<in> A^*" and uv: "(u,v) \<in> P' \<inter> Ms \<union> Pw' \<inter> Ms"
and vt: "(v,f t) \<in> A^*" by auto
from Amany[OF M[OF s] su] have su: "(f s, u) \<in> ?A^*" and u: "M' u" by auto
from uv have uv: "(u,v) \<in> (P' \<union> Pw') \<inter> ?Ms" and v: "M' v" unfolding Ms
by auto
from Amany[OF v vt] have vt: "(v, f t) \<in> ?A^*" by auto
from su uv vt I
show "(f s, f t) \<in> ?Pw' \<and> I t" by auto
next
fix s t
assume I: "I s" and s: "M s" and t: "M t" and step: "(s,t) \<in> R"
from R[OF I s t M[OF s] M[OF t] step]
have "(f s, f t) \<in> ?R" and I: "I t" by auto
then obtain u v where su: "(f s, u) \<in> A^*" and uv: "(u,v) \<in> P' \<inter> Ms \<union> R'"
and vt: "(v,f t) \<in> A^*" by auto
from Amany[OF M[OF s] su] have su: "(f s, u) \<in> ?A^*" and u: "M' u" by auto
from uv M'[OF u, of v] have uv: "(u,v) \<in> (P' \<union> R') \<inter> ?Ms" and v: "M' v" unfolding Ms
by auto
from Amany[OF v vt] have vt: "(v, f t) \<in> ?A^*" by auto
from su uv vt I
show "(f s, f t) \<in> ?R' \<and> I t" by auto
next
fix s t
assume I: "I s" and s: "M s" and t: "M t" and step: "(s,t) \<in> Rw"
from Rw[OF I s t M[OF s] M[OF t] step]
have steps: "(f s, f t) \<in> ?Rw" and I: "I t" by auto
from Amany[OF M[OF s] steps] I
show "(f s, f t) \<in> ?Rw' \<and> I t" by auto
qed
qed
(*OLD PART*)
lemma SN_relto_imp_SN_rel: "SN (relto R S) \<Longrightarrow> SN_rel R S"
proof -
assume SN: "SN (relto R S)"
show ?thesis
proof (simp only: SN_rel_on_conv SN_rel_defs, intro allI impI)
fix f
presume steps: "chain (R \<union> S) f"
obtain r where r: "\<And> j. r j \<equiv> (f j, f (Suc j)) \<in> R" by auto
show "\<not> (INFM j. (f j, f (Suc j)) \<in> R)"
proof (rule ccontr)
assume "\<not> ?thesis"
hence ih: "infinitely_many r" unfolding infinitely_many_def r INFM_nat_le by blast
obtain r_index where "r_index = infinitely_many.index r" by simp
with infinitely_many.index_p[OF ih] infinitely_many.index_ordered[OF ih] infinitely_many.index_not_p_between[OF ih]
have r_index: "\<And> i. r (r_index i) \<and> r_index i < r_index (Suc i) \<and> (\<forall> j. r_index i < j \<and> j < r_index (Suc i) \<longrightarrow> \<not> r j)" by auto
obtain g where g: "\<And> i. g i \<equiv> f (r_index i)" ..
{
fix i
let ?ri = "r_index i"
let ?rsi = "r_index (Suc i)"
from r_index have isi: "?ri < ?rsi" by auto
obtain ri rsi where ri: "ri = ?ri" and rsi: "rsi = ?rsi" by auto
with r_index[of i] steps have inter: "\<And> j. ri < j \<and> j < rsi \<Longrightarrow> (f j, f (Suc j)) \<in> S" unfolding r by auto
from ri isi rsi have risi: "ri < rsi" by simp
{
fix n
assume "Suc n \<le> rsi - ri"
hence "(f (Suc ri), f (Suc (n + ri))) \<in> S^*"
proof (induct n, simp)
case (Suc n)
hence stepps: "(f (Suc ri), f (Suc (n+ri))) \<in> S^*" by simp
have "(f (Suc (n+ri)), f (Suc (Suc n + ri))) \<in> S"
using inter[of "Suc n + ri"] Suc(2) by auto
with stepps show ?case by simp
qed
}
from this[of "rsi - ri - 1"] risi have
"(f (Suc ri), f rsi) \<in> S^*" by simp
with ri rsi have ssteps: "(f (Suc ?ri), f ?rsi) \<in> S^*" by simp
with r_index[of i] have "(f ?ri, f ?rsi) \<in> R O S^*" unfolding r by auto
hence "(g i, g (Suc i)) \<in> S^* O R O S^*" using rtrancl_refl unfolding g by auto
}
hence "\<not> SN (S^* O R O S^*)" unfolding SN_defs by blast
with SN show False by simp
qed
qed simp
qed
(*FIXME: move*)
lemma rtrancl_list_conv:
"((s,t) \<in> R^*) =
(\<exists>list. last (s # list) = t \<and> (\<forall>i. i < length list \<longrightarrow> ((s # list) ! i, (s # list) ! Suc i) \<in> R))" (is "?l = ?r")
proof
assume ?r
then obtain list where "last (s # list) = t \<and> (\<forall> i. i < length list \<longrightarrow> ((s # list) ! i, (s # list) ! Suc i) \<in> R)" ..
thus ?l
proof (induct list arbitrary: s, simp)
case (Cons u ll)
hence "last (u # ll) = t \<and> (\<forall> i. i < length ll \<longrightarrow> ((u # ll) ! i, (u # ll) ! Suc i) \<in> R)" by auto
from Cons(1)[OF this] have rec: "(u,t) \<in> R^*" .
from Cons have "(s, u) \<in> R" by auto
with rec show ?case by auto
qed
next
assume ?l
from rtrancl_imp_seq[OF this]
obtain S n where s: "S 0 = s" and t: "S n = t" and steps: "\<forall> i<n. (S i, S (Suc i)) \<in> R" by auto
let ?list = "map (\<lambda> i. S (Suc i)) [0 ..< n]"
show ?r
proof (rule exI[of _ ?list], intro conjI,
cases n, simp add: s[symmetric] t[symmetric], simp add: t[symmetric])
show "\<forall> i < length ?list. ((s # ?list) ! i, (s # ?list) ! Suc i) \<in> R"
proof (intro allI impI)
fix i
assume i: "i < length ?list"
thus "((s # ?list) ! i, (s # ?list) ! Suc i) \<in> R"
proof (cases i, simp add: s[symmetric] steps)
case (Suc j)
with i steps show ?thesis by simp
qed
qed
qed
qed
fun choice :: "(nat \<Rightarrow> 'a list) \<Rightarrow> nat \<Rightarrow> (nat \<times> nat)" where
"choice f 0 = (0,0)"
| "choice f (Suc n) = (let (i, j) = choice f n in
if Suc j < length (f i)
then (i, Suc j)
else (Suc i, 0))"
lemma SN_rel_imp_SN_relto : "SN_rel R S \<Longrightarrow> SN (relto R S)"
proof -
assume SN: "SN_rel R S"
show "SN (relto R S)"
proof
fix f
assume "\<forall> i. (f i, f (Suc i)) \<in> relto R S"
hence steps: "\<And> i. (f i, f (Suc i)) \<in> S^* O R O S^*" by auto
let ?prop = "\<lambda> i ai bi. (f i, bi) \<in> S^* \<and> (bi, ai) \<in> R \<and> (ai, f (Suc (i))) \<in> S^*"
{
fix i
from steps obtain bi ai where "?prop i ai bi" by blast
hence "\<exists> ai bi. ?prop i ai bi" by blast
}
hence "\<forall> i. \<exists> bi ai. ?prop i ai bi" by blast
from choice[OF this] obtain b where "\<forall> i. \<exists> ai. ?prop i ai (b i)" by blast
from choice[OF this] obtain a where steps: "\<And> i. ?prop i (a i) (b i)" by blast
let ?prop = "\<lambda> i li. (b i, a i) \<in> R \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S) \<and> last (a i # li) = b (Suc i)"
{
fix i
from steps[of i] steps[of "Suc i"] have "(a i, f (Suc i)) \<in> S^*" and "(f (Suc i), b (Suc i)) \<in> S^*" by auto
from rtrancl_trans[OF this] steps[of i] have R: "(b i, a i) \<in> R" and S: "(a i, b (Suc i)) \<in> S^*" by blast+
from S[unfolded rtrancl_list_conv] obtain li where "last (a i # li) = b (Suc i) \<and> (\<forall> j < length li. ((a i # li) ! j, (a i # li) ! Suc j) \<in> S)" ..
with R have "?prop i li" by blast
hence "\<exists> li. ?prop i li" ..
}
hence "\<forall> i. \<exists> li. ?prop i li" ..
from choice[OF this] obtain l where steps: "\<And> i. ?prop i (l i)" by auto
let ?p = "\<lambda> i. ?prop i (l i)"
from steps have steps: "\<And> i. ?p i" by blast
let ?l = "\<lambda> i. a i # l i"
let ?g = "\<lambda> i. choice (\<lambda> j. ?l j) i"
obtain g where g: "\<And> i. g i = (let (ii,jj) = ?g i in ?l ii ! jj)" by auto
have len: "\<And> i j n. ?g n = (i,j) \<Longrightarrow> j < length (?l i)"
proof -
fix i j n
assume n: "?g n = (i,j)"
show "j < length (?l i)"
proof (cases n)
case 0
with n have "j = 0" by auto
thus ?thesis by simp
next
case (Suc nn)
obtain ii jj where nn: "?g nn = (ii,jj)" by (cases "?g nn", auto)
show ?thesis
proof (cases "Suc jj < length (?l ii)")
case True
with nn Suc have "?g n = (ii, Suc jj)" by auto
with n True show ?thesis by simp
next
case False
with nn Suc have "?g n = (Suc ii, 0)" by auto
with n show ?thesis by simp
qed
qed
qed
have gsteps: "\<And> i. (g i, g (Suc i)) \<in> R \<union> S"
proof -
fix n
obtain i j where n: "?g n = (i, j)" by (cases "?g n", auto)
show "(g n, g (Suc n)) \<in> R \<union> S"
proof (cases "Suc j < length (?l i)")
case True
with n have "?g (Suc n) = (i, Suc j)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = ?l i ! (Suc j)" unfolding g by auto
thus ?thesis using steps[of i] True by auto
next
case False
with n have "?g (Suc n) = (Suc i, 0)" by auto
with n have gn: "g n = ?l i ! j" and gsn: "g (Suc n) = a (Suc i)" unfolding g by auto
from gn len[OF n] False have "j = length (?l i) - 1" by auto
with gn have gn: "g n = last (?l i)" using last_conv_nth[of "?l i"] by auto
from gn gsn show ?thesis using steps[of i] steps[of "Suc i"] by auto
qed
qed
have infR: "\<forall> n. \<exists> j \<ge> n. (g j, g (Suc j)) \<in> R"
proof
fix n
obtain i j where n: "?g n = (i,j)" by (cases "?g n", auto)
from len[OF n] have j: "j \<le> length (?l i) - 1" by simp
let ?k = "length (?l i) - 1 - j"
obtain k where k: "k = j + ?k" by auto
from j k have k2: "k = length (?l i) - 1" and k3: "j + ?k < length (?l i)" by auto
{
fix n i j k l
assume n: "choice l n = (i,j)" and "j + k < length (l i)"
hence "choice l (n + k) = (i, j + k)"
by (induct k arbitrary: j, simp, auto)
}
from this[OF n, of ?k, OF k3]
have gnk: "?g (n + ?k) = (i, k)" by (simp only: k)
hence "g (n + ?k) = ?l i ! k" unfolding g by auto
hence gnk2: "g (n + ?k) = last (?l i)" using last_conv_nth[of "?l i"] k2 by auto
from k2 gnk have "?g (Suc (n+?k)) = (Suc i, 0)" by auto
hence gnsk2: "g (Suc (n+?k)) = a (Suc i)" unfolding g by auto
from steps[of i] steps[of "Suc i"] have main: "(g (n+?k), g (Suc (n+?k))) \<in> R"
by (simp only: gnk2 gnsk2)
show "\<exists> j \<ge> n. (g j, g (Suc j)) \<in> R"
by (rule exI[of _ "n + ?k"], auto simp: main[simplified])
qed
from SN[simplified SN_rel_on_conv SN_rel_defs] gsteps infR show False
unfolding INFM_nat_le by fast
qed
qed
hide_const choice
lemma SN_relto_SN_rel_conv: "SN (relto R S) = SN_rel R S"
by (blast intro: SN_relto_imp_SN_rel SN_rel_imp_SN_relto)
lemma SN_rel_empty1: "SN_rel {} S"
unfolding SN_rel_defs by auto
lemma SN_rel_empty2: "SN_rel R {} = SN R"
unfolding SN_rel_defs SN_defs by auto
lemma SN_relto_mono:
assumes R: "R \<subseteq> R'" and S: "S \<subseteq> S'"
and SN: "SN (relto R' S')"
shows "SN (relto R S)"
using SN SN_subset[OF _ relto_mono[OF R S]] by blast
lemma SN_relto_imp_SN:
assumes "SN (relto R S)" shows "SN R"
proof
fix f
assume "\<forall>i. (f i, f (Suc i)) \<in> R"
hence "\<And>i. (f i, f (Suc i)) \<in> relto R S" by blast
thus False using assms unfolding SN_defs by blast
qed
lemma SN_relto_Id:
"SN (relto R (S \<union> Id)) = SN (relto R S)"
by (simp only: relto_Id)
text \<open>Termination inheritance by transitivity (see, e.g., Geser's thesis).\<close>
lemma trans_subset_SN:
assumes "trans R" and "R \<subseteq> (r \<union> s)" and "SN r" and "SN s"
shows "SN R"
proof
fix f :: "nat \<Rightarrow> 'a"
assume "f 0 \<in> UNIV"
and chain: "chain R f"
have *: "\<And>i j. i < j \<Longrightarrow> (f i, f j) \<in> r \<union> s"
using assms and chain_imp_trancl [OF chain] by auto
let ?M = "{i. \<forall>j>i. (f i, f j) \<notin> r}"
show False
proof (cases "finite ?M")
let ?n = "Max ?M"
assume "finite ?M"
with Max_ge have "\<forall>i\<in>?M. i \<le> ?n" by simp
then have "\<forall>k\<ge>Suc ?n. \<exists>k'>k. (f k, f k') \<in> r" by auto
with steps_imp_chainp [of "Suc ?n" "\<lambda>x y. (x, y) \<in> r"] and assms
show False by auto
next
assume "infinite ?M"
then have "INFM j. j \<in> ?M" by (simp add: Inf_many_def)
then interpret infinitely_many "\<lambda>i. i \<in> ?M" by (unfold_locales) assumption
define g where [simp]: "g = index"
have "\<forall>i. (f (g i), f (g (Suc i))) \<in> s"
proof
fix i
have less: "g i < g (Suc i)" using index_ordered_less [of i "Suc i"] by simp
have "g i \<in> ?M" using index_p by simp
then have "(f (g i), f (g (Suc i))) \<notin> r" using less by simp
moreover have "(f (g i), f (g (Suc i))) \<in> r \<union> s" using * [OF less] by simp
ultimately show "(f (g i), f (g (Suc i))) \<in> s" by blast
qed
with \<open>SN s\<close> show False by (auto simp: SN_defs)
qed
qed
lemma SN_Un_conv:
assumes "trans (r \<union> s)"
shows "SN (r \<union> s) \<longleftrightarrow> SN r \<and> SN s"
(is "SN ?r \<longleftrightarrow> ?rhs")
proof
assume "SN (r \<union> s)" thus "SN r \<and> SN s"
using SN_subset[of ?r] by blast
next
assume "SN r \<and> SN s"
with trans_subset_SN[OF assms subset_refl] show "SN ?r" by simp
qed
lemma SN_relto_Un:
"SN (relto (R \<union> S) Q) \<longleftrightarrow> SN (relto R (S \<union> Q)) \<and> SN (relto S Q)"
(is "SN ?a \<longleftrightarrow> SN ?b \<and> SN ?c")
proof -
have eq: "?a^+ = ?b^+ \<union> ?c^+" by regexp
from SN_Un_conv[of "?b^+" "?c^+", unfolded eq[symmetric]]
show ?thesis unfolding SN_trancl_SN_conv by simp
qed
lemma SN_relto_split:
assumes "SN (relto r (s \<union> q2) \<union> relto q1 (s \<union> q2))" (is "SN ?a")
and "SN (relto s q2)" (is "SN ?b")
shows "SN (relto r (q1 \<union> q2) \<union> relto s (q1 \<union> q2))" (is "SN ?c")
proof -
have "?c^+ \<subseteq> ?a^+ \<union> ?b^+" by regexp
from trans_subset_SN[OF _ this, unfolded SN_trancl_SN_conv, OF _ assms]
show ?thesis by simp
qed
lemma relto_trancl_subset: assumes "a \<subseteq> c" and "b \<subseteq> c" shows "relto a b \<subseteq> c^+"
proof -
have "relto a b \<subseteq> (a \<union> b)^+" by regexp
also have "\<dots> \<subseteq> c^+"
by (rule trancl_mono_set, insert assms, auto)
finally show ?thesis .
qed
text \<open>An explicit version of @{const relto} which mentions all intermediate terms\<close>
inductive relto_fun :: "'a rel \<Rightarrow> 'a rel \<Rightarrow> nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> (nat \<Rightarrow> bool) \<Rightarrow> nat \<Rightarrow> 'a \<times> 'a \<Rightarrow> bool" where
relto_fun: "as 0 = a \<Longrightarrow> as m = b \<Longrightarrow>
(\<And> i. i < m \<Longrightarrow>
(sel i \<longrightarrow> (as i, as (Suc i)) \<in> A) \<and> (\<not> sel i \<longrightarrow> (as i, as (Suc i)) \<in> B))
\<Longrightarrow> n = card { i . i < m \<and> sel i}
\<Longrightarrow> (n = 0 \<longleftrightarrow> m = 0) \<Longrightarrow> relto_fun A B n as sel m (a,b)"
lemma relto_funD: assumes "relto_fun A B n as sel m (a,b)"
shows "as 0 = a" "as m = b"
"\<And> i. i < m \<Longrightarrow> sel i \<Longrightarrow> (as i, as (Suc i)) \<in> A"
"\<And> i. i < m \<Longrightarrow> \<not> sel i \<Longrightarrow> (as i, as (Suc i)) \<in> B"
"n = card { i . i < m \<and> sel i}"
"n = 0 \<longleftrightarrow> m = 0"
using assms[unfolded relto_fun.simps] by blast+
lemma relto_fun_refl: "\<exists> as sel. relto_fun A B 0 as sel 0 (a,a)"
by (rule exI[of _ "\<lambda> _. a"], rule exI, rule relto_fun, auto)
lemma relto_into_relto_fun: assumes "(a,b) \<in> relto A B"
shows "\<exists> as sel m. relto_fun A B (Suc 0) as sel m (a,b)"
proof -
from assms obtain a' b' where aa: "(a,a') \<in> B^*" and ab: "(a',b') \<in> A"
and bb: "(b',b) \<in> B^*" by auto
from aa[unfolded rtrancl_fun_conv] obtain f1 n1 where
f1: "f1 0 = a" "f1 n1 = a'" "\<And> i. i<n1 \<Longrightarrow> (f1 i, f1 (Suc i)) \<in> B" by auto
from bb[unfolded rtrancl_fun_conv] obtain f2 n2 where
f2: "f2 0 = b'" "f2 n2 = b" "\<And> i. i<n2 \<Longrightarrow> (f2 i, f2 (Suc i)) \<in> B" by auto
let ?gen = "\<lambda> aa ab bb i. if i < n1 then aa i else if i = n1 then ab else bb (i - Suc n1)"
let ?f = "?gen f1 a' f2"
let ?sel = "?gen (\<lambda> _. False) True (\<lambda> _. False)"
let ?m = "Suc (n1 + n2)"
show ?thesis
proof (rule exI[of _ ?f], rule exI[of _ ?sel], rule exI[of _ ?m], rule relto_fun)
fix i
assume i: "i < ?m"
show "(?sel i \<longrightarrow> (?f i, ?f (Suc i)) \<in> A) \<and> (\<not> ?sel i \<longrightarrow> (?f i, ?f (Suc i)) \<in> B)"
proof (cases "i < n1")
case True
with f1(3)[OF this] f1(2) show ?thesis by (cases "Suc i = n1", auto)
next
case False note nle = this
show ?thesis
proof (cases "i > n1")
case False
with nle have "i = n1" by auto
thus ?thesis using f1 f2 ab by auto
next
case True
define j where "j = i - Suc n1"
have i: "i = Suc n1 + j" and j: "j < n2" using i True unfolding j_def by auto
thus ?thesis using f2 by auto
qed
qed
qed (insert f1 f2, auto)
qed
lemma relto_fun_trans: assumes ab: "relto_fun A B n1 as1 sel1 m1 (a,b)"
and bc: "relto_fun A B n2 as2 sel2 m2 (b,c)"
shows "\<exists> as sel. relto_fun A B (n1 + n2) as sel (m1 + m2) (a,c)"
proof -
from relto_funD[OF ab]
have 1: "as1 0 = a" "as1 m1 = b"
"\<And> i. i < m1 \<Longrightarrow> (sel1 i \<longrightarrow> (as1 i, as1 (Suc i)) \<in> A) \<and> (\<not> sel1 i \<longrightarrow> (as1 i, as1 (Suc i)) \<in> B)"
"n1 = 0 \<longleftrightarrow> m1 = 0" and card1: "n1 = card {i. i < m1 \<and> sel1 i}" by blast+
from relto_funD[OF bc]
have 2: "as2 0 = b" "as2 m2 = c"
"\<And> i. i < m2 \<Longrightarrow> (sel2 i \<longrightarrow> (as2 i, as2 (Suc i)) \<in> A) \<and> (\<not> sel2 i \<longrightarrow> (as2 i, as2 (Suc i)) \<in> B)"
"n2 = 0 \<longleftrightarrow> m2 = 0" and card2: "n2 = card {i. i < m2 \<and> sel2 i}" by blast+
let ?as = "\<lambda> i. if i < m1 then as1 i else as2 (i - m1)"
let ?sel = "\<lambda> i. if i < m1 then sel1 i else sel2 (i - m1)"
let ?m = "m1 + m2"
let ?n = "n1 + n2"
show ?thesis
proof (rule exI[of _ ?as], rule exI[of _ ?sel], rule relto_fun)
have id: "{ i . i < ?m \<and> ?sel i} = { i . i < m1 \<and> sel1 i} \<union> ((+) m1) ` { i. i < m2 \<and> sel2 i}"
(is "_ = ?A \<union> ?f ` ?B")
by force
have "card (?A \<union> ?f ` ?B) = card ?A + card (?f ` ?B)"
by (rule card_Un_disjoint, auto)
also have "card (?f ` ?B) = card ?B"
by (rule card_image, auto simp: inj_on_def)
finally show "?n = card { i . i < ?m \<and> ?sel i}" unfolding card1 card2 id by simp
next
fix i
assume i: "i < ?m"
show "(?sel i \<longrightarrow> (?as i, ?as (Suc i)) \<in> A) \<and> (\<not> ?sel i \<longrightarrow> (?as i, ?as (Suc i)) \<in> B)"
proof (cases "i < m1")
case True
from 1 2 have [simp]: "as2 0 = as1 m1" by simp
from True 1(3)[of i] 1(2) show ?thesis by (cases "Suc i = m1", auto)
next
case False
define j where "j = i - m1"
have i: "i = m1 + j" and j: "j < m2" using i False unfolding j_def by auto
thus ?thesis using False 2(3)[of j] by auto
qed
qed (insert 1 2, auto)
qed
lemma reltos_into_relto_fun: assumes "(a,b) \<in> (relto A B)^^n"
shows "\<exists> as sel m. relto_fun A B n as sel m (a,b)"
using assms
proof (induct n arbitrary: b)
case (0 b)
hence b: "b = a" by auto
show ?case unfolding b using relto_fun_refl[of A B a] by blast
next
case (Suc n c)
from relpow_Suc_E[OF Suc(2)]
obtain b where ab: "(a,b) \<in> (relto A B)^^n" and bc: "(b,c) \<in> relto A B" by auto
from Suc(1)[OF ab] obtain as sel m where
IH: "relto_fun A B n as sel m (a, b)" by auto
from relto_into_relto_fun[OF bc] obtain as sel m where "relto_fun A B (Suc 0) as sel m (b,c)" by blast
from relto_fun_trans[OF IH this] show ?case by auto
qed
lemma relto_fun_into_reltos: assumes "relto_fun A B n as sel m (a,b)"
shows "(a,b) \<in> (relto A B)^^n"
proof -
note * = relto_funD[OF assms]
{
fix m'
let ?c = "\<lambda> m'. card {i. i < m' \<and> sel i}"
assume "m' \<le> m"
hence "(?c m' > 0 \<longrightarrow> (as 0, as m') \<in> (relto A B)^^ ?c m') \<and> (?c m' = 0 \<longrightarrow> (as 0, as m') \<in> B^*)"
proof (induct m')
case (Suc m')
let ?x = "as 0"
let ?y = "as m'"
let ?z = "as (Suc m')"
let ?C = "?c (Suc m')"
have C: "?C = ?c m' + (if (sel m') then 1 else 0)"
proof -
have id: "{i. i < Suc m' \<and> sel i} = {i. i < m' \<and> sel i} \<union> (if sel m' then {m'} else {})"
by (cases "sel m'", auto, case_tac "x = m'", auto)
show ?thesis unfolding id by auto
qed
from Suc(2) have m': "m' \<le> m" and lt: "m' < m" by auto
from Suc(1)[OF m'] have IH: "?c m' > 0 \<Longrightarrow> (?x, ?y) \<in> (relto A B) ^^ ?c m'"
"?c m' = 0 \<Longrightarrow> (?x, ?y) \<in> B^*" by auto
from *(3-4)[OF lt] have yz: "sel m' \<Longrightarrow> (?y, ?z) \<in> A" "\<not> sel m' \<Longrightarrow> (?y, ?z) \<in> B" by auto
show ?case
proof (cases "?c m' = 0")
case True note c = this
from IH(2)[OF this] have xy: "(?x, ?y) \<in> B^*" by auto
show ?thesis
proof (cases "sel m'")
case False
from xy yz(2)[OF False] have xz: "(?x, ?z) \<in> B^*" by auto
from False c have C: "?C = 0" unfolding C by simp
from xz show ?thesis unfolding C by auto
next
case True
from xy yz(1)[OF True] have xz: "(?x,?z) \<in> relto A B" by auto
from True c have C: "?C = 1" unfolding C by simp
from xz show ?thesis unfolding C by auto
qed
next
case False
hence c: "?c m' > 0" "(?c m' = 0) = False" by arith+
from IH(1)[OF c(1)] have xy: "(?x, ?y) \<in> (relto A B) ^^ ?c m'" .
show ?thesis
proof (cases "sel m'")
case False
from c obtain k where ck: "?c m' = Suc k" by (cases "?c m'", auto)
from relpow_Suc_E[OF xy[unfolded this]] obtain
u where xu: "(?x, u) \<in> (relto A B) ^^ k" and uy: "(u, ?y) \<in> relto A B" by auto
from uy yz(2)[OF False] have uz: "(u, ?z) \<in> relto A B" by force
with xu have xz: "(?x,?z) \<in> (relto A B) ^^ ?c m'" unfolding ck by auto
from False c have C: "?C = ?c m'" unfolding C by simp
from xz show ?thesis unfolding C c by auto
next
case True
from xy yz(1)[OF True] have xz: "(?x,?z) \<in> (relto A B) ^^ (Suc (?c m'))" by auto
from c True have C: "?C = Suc (?c m')" unfolding C by simp
from xz show ?thesis unfolding C by auto
qed
qed
qed simp
}
from this[of m] * show ?thesis by auto
qed
lemma relto_relto_fun_conv: "((a,b) \<in> (relto A B)^^n) = (\<exists> as sel m. relto_fun A B n as sel m (a,b))"
using relto_fun_into_reltos[of A B n _ _ _ a b] reltos_into_relto_fun[of a b n B A] by blast
lemma relto_fun_intermediate: assumes "A \<subseteq> C" and "B \<subseteq> C"
and rf: "relto_fun A B n as sel m (a,b)"
shows "i \<le> m \<Longrightarrow> (a,as i) \<in> C^*"
proof (induct i)
case 0
from relto_funD[OF rf] show ?case by simp
next
case (Suc i)
hence IH: "(a, as i) \<in> C^*" and im: "i < m" by auto
from relto_funD(3-4)[OF rf im] assms have "(as i, as (Suc i)) \<in> C" by auto
with IH show ?case by auto
qed
lemma not_SN_on_rel_succ:
assumes "\<not> SN_on (relto R E) {s}"
shows "\<exists>t u. (s, t) \<in> E\<^sup>* \<and> (t, u) \<in> R \<and> \<not> SN_on (relto R E) {u}"
proof -
obtain v where "(s, v) \<in> relto R E" and v: "\<not> SN_on (relto R E) {v}"
using assms by fast
moreover then obtain t and u
where "(s, t) \<in> E^*" and "(t, u) \<in> R" and uv: "(u, v) \<in> E\<^sup>*" by auto
moreover from uv have uv: "(u,v) \<in> (R \<union> E)^*" by regexp
moreover have "\<not> SN_on (relto R E) {u}" using
v steps_preserve_SN_on_relto[OF uv] by auto
ultimately show ?thesis by auto
qed
lemma SN_on_relto_relcomp: "SN_on (relto R S) T = SN_on (S\<^sup>* O R) T" (is "?L T = ?R T")
proof
assume L: "?L T"
{ fix t assume "t \<in> T" hence "?L {t}" using L by fast }
thus "?R T" by fast
next
{ fix s
have "SN_on (relto R S) {s} = SN_on (S\<^sup>* O R) {s}"
proof
let ?X = "{s. \<not>SN_on (relto R S) {s}}"
{ assume "\<not> ?L {s}"
hence "s \<in> ?X" by auto
hence "\<not> ?R {s}"
proof(rule lower_set_imp_not_SN_on, intro ballI)
fix s assume "s \<in> ?X"
then obtain t u where "(s,t) \<in> S\<^sup>*" "(t,u) \<in> R" and u: "u \<in> ?X"
unfolding mem_Collect_eq by (metis not_SN_on_rel_succ)
hence "(s,u) \<in> S\<^sup>* O R" by auto
with u show "\<exists>u \<in> ?X. (s,u) \<in> S\<^sup>* O R" by auto
qed
}
thus "?R {s} \<Longrightarrow> ?L {s}" by auto
assume "?L {s}" thus "?R {s}" by(rule SN_on_mono, auto)
qed
} note main = this
assume R: "?R T"
{ fix t assume "t \<in> T" hence "?L {t}" unfolding main using R by fast }
thus "?L T" by fast
qed
lemma trans_relto:
assumes trans: "trans R" and "S O R \<subseteq> R O S"
shows "trans (relto R S)"
proof
fix a b c
assume ab: "(a, b) \<in> S\<^sup>* O R O S\<^sup>*" and bc: "(b, c) \<in> S\<^sup>* O R O S\<^sup>*"
from rtrancl_O_push [of S R] assms(2) have comm: "S\<^sup>* O R \<subseteq> R O S\<^sup>*" by blast
from ab obtain d e where de: "(a, d) \<in> S\<^sup>*" "(d, e) \<in> R" "(e, b) \<in> S\<^sup>*" by auto
from bc obtain f g where fg: "(b, f) \<in> S\<^sup>*" "(f, g) \<in> R" "(g, c) \<in> S\<^sup>*" by auto
from de(3) fg(1) have "(e, f) \<in> S\<^sup>*" by auto
with fg(2) comm have "(e, g) \<in> R O S\<^sup>*" by blast
then obtain h where h: "(e, h) \<in> R" "(h, g) \<in> S\<^sup>*" by auto
with de(2) trans have dh: "(d, h) \<in> R" unfolding trans_def by blast
from fg(3) h(2) have "(h, c) \<in> S\<^sup>*" by auto
with de(1) dh(1) show "(a, c) \<in> S\<^sup>* O R O S\<^sup>*" by auto
qed
lemma relative_ending: (* general version of non_strict_ending *)
assumes chain: "chain (R \<union> S) t"
and t0: "t 0 \<in> X"
and SN: "SN_on (relto R S) X"
shows "\<exists>j. \<forall>i\<ge>j. (t i, t (Suc i)) \<in> S - R"
proof (rule ccontr)
assume "\<not> ?thesis"
with chain have "\<forall>i. \<exists>j. j \<ge> i \<and> (t j, t (Suc j)) \<in> R" by blast
from choice [OF this] obtain f where R_steps: "\<forall>i. i \<le> f i \<and> (t (f i), t (Suc (f i))) \<in> R" ..
let ?t = "\<lambda>i. t (((Suc \<circ> f) ^^ i) 0)"
have "\<forall>i. (t i, t (Suc (f i))) \<in> (relto R S)\<^sup>+"
proof
fix i
from R_steps have leq: "i\<le>f i" and step: "(t(f i), t(Suc(f i))) \<in> R" by auto
from chain_imp_rtrancl [OF chain leq] have "(t i, t(f i)) \<in> (R \<union> S)\<^sup>*" .
with step have "(t i, t(Suc(f i))) \<in> (R \<union> S)\<^sup>* O R" by auto
then show "(t i, t(Suc(f i))) \<in> (relto R S)\<^sup>+" by regexp
qed
then have "chain ((relto R S)\<^sup>+) ?t" by simp
with t0 have "\<not> SN_on ((relto R S)\<^sup>+) X" by (unfold SN_on_def, auto intro: exI[of _ ?t])
with SN_on_trancl[OF SN] show False by auto
qed
text \<open>from Geser's thesis [p.32, Corollary-1], generalized for @{term SN_on}.\<close>
lemma SN_on_relto_Un:
assumes closure: "relto (R \<union> R') S `` X \<subseteq> X"
shows "SN_on (relto (R \<union> R') S) X \<longleftrightarrow> SN_on (relto R (R' \<union> S)) X \<and> SN_on (relto R' S) X"
(is "?c \<longleftrightarrow> ?a \<and> ?b")
proof(safe)
assume SN: "?a" and SN': "?b"
from SN have SN: "SN_on (relto (relto R S) (relto R' S)) X" by (rule SN_on_subset1) regexp
show "?c"
proof
fix f
assume f0: "f 0 \<in> X" and chain: "chain (relto (R \<union> R') S) f"
then have "chain (relto R S \<union> relto R' S) f" by auto
from relative_ending[OF this f0 SN]
have "\<exists> j. \<forall> i \<ge> j. (f i, f (Suc i)) \<in> relto R' S - relto R S" by auto
then obtain j where "\<forall>i \<ge> j. (f i, f (Suc i)) \<in> relto R' S" by auto
then have "chain (relto R' S) (shift f j)" by auto
moreover have "f j \<in> X"
proof(induct j)
case 0 from f0 show ?case by simp
next
case (Suc j)
let ?s = "(f j, f (Suc j))"
from chain have "?s \<in> relto (R \<union> R') S" by auto
with Image_closed_trancl[OF closure] Suc show "f (Suc j) \<in> X" by blast
qed
then have "shift f j 0 \<in> X" by auto
ultimately have "\<not> SN_on (relto R' S) X" by (intro not_SN_onI)
with SN' show False by auto
qed
next
assume SN: "?c"
then show "?b" by (rule SN_on_subset1, auto)
moreover
from SN have "SN_on ((relto (R \<union> R') S)\<^sup>+) X" by (unfold SN_on_trancl_SN_on_conv)
then show "?a" by (rule SN_on_subset1) regexp
qed
lemma SN_on_Un: "(R \<union> R')``X \<subseteq> X \<Longrightarrow> SN_on (R \<union> R') X \<longleftrightarrow> SN_on (relto R R') X \<and> SN_on R' X"
using SN_on_relto_Un[of "{}"] by simp
end
|