Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 13,955 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
(* Title: AVL Trees
Author: Tobias Nipkow and Cornelia Pusch,
converted to Isar by Gerwin Klein
contributions by Achim Brucker, Burkhart Wolff and Jan Smaus
Maintainer: Gerwin Klein <gerwin.klein at nicta.com.au>
see the file Changelog for a list of changes
*)
section \<open>AVL Trees in 2 Stages\<close>
theory AVL2
imports Main
begin
text \<open>
This development of AVL trees leads to the same implementation
as the monolithic one (in theorey AVL) but via an intermediate
abstraction: AVL trees where the height is recomputed rather than
stored in the tree. This two-stage devlopment is longer than the
monolithic one but each individual step is simpler. It should really
be viewed as a blueprint for the development of data structures where
some of the fields contain redundant information (for efficiency
reasons).
\<close>
subsection \<open>Step 1: Pure binary and AVL trees\<close>
text \<open>
The basic formulation of AVL trees builds on pure binary trees
and recomputes all height information whenever it is required. This
simplifies the correctness proofs.
\<close>
datatype (set_of: 'a) tree\<^sub>0 = ET\<^sub>0 | MKT\<^sub>0 'a "'a tree\<^sub>0" "'a tree\<^sub>0"
subsubsection \<open>Auxiliary functions\<close>
primrec height :: "'a tree\<^sub>0 \<Rightarrow> nat" where
"height ET\<^sub>0 = 0"
| "height (MKT\<^sub>0 n l r) = 1 + max (height l) (height r)"
primrec is_ord :: "('a::preorder) tree\<^sub>0 \<Rightarrow> bool" where
"is_ord ET\<^sub>0 = True"
| "is_ord (MKT\<^sub>0 n l r) =
((\<forall>n'\<in> set_of l. n' < n) \<and> (\<forall>n'\<in> set_of r. n < n') \<and> is_ord l \<and> is_ord r)"
primrec is_bal :: "'a tree\<^sub>0 \<Rightarrow> bool" where
"is_bal ET\<^sub>0 = True"
| "is_bal (MKT\<^sub>0 n l r) =
((height l = height r \<or> height l = 1+height r \<or> height r = 1+height l) \<and>
is_bal l \<and> is_bal r)"
subsubsection \<open>AVL interface and simple implementation\<close>
primrec is_in\<^sub>0 :: "('a::preorder) \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> bool" where
"is_in\<^sub>0 k ET\<^sub>0 = False"
| "is_in\<^sub>0 k (MKT\<^sub>0 n l r) = (if k = n then True else
if k<n then (is_in\<^sub>0 k l)
else (is_in\<^sub>0 k r))"
primrec l_bal\<^sub>0 :: "'a \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where
"l_bal\<^sub>0 n (MKT\<^sub>0 ln ll lr) r =
(if height ll < height lr
then case lr of ET\<^sub>0 \<Rightarrow> ET\<^sub>0 \<comment> \<open>impossible\<close>
| MKT\<^sub>0 lrn lrl lrr \<Rightarrow> MKT\<^sub>0 lrn (MKT\<^sub>0 ln ll lrl) (MKT\<^sub>0 n lrr r)
else MKT\<^sub>0 ln ll (MKT\<^sub>0 n lr r))"
primrec r_bal\<^sub>0 :: "'a \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where
"r_bal\<^sub>0 n l (MKT\<^sub>0 rn rl rr) =
(if height rl > height rr
then case rl of ET\<^sub>0 \<Rightarrow> ET\<^sub>0 \<comment> \<open>impossible\<close>
| MKT\<^sub>0 rln rll rlr \<Rightarrow> MKT\<^sub>0 rln (MKT\<^sub>0 n l rll) (MKT\<^sub>0 rn rlr rr)
else MKT\<^sub>0 rn (MKT\<^sub>0 n l rl) rr)"
primrec insrt\<^sub>0 :: "'a::preorder \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where
"insrt\<^sub>0 x ET\<^sub>0 = MKT\<^sub>0 x ET\<^sub>0 ET\<^sub>0"
| "insrt\<^sub>0 x (MKT\<^sub>0 n l r) =
(if x=n
then MKT\<^sub>0 n l r
else if x<n
then let l' = insrt\<^sub>0 x l
in if height l' = 2+height r
then l_bal\<^sub>0 n l' r
else MKT\<^sub>0 n l' r
else let r' = insrt\<^sub>0 x r
in if height r' = 2+height l
then r_bal\<^sub>0 n l r'
else MKT\<^sub>0 n l r')"
subsubsection \<open>Insertion maintains AVL balance\<close>
lemma height_l_bal:
"height l = height r + 2
\<Longrightarrow> height (l_bal\<^sub>0 n l r) = height r + 2 \<or>
height (l_bal\<^sub>0 n l r) = height r + 3"
by (cases l) (auto split: tree\<^sub>0.split if_split_asm)
lemma height_r_bal:
"height r = height l + 2
\<Longrightarrow> height (r_bal\<^sub>0 n l r) = height l + 2 \<or>
height (r_bal\<^sub>0 n l r) = height l + 3"
by (cases r) (auto split: tree\<^sub>0.split if_split_asm)
lemma height_insrt:
"is_bal t
\<Longrightarrow> height (insrt\<^sub>0 x t) = height t \<or> height (insrt\<^sub>0 x t) = height t + 1"
proof (induct t)
case ET\<^sub>0 show ?case by simp
next
case (MKT\<^sub>0 n t1 t2) then show ?case proof (cases "x < n")
case True show ?thesis
proof (cases "height (insrt\<^sub>0 x t1) = height t2 + 2")
case True with height_l_bal [of _ _ n]
have "height (l_bal\<^sub>0 n (insrt\<^sub>0 x t1) t2) =
height t2 + 2 \<or> height (l_bal\<^sub>0 n (insrt\<^sub>0 x t1) t2) = height t2 + 3" by simp
with \<open>x < n\<close> MKT\<^sub>0 show ?thesis by auto
next
case False with \<open>x < n\<close> MKT\<^sub>0 show ?thesis by auto
qed
next
case False show ?thesis
proof (cases "height (insrt\<^sub>0 x t2) = height t1 + 2")
case True with height_r_bal [of _ _ n]
have "height (r_bal\<^sub>0 n t1 (insrt\<^sub>0 x t2)) = height t1 + 2 \<or>
height (r_bal\<^sub>0 n t1 (insrt\<^sub>0 x t2)) = height t1 + 3" by simp
with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis by auto
next
case False with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis by auto
qed
qed
qed
lemma is_bal_l_bal:
"is_bal l \<Longrightarrow> is_bal r \<Longrightarrow> height l = height r + 2 \<Longrightarrow> is_bal (l_bal\<^sub>0 n l r)"
by (cases l) (auto, auto split: tree\<^sub>0.split) \<comment> \<open>separating the two auto's is just for speed\<close>
lemma is_bal_r_bal:
"is_bal l \<Longrightarrow> is_bal r \<Longrightarrow> height r = height l + 2 \<Longrightarrow> is_bal (r_bal\<^sub>0 n l r)"
by (cases r) (auto, auto split: tree\<^sub>0.split) \<comment> \<open>separating the two auto's is just for speed\<close>
theorem is_bal_insrt:
"is_bal t \<Longrightarrow> is_bal(insrt\<^sub>0 x t)"
proof (induct t)
case ET\<^sub>0 show ?case by simp
next
case (MKT\<^sub>0 n t1 t2) show ?case proof (cases "x < n")
case True show ?thesis
proof (cases "height (insrt\<^sub>0 x t1) = height t2 + 2")
case True with \<open>x < n\<close> MKT\<^sub>0 show ?thesis
by (simp add: is_bal_l_bal)
next
case False with \<open>x < n\<close> MKT\<^sub>0 show ?thesis
using height_insrt [of t1 x] by auto
qed
next
case False show ?thesis
proof (cases "height (insrt\<^sub>0 x t2) = height t1 + 2")
case True with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis
by (simp add: is_bal_r_bal)
next
case False with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis
using height_insrt [of t2 x] by auto
qed
qed
qed
subsubsection \<open>Correctness of insertion\<close>
lemma set_of_l_bal: "height l = height r + 2 \<Longrightarrow>
set_of (l_bal\<^sub>0 x l r) = insert x (set_of l \<union> set_of r)"
by (cases l) (auto split: tree\<^sub>0.splits)
lemma set_of_r_bal: "height r = height l + 2 \<Longrightarrow>
set_of (r_bal\<^sub>0 x l r) = insert x (set_of l \<union> set_of r)"
by (cases r) (auto split: tree\<^sub>0.splits)
theorem set_of_insrt:
"set_of (insrt\<^sub>0 x t) = insert x (set_of t)"
by (induct t) (auto simp add:set_of_l_bal set_of_r_bal Let_def)
subsubsection \<open>Correctness of lookup\<close>
theorem is_in_correct: "is_ord t \<Longrightarrow> is_in\<^sub>0 k t = (k : set_of t)"
by (induct t) (auto simp add: less_le_not_le)
subsubsection \<open>Insertion maintains order\<close>
lemma is_ord_l_bal:
"is_ord (MKT\<^sub>0 x l r) \<Longrightarrow> height l = Suc (Suc (height r)) \<Longrightarrow>
is_ord (l_bal\<^sub>0 x l r)"
by (cases l) (auto split: tree\<^sub>0.splits intro: order_less_trans)
lemma is_ord_r_bal:
"is_ord (MKT\<^sub>0 x l r) \<Longrightarrow> height r = height l + 2 \<Longrightarrow>
is_ord (r_bal\<^sub>0 x l r)"
by (cases r) (auto split:tree\<^sub>0.splits intro: order_less_trans)
text \<open>If the order is linear, @{const insrt\<^sub>0} maintains the order:\<close>
theorem is_ord_insrt:
"is_ord t \<Longrightarrow> is_ord (insrt\<^sub>0 (x::'a::linorder) t)"
by (induct t) (simp_all add:is_ord_l_bal is_ord_r_bal set_of_insrt
linorder_not_less order_neq_le_trans Let_def)
subsection \<open>Step 2: Binary and AVL trees with height information\<close>
datatype 'a tree = ET | MKT 'a "'a tree" "'a tree" nat
subsubsection \<open>Auxiliary functions\<close>
primrec erase :: "'a tree \<Rightarrow> 'a tree\<^sub>0" where
"erase ET = ET\<^sub>0"
| "erase (MKT x l r h) = MKT\<^sub>0 x (erase l) (erase r)"
primrec hinv :: "'a tree \<Rightarrow> bool" where
"hinv ET \<longleftrightarrow> True"
| "hinv (MKT x l r h) \<longleftrightarrow> h = 1 + max (height (erase l)) (height (erase r))
\<and> hinv l \<and> hinv r"
definition avl :: "'a tree \<Rightarrow> bool" where
"avl t \<longleftrightarrow> is_bal (erase t) \<and> hinv t"
subsubsection \<open>AVL interface and efficient implementation\<close>
primrec is_in :: "('a::preorder) \<Rightarrow> 'a tree \<Rightarrow> bool" where
"is_in k ET \<longleftrightarrow> False"
| "is_in k (MKT n l r h) \<longleftrightarrow> (if k = n then True else
if k < n then (is_in k l)
else (is_in k r))"
primrec ht :: "'a tree \<Rightarrow> nat" where
"ht ET = 0"
| "ht (MKT x l r h) = h"
definition mkt :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"mkt x l r = MKT x l r (max (ht l) (ht r) + 1)"
primrec l_bal :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"l_bal n (MKT ln ll lr h) r =
(if ht ll < ht lr
then case lr of ET \<Rightarrow> ET \<comment> \<open>impossible\<close>
| MKT lrn lrl lrr lrh \<Rightarrow>
mkt lrn (mkt ln ll lrl) (mkt n lrr r)
else mkt ln ll (mkt n lr r))"
primrec r_bal :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"r_bal n l (MKT rn rl rr h) =
(if ht rl > ht rr
then case rl of ET \<Rightarrow> ET \<comment> \<open>impossible\<close>
| MKT rln rll rlr h \<Rightarrow> mkt rln (mkt n l rll) (mkt rn rlr rr)
else mkt rn (mkt n l rl) rr)"
primrec insrt :: "'a::preorder \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
"insrt x ET = MKT x ET ET 1"
| "insrt x (MKT n l r h) =
(if x=n
then MKT n l r h
else if x<n
then let l' = insrt x l; hl' = ht l'; hr = ht r
in if hl' = 2+hr then l_bal n l' r
else MKT n l' r (1 + max hl' hr)
else let r' = insrt x r; hl = ht l; hr' = ht r'
in if hr' = 2+hl then r_bal n l r'
else MKT n l r' (1 + max hl hr'))"
subsubsection \<open>Correctness proof\<close>
text\<open>The auxiliary functions are implemented correctly:\<close>
lemma height_hinv: "hinv t \<Longrightarrow> ht t = height (erase t)"
by (induct t) simp_all
lemma erase_mkt: "erase (mkt n l r) = MKT\<^sub>0 n (erase l) (erase r)"
by (simp add: mkt_def)
lemma erase_l_bal:
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height (erase l) = height(erase r) + 2 \<Longrightarrow>
erase (l_bal n l r) = l_bal\<^sub>0 n (erase l) (erase r)"
by (cases l) (simp_all add: height_hinv erase_mkt split: tree.split)
lemma erase_r_bal:
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase r) = height(erase l) + 2 \<Longrightarrow>
erase (r_bal n l r) = r_bal\<^sub>0 n (erase l) (erase r)"
by (cases r) (simp_all add: height_hinv erase_mkt split: tree.split)
text \<open>Function @{const insrt} maintains the invariant:\<close>
lemma hinv_mkt: "hinv l \<Longrightarrow> hinv r \<Longrightarrow> hinv (mkt x l r)"
by (simp add: height_hinv mkt_def)
lemma hinv_l_bal:
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase l) = height(erase r) + 2 \<Longrightarrow>
hinv (l_bal n l r)"
by (cases l) (auto simp add: hinv_mkt split: tree.splits)
lemma hinv_r_bal:
"hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase r) = height(erase l) + 2 \<Longrightarrow>
hinv (r_bal n l r)"
by (cases r) (auto simp add: hinv_mkt split: tree.splits)
theorem hinv_insrt: "hinv t \<Longrightarrow> hinv (insrt x t)"
by (induct t) (simp_all add: Let_def height_hinv hinv_l_bal hinv_r_bal)
text\<open>Function @{const insrt} implements @{const insrt\<^sub>0}:\<close>
lemma erase_insrt: "hinv t \<Longrightarrow> erase (insrt x t) = insrt\<^sub>0 x (erase t)"
by (induct t) (simp_all add: Let_def hinv_insrt height_hinv erase_l_bal erase_r_bal)
text\<open>Function @{const insrt} meets its spec:\<close>
corollary "avl t \<Longrightarrow> set_of (erase (insrt x t)) = insert x (set_of (erase t))"
by (simp add: avl_def erase_insrt set_of_insrt)
text\<open>Function @{const insrt} preserves the invariants:\<close>
corollary "avl t \<Longrightarrow> avl (insrt x t)"
by (simp add: hinv_insrt avl_def erase_insrt is_bal_insrt)
corollary
"avl t \<Longrightarrow> is_ord (erase t) \<Longrightarrow> is_ord (erase (insrt (x::'a::linorder) t))"
by (simp add: avl_def erase_insrt is_ord_insrt)
text\<open>Function @{const is_in} implements @{const is_in}:\<close>
theorem is_in: "is_in x t = is_in\<^sub>0 x (erase t)"
by (induct t) simp_all
text\<open>Function @{const is_in} meets its spec:\<close>
corollary "is_ord (erase t) \<Longrightarrow> is_in x t \<longleftrightarrow> x \<in> set_of (erase t)"
by (simp add:is_in is_in_correct)
end
|