Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 13,955 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
(*  Title:      AVL Trees

    Author:     Tobias Nipkow and Cornelia Pusch,
                converted to Isar by Gerwin Klein
                contributions by Achim Brucker, Burkhart Wolff and Jan Smaus
    Maintainer: Gerwin Klein <gerwin.klein at nicta.com.au>

    see the file Changelog for a list of changes
*)

section \<open>AVL Trees in 2 Stages\<close>

theory AVL2
imports Main
begin

text \<open>
  This development of AVL trees leads to the same implementation
  as the monolithic one (in theorey AVL) but via an intermediate
  abstraction: AVL trees where the height is recomputed rather than
  stored in the tree. This two-stage devlopment is longer than the
  monolithic one but each individual step is simpler. It should really
  be viewed as a blueprint for the development of data structures where
  some of the fields contain redundant information (for efficiency
  reasons).
\<close>

subsection \<open>Step 1: Pure binary and AVL trees\<close>

text \<open>
  The basic formulation of AVL trees builds on pure binary trees
  and recomputes all height information whenever it is required. This
  simplifies the correctness proofs.
\<close>

datatype (set_of: 'a) tree\<^sub>0 = ET\<^sub>0 |  MKT\<^sub>0 'a "'a tree\<^sub>0" "'a tree\<^sub>0"

subsubsection \<open>Auxiliary functions\<close>

primrec height :: "'a tree\<^sub>0 \<Rightarrow> nat" where
  "height ET\<^sub>0 = 0"
  | "height (MKT\<^sub>0 n l r) = 1 + max (height l) (height r)"

primrec is_ord :: "('a::preorder) tree\<^sub>0 \<Rightarrow> bool" where
  "is_ord ET\<^sub>0 = True"
  | "is_ord (MKT\<^sub>0 n l r) =
     ((\<forall>n'\<in> set_of l. n' < n) \<and> (\<forall>n'\<in> set_of r. n < n') \<and> is_ord l \<and> is_ord r)"

primrec is_bal :: "'a tree\<^sub>0 \<Rightarrow> bool" where
  "is_bal ET\<^sub>0 = True"
  | "is_bal (MKT\<^sub>0 n l r) =
   ((height l = height r \<or> height l = 1+height r \<or> height r = 1+height l) \<and>
     is_bal l \<and> is_bal r)"


subsubsection \<open>AVL interface and simple implementation\<close>

primrec is_in\<^sub>0 :: "('a::preorder) \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> bool" where
  "is_in\<^sub>0 k ET\<^sub>0 = False"
  | "is_in\<^sub>0 k (MKT\<^sub>0 n l r) = (if k = n then True else
                         if k<n then (is_in\<^sub>0 k l)
                         else (is_in\<^sub>0 k r))"

primrec l_bal\<^sub>0 :: "'a \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where
  "l_bal\<^sub>0 n (MKT\<^sub>0 ln ll lr) r =
   (if height ll < height lr
    then case lr of ET\<^sub>0 \<Rightarrow> ET\<^sub>0 \<comment> \<open>impossible\<close>
                  | MKT\<^sub>0 lrn lrl lrr \<Rightarrow> MKT\<^sub>0 lrn (MKT\<^sub>0 ln ll lrl) (MKT\<^sub>0 n lrr r)
    else MKT\<^sub>0 ln ll (MKT\<^sub>0 n lr r))"


primrec r_bal\<^sub>0 :: "'a \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where
  "r_bal\<^sub>0 n l (MKT\<^sub>0 rn rl rr) =
   (if height rl > height rr
    then case rl of ET\<^sub>0 \<Rightarrow> ET\<^sub>0 \<comment> \<open>impossible\<close>
                  | MKT\<^sub>0 rln rll rlr \<Rightarrow> MKT\<^sub>0 rln (MKT\<^sub>0 n l rll) (MKT\<^sub>0 rn rlr rr)
    else MKT\<^sub>0 rn (MKT\<^sub>0 n l rl) rr)"

primrec insrt\<^sub>0 :: "'a::preorder \<Rightarrow> 'a tree\<^sub>0 \<Rightarrow> 'a tree\<^sub>0" where
  "insrt\<^sub>0 x ET\<^sub>0 = MKT\<^sub>0 x ET\<^sub>0 ET\<^sub>0"
  | "insrt\<^sub>0 x (MKT\<^sub>0 n l r) = 
     (if x=n
      then MKT\<^sub>0 n l r
      else if x<n
           then let l' = insrt\<^sub>0 x l
                in if height l' = 2+height r
                   then l_bal\<^sub>0 n l' r
                   else MKT\<^sub>0 n l' r
           else let r' = insrt\<^sub>0 x r
                in if height r' = 2+height l
                   then r_bal\<^sub>0 n l r'
                   else MKT\<^sub>0 n l r')"


subsubsection \<open>Insertion maintains AVL balance\<close>

lemma height_l_bal:
 "height l = height r + 2
  \<Longrightarrow> height (l_bal\<^sub>0 n l r) = height r + 2 \<or>
      height (l_bal\<^sub>0 n l r)  = height r + 3"
  by (cases l) (auto split: tree\<^sub>0.split if_split_asm)

lemma height_r_bal:
 "height r = height l + 2
  \<Longrightarrow> height (r_bal\<^sub>0 n l r) = height l + 2 \<or>
      height (r_bal\<^sub>0 n l r) = height l + 3"
  by (cases r) (auto split: tree\<^sub>0.split if_split_asm)

lemma height_insrt:
 "is_bal t
  \<Longrightarrow> height (insrt\<^sub>0 x t) = height t \<or> height (insrt\<^sub>0 x t) = height t + 1"
proof (induct t)
  case ET\<^sub>0 show ?case by simp
next
  case (MKT\<^sub>0 n t1 t2) then show ?case proof (cases "x < n")
    case True show ?thesis
    proof (cases "height (insrt\<^sub>0 x t1) = height t2 + 2")
      case True with height_l_bal [of _ _ n]
      have "height (l_bal\<^sub>0 n (insrt\<^sub>0 x t1) t2) =
        height t2 + 2 \<or> height (l_bal\<^sub>0 n (insrt\<^sub>0 x t1) t2) = height t2 + 3" by simp
      with \<open>x < n\<close> MKT\<^sub>0 show ?thesis by auto
    next
      case False with \<open>x < n\<close> MKT\<^sub>0 show ?thesis by auto
    qed
  next
    case False show ?thesis
    proof (cases "height (insrt\<^sub>0 x t2) = height t1 + 2")
      case True with height_r_bal [of _ _ n]
      have "height (r_bal\<^sub>0 n t1 (insrt\<^sub>0 x t2)) = height t1 + 2 \<or>
        height (r_bal\<^sub>0 n t1 (insrt\<^sub>0 x t2)) = height t1 + 3" by simp
      with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis by auto
    next
      case False with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis by auto
    qed
  qed
qed

lemma is_bal_l_bal:
  "is_bal l \<Longrightarrow> is_bal r \<Longrightarrow> height l = height r + 2 \<Longrightarrow> is_bal (l_bal\<^sub>0 n l r)"
  by (cases l) (auto, auto split: tree\<^sub>0.split)  \<comment> \<open>separating the two auto's is just for speed\<close>

lemma is_bal_r_bal:
  "is_bal l \<Longrightarrow> is_bal r \<Longrightarrow> height r = height l + 2 \<Longrightarrow> is_bal (r_bal\<^sub>0 n l r)"
  by (cases r) (auto, auto split: tree\<^sub>0.split)  \<comment> \<open>separating the two auto's is just for speed\<close>

theorem is_bal_insrt: 
  "is_bal t \<Longrightarrow> is_bal(insrt\<^sub>0 x t)"
proof (induct t)
  case ET\<^sub>0 show ?case by simp
next
  case (MKT\<^sub>0 n t1 t2) show ?case proof (cases "x < n")
    case True show ?thesis
    proof (cases "height (insrt\<^sub>0 x t1) = height t2 + 2")
      case True with \<open>x < n\<close> MKT\<^sub>0 show ?thesis
        by (simp add: is_bal_l_bal)
    next
      case False with \<open>x < n\<close> MKT\<^sub>0 show ?thesis
        using height_insrt [of t1 x] by auto
    qed
  next
    case False show ?thesis
    proof (cases "height (insrt\<^sub>0 x t2) = height t1 + 2")
      case True with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis
        by (simp add: is_bal_r_bal)
    next
      case False with \<open>\<not> x < n\<close> MKT\<^sub>0 show ?thesis
        using height_insrt [of t2 x] by auto
    qed
  qed
qed


subsubsection \<open>Correctness of insertion\<close>

lemma set_of_l_bal: "height l = height r + 2 \<Longrightarrow>
  set_of (l_bal\<^sub>0 x l r) = insert x (set_of l \<union> set_of r)"
  by (cases l) (auto split: tree\<^sub>0.splits)

lemma set_of_r_bal: "height r = height l + 2 \<Longrightarrow>
  set_of (r_bal\<^sub>0 x l r) = insert x (set_of l \<union> set_of r)"
  by (cases r) (auto split: tree\<^sub>0.splits)

theorem set_of_insrt: 
  "set_of (insrt\<^sub>0 x t) = insert x (set_of t)"
  by (induct t) (auto simp add:set_of_l_bal set_of_r_bal Let_def)


subsubsection \<open>Correctness of lookup\<close>

theorem is_in_correct: "is_ord t \<Longrightarrow> is_in\<^sub>0 k t = (k : set_of t)"
  by (induct t) (auto simp add: less_le_not_le)
  

subsubsection \<open>Insertion maintains order\<close>

lemma is_ord_l_bal:
 "is_ord (MKT\<^sub>0 x l r) \<Longrightarrow> height l = Suc (Suc (height r)) \<Longrightarrow>
  is_ord (l_bal\<^sub>0 x l r)"
  by (cases l) (auto split: tree\<^sub>0.splits intro: order_less_trans)

lemma is_ord_r_bal:
 "is_ord (MKT\<^sub>0 x l r) \<Longrightarrow> height r = height l + 2 \<Longrightarrow>
  is_ord (r_bal\<^sub>0 x l r)"
  by (cases r) (auto split:tree\<^sub>0.splits intro: order_less_trans)


text \<open>If the order is linear, @{const insrt\<^sub>0} maintains the order:\<close>

theorem is_ord_insrt:
 "is_ord t \<Longrightarrow> is_ord (insrt\<^sub>0 (x::'a::linorder) t)"
  by (induct t) (simp_all add:is_ord_l_bal is_ord_r_bal set_of_insrt
    linorder_not_less order_neq_le_trans Let_def)


subsection \<open>Step 2: Binary and AVL trees with height information\<close>

datatype 'a tree = ET |  MKT 'a "'a tree" "'a tree" nat


subsubsection \<open>Auxiliary functions\<close>

primrec erase :: "'a tree \<Rightarrow> 'a tree\<^sub>0" where
  "erase ET = ET\<^sub>0"
  | "erase (MKT x l r h) = MKT\<^sub>0 x (erase l) (erase r)"

primrec hinv :: "'a tree \<Rightarrow> bool" where
  "hinv ET \<longleftrightarrow> True"
  | "hinv (MKT x l r h) \<longleftrightarrow> h = 1 + max (height (erase l)) (height (erase r))
                        \<and> hinv l \<and> hinv r"

definition avl :: "'a tree \<Rightarrow> bool" where
  "avl t \<longleftrightarrow> is_bal (erase t) \<and> hinv t"


subsubsection \<open>AVL interface and efficient implementation\<close>

primrec is_in :: "('a::preorder) \<Rightarrow> 'a tree \<Rightarrow> bool" where
  "is_in k ET \<longleftrightarrow> False"
  | "is_in k (MKT n l r h) \<longleftrightarrow> (if k = n then True else
                            if k < n then (is_in k l)
                            else (is_in k r))"

primrec ht :: "'a tree \<Rightarrow> nat" where
  "ht ET = 0"
  | "ht (MKT x l r h) = h"

definition mkt :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
  "mkt x l r = MKT x l r (max (ht l) (ht r) + 1)"

primrec l_bal :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
  "l_bal n (MKT ln ll lr h) r =
   (if ht ll < ht lr
    then case lr of ET \<Rightarrow> ET \<comment> \<open>impossible\<close>
                  | MKT lrn lrl lrr lrh \<Rightarrow>
                    mkt lrn (mkt ln ll lrl) (mkt n lrr r)
    else mkt ln ll (mkt n lr r))"

primrec r_bal :: "'a \<Rightarrow> 'a tree \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
 "r_bal n l (MKT rn rl rr h) =
   (if ht rl > ht rr
    then case rl of ET \<Rightarrow> ET \<comment> \<open>impossible\<close>
                  | MKT rln rll rlr h \<Rightarrow> mkt rln (mkt n l rll) (mkt rn rlr rr)
    else mkt rn (mkt n l rl) rr)"

primrec insrt :: "'a::preorder \<Rightarrow> 'a tree \<Rightarrow> 'a tree" where
  "insrt x ET = MKT x ET ET 1"
  | "insrt x (MKT n l r h) = 
     (if x=n
      then MKT n l r h
      else if x<n
           then let l' = insrt x l; hl' = ht l'; hr = ht r
                in if hl' = 2+hr then l_bal n l' r
                   else MKT n l' r (1 + max hl' hr)
           else let r' = insrt x r; hl = ht l; hr' = ht r'
                in if hr' = 2+hl then r_bal n l r'
                   else MKT n l r' (1 + max hl hr'))"


subsubsection \<open>Correctness proof\<close>

text\<open>The auxiliary functions are implemented correctly:\<close>

lemma height_hinv: "hinv t \<Longrightarrow> ht t = height (erase t)"
  by (induct t) simp_all

lemma erase_mkt: "erase (mkt n l r) = MKT\<^sub>0 n (erase l) (erase r)"
  by (simp add: mkt_def)

lemma erase_l_bal:
 "hinv l \<Longrightarrow> hinv r \<Longrightarrow> height (erase l) = height(erase r) + 2 \<Longrightarrow>
  erase (l_bal n l r) = l_bal\<^sub>0 n (erase l) (erase r)"
  by (cases l) (simp_all add: height_hinv erase_mkt split: tree.split)

lemma erase_r_bal:
 "hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase r) = height(erase l) + 2 \<Longrightarrow>
  erase (r_bal n l r) = r_bal\<^sub>0 n (erase l) (erase r)"
  by (cases r) (simp_all add: height_hinv erase_mkt split: tree.split)

text \<open>Function @{const insrt} maintains the invariant:\<close>

lemma hinv_mkt: "hinv l \<Longrightarrow> hinv r \<Longrightarrow> hinv (mkt x l r)"
  by (simp add: height_hinv mkt_def)

lemma hinv_l_bal:
 "hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase l) = height(erase r) + 2 \<Longrightarrow>
  hinv (l_bal n l r)"
  by (cases l) (auto simp add: hinv_mkt split: tree.splits)

lemma hinv_r_bal:
 "hinv l \<Longrightarrow> hinv r \<Longrightarrow> height(erase r) = height(erase l) + 2 \<Longrightarrow>
  hinv (r_bal n l r)"
  by (cases r) (auto simp add: hinv_mkt split: tree.splits)

theorem hinv_insrt: "hinv t \<Longrightarrow> hinv (insrt x t)"
  by (induct t) (simp_all add: Let_def height_hinv hinv_l_bal hinv_r_bal)


text\<open>Function @{const insrt} implements @{const insrt\<^sub>0}:\<close>
lemma erase_insrt: "hinv t \<Longrightarrow> erase (insrt x t) = insrt\<^sub>0 x (erase t)"
  by (induct t) (simp_all add: Let_def hinv_insrt height_hinv erase_l_bal erase_r_bal)

text\<open>Function @{const insrt} meets its spec:\<close>

corollary "avl t \<Longrightarrow> set_of (erase (insrt x t)) = insert x (set_of (erase t))"
  by (simp add: avl_def erase_insrt set_of_insrt)

text\<open>Function @{const insrt} preserves the invariants:\<close>

corollary "avl t \<Longrightarrow> avl (insrt x t)"
  by (simp add: hinv_insrt avl_def erase_insrt is_bal_insrt)

corollary
  "avl t \<Longrightarrow> is_ord (erase t) \<Longrightarrow> is_ord (erase (insrt (x::'a::linorder) t))"
  by (simp add: avl_def erase_insrt is_ord_insrt)

text\<open>Function @{const is_in} implements @{const is_in}:\<close>

theorem is_in: "is_in x t = is_in\<^sub>0 x (erase t)"
  by (induct t) simp_all

text\<open>Function @{const is_in} meets its spec:\<close>

corollary "is_ord (erase t) \<Longrightarrow> is_in x t \<longleftrightarrow> x \<in> set_of (erase t)"
  by (simp add:is_in is_in_correct)

end