Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 35,531 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 |
(* Title: Fresher.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke, Inria
*)
section "Quality relations between routes"
theory Fresher
imports Aodv_Data
begin
subsection "Net sequence numbers"
subsubsection "On individual routes"
definition
nsqn\<^sub>r :: "r \<Rightarrow> sqn"
where
"nsqn\<^sub>r r \<equiv> if \<pi>\<^sub>4(r) = val \<or> \<pi>\<^sub>2(r) = 0 then \<pi>\<^sub>2(r) else (\<pi>\<^sub>2(r) - 1)"
lemma nsqnr_def':
"nsqn\<^sub>r r = (if \<pi>\<^sub>4(r) = inv then \<pi>\<^sub>2(r) - 1 else \<pi>\<^sub>2(r))"
unfolding nsqn\<^sub>r_def by simp
lemma nsqn\<^sub>r_zero [simp]:
"\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (0, dsk, flag, hops, nhip, pre) = 0"
unfolding nsqn\<^sub>r_def by clarsimp
lemma nsqn\<^sub>r_val [simp]:
"\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre) = dsn"
unfolding nsqn\<^sub>r_def by clarsimp
lemma nsqn\<^sub>r_inv [simp]:
"\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre) = dsn - 1"
unfolding nsqn\<^sub>r_def by clarsimp
lemma nsqn\<^sub>r_lte_dsn [simp]:
"\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre) \<le> dsn"
unfolding nsqn\<^sub>r_def by clarsimp
subsubsection "On routes in routing tables"
definition
nsqn :: "rt \<Rightarrow> ip \<Rightarrow> sqn"
where
"nsqn \<equiv> \<lambda>rt dip. case \<sigma>\<^bsub>route\<^esub>(rt, dip) of None \<Rightarrow> 0 | Some r \<Rightarrow> nsqn\<^sub>r(r)"
lemma nsqn_sqn_def:
"\<And>rt dip. nsqn rt dip = (if flag rt dip = Some val \<or> sqn rt dip = 0
then sqn rt dip else sqn rt dip - 1)"
unfolding nsqn_def sqn_def by (clarsimp split: option.split)
lemma not_in_kD_nsqn [simp]:
assumes "dip \<notin> kD(rt)"
shows "nsqn rt dip = 0"
using assms unfolding nsqn_def by simp
lemma kD_nsqn:
assumes "dip \<in> kD(rt)"
shows "nsqn rt dip = nsqn\<^sub>r(the (\<sigma>\<^bsub>route\<^esub>(rt, dip)))"
using assms [THEN kD_Some] unfolding nsqn_def by clarsimp
lemma nsqnr_r_flag_pred [simp, intro]:
fixes dsn dsk flag hops nhip pre
assumes "P (nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre))"
and "P (nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre))"
shows "P (nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre))"
using assms by (cases flag) auto
lemma nsqn\<^sub>r_addpreRT_inv [simp]:
"\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow>
nsqn\<^sub>r (the (the (addpreRT rt dip npre) dip')) = nsqn\<^sub>r (the (rt dip'))"
unfolding addpreRT_def nsqn\<^sub>r_def
by (frule kD_Some) (clarsimp split: option.split)
lemma sqn_nsqn:
"\<And>rt dip. sqn rt dip - 1 \<le> nsqn rt dip"
unfolding sqn_def nsqn_def by (clarsimp split: option.split)
lemma nsqn_sqn: "nsqn rt dip \<le> sqn rt dip"
unfolding sqn_def nsqn_def by (cases "rt dip") auto
lemma val_nsqn_sqn [elim, simp]:
assumes "ip\<in>kD(rt)"
and "the (flag rt ip) = val"
shows "nsqn rt ip = sqn rt ip"
using assms unfolding nsqn_sqn_def by auto
lemma vD_nsqn_sqn [elim, simp]:
assumes "ip\<in>vD(rt)"
shows "nsqn rt ip = sqn rt ip"
proof -
from \<open>ip\<in>vD(rt)\<close> have "ip\<in>kD(rt)"
and "the (flag rt ip) = val" by auto
thus ?thesis ..
qed
lemma inv_nsqn_sqn [elim, simp]:
assumes "ip\<in>kD(rt)"
and "the (flag rt ip) = inv"
shows "nsqn rt ip = sqn rt ip - 1"
using assms unfolding nsqn_sqn_def by auto
lemma iD_nsqn_sqn [elim, simp]:
assumes "ip\<in>iD(rt)"
shows "nsqn rt ip = sqn rt ip - 1"
proof -
from \<open>ip\<in>iD(rt)\<close> have "ip\<in>kD(rt)"
and "the (flag rt ip) = inv" by auto
thus ?thesis ..
qed
lemma nsqn_update_changed_kno_val [simp]: "\<And>rt ip dsn dsk hops nhip.
rt \<noteq> update rt ip (dsn, kno, val, hops, nhip, {})
\<Longrightarrow> nsqn (update rt ip (dsn, kno, val, hops, nhip, {})) ip = dsn"
unfolding nsqn\<^sub>r_def update_def
by (clarsimp simp: kD_nsqn split: option.split_asm option.split if_split_asm)
(metis fun_upd_triv)
lemma nsqn_addpreRT_inv [simp]:
"\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow>
nsqn (the (addpreRT rt dip npre)) dip' = nsqn rt dip'"
unfolding addpreRT_def nsqn_def nsqn\<^sub>r_def
by (frule kD_Some) (clarsimp split: option.split)
lemma nsqn_update_other [simp]:
fixes dsn dsk flag hops dip nhip pre rt ip
assumes "dip \<noteq> ip"
shows "nsqn (update rt ip (dsn, dsk, flag, hops, nhip, pre)) dip = nsqn rt dip"
using assms unfolding nsqn_def
by (clarsimp split: option.split)
lemma nsqn_invalidate_eq:
assumes "dip \<in> kD(rt)"
and "dests dip = Some rsn"
shows "nsqn (invalidate rt dests) dip = rsn - 1"
using assms
proof -
from assms obtain dsk hops nhip pre
where "invalidate rt dests dip = Some (rsn, dsk, inv, hops, nhip, pre)"
unfolding invalidate_def by auto
moreover from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp
ultimately show ?thesis
using \<open>dests dip = Some rsn\<close> by simp
qed
lemma nsqn_invalidate_other [simp]:
assumes "dip\<in>kD(rt)"
and "dip\<notin>dom dests"
shows "nsqn (invalidate rt dests) dip = nsqn rt dip"
using assms by (clarsimp simp add: kD_nsqn)
subsection "Comparing routes "
definition
fresher :: "r \<Rightarrow> r \<Rightarrow> bool" ("(_/ \<sqsubseteq> _)" [51, 51] 50)
where
"fresher r r' \<equiv> ((nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')))"
lemma fresherI1 [intro]:
assumes "nsqn\<^sub>r r < nsqn\<^sub>r r'"
shows "r \<sqsubseteq> r'"
unfolding fresher_def using assms by simp
lemma fresherI2 [intro]:
assumes "nsqn\<^sub>r r = nsqn\<^sub>r r'"
and "\<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')"
shows "r \<sqsubseteq> r'"
unfolding fresher_def using assms by simp
lemma fresherI [intro]:
assumes "(nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r'))"
shows "r \<sqsubseteq> r'"
unfolding fresher_def using assms .
lemma fresherE [elim]:
assumes "r \<sqsubseteq> r'"
and "nsqn\<^sub>r r < nsqn\<^sub>r r' \<Longrightarrow> P r r'"
and "nsqn\<^sub>r r = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r') \<Longrightarrow> P r r'"
shows "P r r'"
using assms unfolding fresher_def by auto
lemma fresher_refl [simp]: "r \<sqsubseteq> r"
unfolding fresher_def by simp
lemma fresher_trans [elim, trans]:
"\<lbrakk> x \<sqsubseteq> y; y \<sqsubseteq> z \<rbrakk> \<Longrightarrow> x \<sqsubseteq> z"
unfolding fresher_def by auto
lemma not_fresher_trans [elim, trans]:
"\<lbrakk> \<not>(x \<sqsubseteq> y); \<not>(z \<sqsubseteq> x) \<rbrakk> \<Longrightarrow> \<not>(z \<sqsubseteq> y)"
unfolding fresher_def by auto
lemma fresher_dsn_flag_hops_const [simp]:
fixes dsn dsk dsk' flag hops nhip nhip' pre pre'
shows "(dsn, dsk, flag, hops, nhip, pre) \<sqsubseteq> (dsn, dsk', flag, hops, nhip', pre')"
unfolding fresher_def by (cases flag) simp_all
lemma addpre_fresher [simp]: "\<And>r npre. r \<sqsubseteq> (addpre r npre)"
by clarsimp
subsection "Comparing routing tables "
definition
rt_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
where
"rt_fresher \<equiv> \<lambda>dip rt rt'. (the (\<sigma>\<^bsub>route\<^esub>(rt, dip))) \<sqsubseteq> (the (\<sigma>\<^bsub>route\<^esub>(rt', dip)))"
abbreviation
rt_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubseteq>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
where
"rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresher i rt1 rt2"
lemma rt_fresher_def':
"(rt\<^sub>1 \<sqsubseteq>\<^bsub>i\<^esub> rt\<^sub>2) = (nsqn\<^sub>r (the (rt\<^sub>1 i)) < nsqn\<^sub>r (the (rt\<^sub>2 i)) \<or>
nsqn\<^sub>r (the (rt\<^sub>1 i)) = nsqn\<^sub>r (the (rt\<^sub>2 i)) \<and> \<pi>\<^sub>5 (the (rt\<^sub>2 i)) \<le> \<pi>\<^sub>5 (the (rt\<^sub>1 i)))"
unfolding rt_fresher_def fresher_def by (rule refl)
lemma single_rt_fresher [intro]:
assumes "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
shows "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
using assms unfolding rt_fresher_def .
lemma rt_fresher_single [intro]:
assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
shows "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
using assms unfolding rt_fresher_def .
lemma rt_fresher_def2:
assumes "dip \<in> kD(rt1)"
and "dip \<in> kD(rt2)"
shows "(rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) = (nsqn rt1 dip < nsqn rt2 dip
\<or> (nsqn rt1 dip = nsqn rt2 dip
\<and> the (dhops rt1 dip) \<ge> the (dhops rt2 dip)))"
using assms unfolding rt_fresher_def fresher_def by (simp add: kD_nsqn proj5_eq_dhops)
lemma rt_fresherI1 [intro]:
assumes "dip \<in> kD(rt1)"
and "dip \<in> kD(rt2)"
and "nsqn rt1 dip < nsqn rt2 dip"
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3) by simp
lemma rt_fresherI2 [intro]:
assumes "dip \<in> kD(rt1)"
and "dip \<in> kD(rt2)"
and "nsqn rt1 dip = nsqn rt2 dip"
and "the (dhops rt1 dip) \<ge> the (dhops rt2 dip)"
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3-4) by simp
lemma rt_fresherE [elim]:
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
and "dip \<in> kD(rt1)"
and "dip \<in> kD(rt2)"
and "\<lbrakk> nsqn rt1 dip < nsqn rt2 dip \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
and "\<lbrakk> nsqn rt1 dip = nsqn rt2 dip;
the (dhops rt1 dip) \<ge> the (dhops rt2 dip) \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
shows "P rt1 rt2 dip"
using assms(1) unfolding rt_fresher_def2 [OF assms(2-3)]
using assms(4-5) by auto
lemma rt_fresher_refl [simp]: "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt"
unfolding rt_fresher_def by simp
lemma rt_fresher_trans [elim, trans]:
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
using assms unfolding rt_fresher_def by auto
lemma rt_fresher_if_Some [intro!]:
assumes "the (rt dip) \<sqsubseteq> r"
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> (\<lambda>ip. if ip = dip then Some r else rt ip)"
using assms unfolding rt_fresher_def by simp
definition rt_fresh_as :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
where
"rt_fresh_as \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
abbreviation
rt_fresh_as_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<approx>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
where
"rt1 \<approx>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresh_as i rt1 rt2"
lemma rt_fresh_as_refl [simp]: "\<And>rt dip. rt \<approx>\<^bsub>dip\<^esub> rt"
unfolding rt_fresh_as_def by simp
lemma rt_fresh_as_trans [simp, intro, trans]:
"\<And>rt1 rt2 rt3 dip. \<lbrakk> rt1 \<approx>\<^bsub>dip\<^esub> rt2; rt2 \<approx>\<^bsub>dip\<^esub> rt3 \<rbrakk> \<Longrightarrow> rt1 \<approx>\<^bsub>dip\<^esub> rt3"
unfolding rt_fresh_as_def rt_fresher_def
by (metis (mono_tags) fresher_trans)
lemma rt_fresh_asI [intro!]:
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
using assms unfolding rt_fresh_as_def by simp
lemma rt_fresh_as_fresherI [intro]:
assumes "dip\<in>kD(rt1)"
and "dip\<in>kD(rt2)"
and "the (rt1 dip) \<sqsubseteq> the (rt2 dip)"
and "the (rt2 dip) \<sqsubseteq> the (rt1 dip)"
shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
using assms unfolding rt_fresh_as_def
by (clarsimp dest!: single_rt_fresher)
lemma nsqn_rt_fresh_asI:
assumes "dip \<in> kD(rt)"
and "dip \<in> kD(rt')"
and "nsqn rt dip = nsqn rt' dip"
and "\<pi>\<^sub>5(the (rt dip)) = \<pi>\<^sub>5(the (rt' dip))"
shows "rt \<approx>\<^bsub>dip\<^esub> rt'"
proof
from assms(1-2,4) have dhops': "the (dhops rt' dip) \<le> the (dhops rt dip)"
by (simp add: proj5_eq_dhops)
with assms(1-3) show "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt'"
by (rule rt_fresherI2)
next
from assms(1-2,4) have dhops: "the (dhops rt dip) \<le> the (dhops rt' dip)"
by (simp add: proj5_eq_dhops)
with assms(2,1) assms(3) [symmetric] show "rt' \<sqsubseteq>\<^bsub>dip\<^esub> rt"
by (rule rt_fresherI2)
qed
lemma rt_fresh_asE [elim]:
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2; rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1 \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
shows "P rt1 rt2 dip"
using assms unfolding rt_fresh_as_def by simp
lemma rt_fresh_asD1 [dest]:
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
using assms unfolding rt_fresh_as_def by simp
lemma rt_fresh_asD2 [dest]:
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
shows "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
using assms unfolding rt_fresh_as_def by simp
lemma rt_fresh_as_sym:
assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
shows "rt2 \<approx>\<^bsub>dip\<^esub> rt1"
using assms unfolding rt_fresh_as_def by simp
lemma not_rt_fresh_asI1 [intro]:
assumes "\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)"
shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
proof
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
hence "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" ..
with \<open>\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> show False ..
qed
lemma not_rt_fresh_asI2 [intro]:
assumes "\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
proof
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
with \<open>\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> show False ..
qed
lemma not_single_rt_fresher [elim]:
assumes "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))"
shows "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)"
proof
assume "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
hence "the (rt1 ip) \<sqsubseteq> the (rt2 ip)" ..
with \<open>\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))\<close> show False ..
qed
lemmas not_single_rt_fresh_asI1 [intro] = not_rt_fresh_asI1 [OF not_single_rt_fresher]
lemmas not_single_rt_fresh_asI2 [intro] = not_rt_fresh_asI2 [OF not_single_rt_fresher]
lemma not_rt_fresher_single [elim]:
assumes "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)"
shows "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))"
proof
assume "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
hence "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2" ..
with \<open>\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)\<close> show False ..
qed
lemma rt_fresh_as_nsqnr:
assumes "dip \<in> kD(rt1)"
and "dip \<in> kD(rt2)"
and "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
shows "nsqn\<^sub>r (the (rt2 dip)) = nsqn\<^sub>r (the (rt1 dip))"
using assms(3) unfolding rt_fresh_as_def
by (auto simp: rt_fresher_def2 [OF \<open>dip \<in> kD(rt1)\<close> \<open>dip \<in> kD(rt2)\<close>]
rt_fresher_def2 [OF \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close>]
kD_nsqn [OF \<open>dip \<in> kD(rt1)\<close>]
kD_nsqn [OF \<open>dip \<in> kD(rt2)\<close>])
lemma rt_fresher_mapupd [intro!]:
assumes "dip\<in>kD(rt)"
and "the (rt dip) \<sqsubseteq> r"
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(dip \<mapsto> r)"
using assms unfolding rt_fresher_def by simp
lemma rt_fresher_map_update_other [intro!]:
assumes "dip\<in>kD(rt)"
and "dip \<noteq> ip"
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(ip \<mapsto> r)"
using assms unfolding rt_fresher_def by simp
lemma rt_fresher_update_other [simp]:
assumes inkD: "dip\<in>kD(rt)"
and "dip \<noteq> ip"
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r"
using assms unfolding update_def
by (clarsimp split: option.split) (fastforce)
theorem rt_fresher_update [simp]:
assumes "dip\<in>kD(rt)"
and "the (dhops rt dip) \<ge> 1"
and "update_arg_wf r"
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r"
proof (cases "dip = ip")
assume "dip \<noteq> ip" with \<open>dip\<in>kD(rt)\<close> show ?thesis
by (rule rt_fresher_update_other)
next
assume "dip = ip"
from \<open>dip\<in>kD(rt)\<close> obtain dsn\<^sub>n dsk\<^sub>n f\<^sub>n hops\<^sub>n nhip\<^sub>n pre\<^sub>n
where rtn [simp]: "the (rt dip) = (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)"
by (metis prod_cases6)
with \<open>the (dhops rt dip) \<ge> 1\<close> and \<open>dip\<in>kD(rt)\<close> have "hops\<^sub>n \<ge> 1"
by (metis proj5_eq_dhops projs(4))
from \<open>dip\<in>kD(rt)\<close> rtn have [simp]: "sqn rt dip = dsn\<^sub>n"
and [simp]: "the (dhops rt dip) = hops\<^sub>n"
and [simp]: "the (flag rt dip) = f\<^sub>n"
by (simp add: sqn_def proj5_eq_dhops [symmetric]
proj4_eq_flag [symmetric])+
from \<open>update_arg_wf r\<close> have "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
\<sqsubseteq> the ((update rt dip r) dip)"
proof (rule wf_r_cases)
fix nhip pre
from \<open>hops\<^sub>n \<ge> 1\<close> have "\<And>pre'. (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
\<sqsubseteq> (dsn\<^sub>n, unk, val, Suc 0, nhip, pre')"
unfolding fresher_def sqn_def by (cases f\<^sub>n) auto
thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
\<sqsubseteq> the (update rt dip (0, unk, val, Suc 0, nhip, pre) dip)"
using \<open>dip\<in>kD(rt)\<close> by - (rule update_cases_kD, simp_all)
next
fix dsn :: sqn and hops nhip pre
assume "0 < dsn"
show "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
\<sqsubseteq> the (update rt dip (dsn, kno, val, hops, nhip, pre) dip)"
proof (rule update_cases_kD [OF _ \<open>dip\<in>kD(rt)\<close>], simp_all add: \<open>0 < dsn\<close>)
assume "dsn\<^sub>n < dsn"
thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
unfolding fresher_def by auto
next
assume "dsn\<^sub>n = dsn"
and "hops < hops\<^sub>n"
thus "(dsn, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
unfolding fresher_def nsqn\<^sub>r_def by simp
next
assume "dsn\<^sub>n = dsn"
with \<open>0 < dsn\<close>
show "(dsn, dsk\<^sub>n, inv, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
\<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
unfolding fresher_def by simp
qed
qed
hence "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt dip r"
by - (rule single_rt_fresher, simp)
with \<open>dip = ip\<close> show ?thesis by simp
qed
theorem rt_fresher_invalidate [simp]:
assumes "dip\<in>kD(rt)"
and indests: "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> sqn rt rip < the (dests rip)"
shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> invalidate rt dests"
proof (cases "dip\<in>dom(dests)")
assume "dip\<notin>dom(dests)"
thus ?thesis using \<open>dip\<in>kD(rt)\<close>
by - (rule single_rt_fresher, simp)
next
assume "dip\<in>dom(dests)"
moreover with indests have "dip\<in>vD(rt)"
and "sqn rt dip < the (dests dip)"
by auto
ultimately show ?thesis
unfolding invalidate_def sqn_def
by - (rule single_rt_fresher, auto simp: fresher_def)
qed
lemma nsqn\<^sub>r_invalidate [simp]:
assumes "dip\<in>kD(rt)"
and "dip\<in>dom(dests)"
shows "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1"
using assms unfolding invalidate_def by auto
lemma rt_fresh_as_inc_invalidate [simp]:
assumes "dip\<in>kD(rt)"
and "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> the (dests rip) = inc (sqn rt rip)"
shows "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests"
proof (cases "dip\<in>dom(dests)")
assume "dip\<notin>dom(dests)"
with \<open>dip\<in>kD(rt)\<close> have "dip\<in>kD(invalidate rt dests)"
by simp
with \<open>dip\<in>kD(rt)\<close> show ?thesis
by rule (simp_all add: \<open>dip\<notin>dom(dests)\<close>)
next
assume "dip\<in>dom(dests)"
with assms(2) have "dip\<in>vD(rt)"
and "the (dests dip) = inc (sqn rt dip)" by auto
from \<open>dip\<in>vD(rt)\<close> have "dip\<in>kD(rt)" by simp
moreover then have "dip\<in>kD(invalidate rt dests)" by simp
ultimately show ?thesis
proof (rule nsqn_rt_fresh_asI)
from \<open>dip\<in>vD(rt)\<close> have "nsqn rt dip = sqn rt dip" by simp
also have "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))"
proof -
from \<open>dip\<in>kD(rt)\<close> have "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1"
using \<open>dip\<in>dom(dests)\<close> by (rule nsqn\<^sub>r_invalidate)
with \<open>the (dests dip) = inc (sqn rt dip)\<close>
show "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))" by simp
qed
also from \<open>dip\<in>kD(invalidate rt dests)\<close>
have "nsqn\<^sub>r (the (invalidate rt dests dip)) = nsqn (invalidate rt dests) dip"
by (simp add: kD_nsqn)
finally show "nsqn rt dip = nsqn (invalidate rt dests) dip" .
qed simp
qed
lemmas rt_fresher_inc_invalidate [simp] = rt_fresh_as_inc_invalidate [THEN rt_fresh_asD1]
lemma rt_fresh_as_addpreRT [simp]:
assumes "ip\<in>kD(rt)"
shows "rt \<approx>\<^bsub>dip\<^esub> the (addpreRT rt ip npre)"
using assms [THEN kD_Some] by (auto simp: addpreRT_def)
lemmas rt_fresher_addpreRT [simp] = rt_fresh_as_addpreRT [THEN rt_fresh_asD1]
subsection "Strictly comparing routing tables "
definition rt_strictly_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
where
"rt_strictly_fresher \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> \<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
abbreviation
rt_strictly_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubset>\<^bsub>_\<^esub> _)" [51, 999, 51] 50)
where
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 \<equiv> rt_strictly_fresher i rt1 rt2"
lemma rt_strictly_fresher_def'':
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 = ((rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2) \<and> \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1))"
unfolding rt_strictly_fresher_def rt_fresh_as_def by auto
lemma rt_strictly_fresherI' [intro]:
assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2"
and "\<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1)"
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
using assms unfolding rt_strictly_fresher_def'' by simp
lemma rt_strictly_fresherE' [elim]:
assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1) \<rbrakk> \<Longrightarrow> P rt1 rt2 i"
shows "P rt1 rt2 i"
using assms unfolding rt_strictly_fresher_def'' by simp
lemma rt_strictly_fresherI [intro]:
assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2"
and "\<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2)"
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
unfolding rt_strictly_fresher_def using assms ..
lemmas rt_strictly_fresher_singleI [elim] = rt_strictly_fresherI [OF single_rt_fresher]
lemma rt_strictly_fresherE [elim]:
assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2) \<rbrakk> \<Longrightarrow> P rt1 rt2 i"
shows "P rt1 rt2 i"
using assms(1) unfolding rt_strictly_fresher_def
by rule (erule(1) assms(2))
lemma rt_strictly_fresher_def':
"rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 =
(nsqn\<^sub>r (the (rt1 i)) < nsqn\<^sub>r (the (rt2 i))
\<or> (nsqn\<^sub>r (the (rt1 i)) = nsqn\<^sub>r (the (rt2 i)) \<and> \<pi>\<^sub>5(the (rt1 i)) > \<pi>\<^sub>5(the (rt2 i))))"
unfolding rt_strictly_fresher_def'' rt_fresher_def fresher_def by auto
lemma rt_strictly_fresher_fresherD [dest]:
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
shows "the (rt1 dip) \<sqsubseteq> the (rt2 dip)"
using assms unfolding rt_strictly_fresher_def rt_fresher_def by auto
lemma rt_strictly_fresher_not_fresh_asD [dest]:
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
shows "\<not> rt1 \<approx>\<^bsub>dip\<^esub> rt2"
using assms unfolding rt_strictly_fresher_def by auto
lemma rt_strictly_fresher_trans [elim, trans]:
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3"
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
using assms proof -
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "the (rt1 dip) \<sqsubseteq> the (rt2 dip)" by auto
also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "the (rt2 dip) \<sqsubseteq> the (rt3 dip)" by auto
finally have "the (rt1 dip) \<sqsubseteq> the (rt3 dip)" .
moreover have "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt3)"
proof -
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "\<not>(the (rt2 dip) \<sqsubseteq> the (rt1 dip))" by auto
also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "\<not>(the (rt3 dip) \<sqsubseteq> the (rt2 dip))" by auto
finally have "\<not>(the (rt3 dip) \<sqsubseteq> the (rt1 dip))" .
thus ?thesis ..
qed
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3" ..
qed
lemma rt_strictly_fresher_irefl [simp]: "\<not> (rt \<sqsubset>\<^bsub>dip\<^esub> rt)"
unfolding rt_strictly_fresher_def
by clarsimp
lemma rt_fresher_trans_rt_strictly_fresher [elim, trans]:
assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
proof -
from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
and "\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
unfolding rt_strictly_fresher_def'' by auto
from this(1) and \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" ..
moreover from \<open>\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
proof (rule contrapos_nn)
assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
with \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> show "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
qed
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
unfolding rt_strictly_fresher_def'' by auto
qed
lemma rt_fresher_trans_rt_strictly_fresher' [elim, trans]:
assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3"
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
proof -
from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> have "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
and "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)"
unfolding rt_strictly_fresher_def'' by auto
from \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> and this(1) have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" ..
moreover from \<open>\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
proof (rule contrapos_nn)
assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
thus "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" using \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> ..
qed
ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
unfolding rt_strictly_fresher_def'' by auto
qed
lemma rt_fresher_imp_nsqn_le:
assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
and "ip \<in> kD rt1"
and "ip \<in> kD rt2"
shows "nsqn rt1 ip \<le> nsqn rt2 ip"
using assms(1)
by (auto simp add: rt_fresher_def2 [OF assms(2-3)])
lemma rt_strictly_fresher_ltI [intro]:
assumes "dip \<in> kD(rt1)"
and "dip \<in> kD(rt2)"
and "nsqn rt1 dip < nsqn rt2 dip"
shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
proof
from assms show "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" ..
next
show "\<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
proof
assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
hence "nsqn rt2 dip \<le> nsqn rt1 dip"
using \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close>
by (rule rt_fresher_imp_nsqn_le)
with \<open>nsqn rt1 dip < nsqn rt2 dip\<close> show "False"
by simp
qed
qed
lemma rt_strictly_fresher_eqI [intro]:
assumes "i\<in>kD(rt1)"
and "i\<in>kD(rt2)"
and "nsqn rt1 i = nsqn rt2 i"
and "\<pi>\<^sub>5(the (rt2 i)) < \<pi>\<^sub>5(the (rt1 i))"
shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
using assms unfolding rt_strictly_fresher_def' by (auto simp add: kD_nsqn)
lemma invalidate_rtsf_left [simp]:
"\<And>dests dip rt rt'. dests dip = None \<Longrightarrow> (invalidate rt dests \<sqsubset>\<^bsub>dip\<^esub> rt') = (rt \<sqsubset>\<^bsub>dip\<^esub> rt')"
unfolding invalidate_def rt_strictly_fresher_def'
by (rule iffI) (auto split: option.split_asm)
lemma vD_invalidate_rt_strictly_fresher [simp]:
assumes "dip \<in> vD(invalidate rt1 dests)"
shows "(invalidate rt1 dests \<sqsubset>\<^bsub>dip\<^esub> rt2) = (rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2)"
proof (cases "dip \<in> dom(dests)")
assume "dip \<in> dom(dests)"
hence "dip \<notin> vD(invalidate rt1 dests)"
unfolding invalidate_def vD_def
by clarsimp (metis assms option.simps(3) vD_invalidate_vD_not_dests)
with \<open>dip \<in> vD(invalidate rt1 dests)\<close> show ?thesis by simp
next
assume "dip \<notin> dom(dests)"
hence "dests dip = None" by auto
moreover with \<open>dip \<in> vD(invalidate rt1 dests)\<close> have "dip \<in> vD(rt1)"
unfolding invalidate_def vD_def
by clarsimp (metis (opaque_lifting, no_types) assms vD_Some vD_invalidate_vD_not_dests)
ultimately show ?thesis
unfolding invalidate_def rt_strictly_fresher_def' by auto
qed
lemma rt_strictly_fresher_update_other [elim!]:
"\<And>dip ip rt r rt'. \<lbrakk> dip \<noteq> ip; rt \<sqsubset>\<^bsub>dip\<^esub> rt' \<rbrakk> \<Longrightarrow> update rt ip r \<sqsubset>\<^bsub>dip\<^esub> rt'"
unfolding rt_strictly_fresher_def' by clarsimp
lemma addpreRT_strictly_fresher [simp]:
assumes "dip \<in> kD(rt)"
shows "(the (addpreRT rt dip npre) \<sqsubset>\<^bsub>ip\<^esub> rt2) = (rt \<sqsubset>\<^bsub>ip\<^esub> rt2)"
using assms unfolding rt_strictly_fresher_def' by clarsimp
lemma lt_sqn_imp_update_strictly_fresher:
assumes "dip \<in> vD (rt2 nhip)"
and *: "osn < sqn (rt2 nhip) dip"
and **: "rt \<noteq> update rt dip (osn, kno, val, hops, nhip, {})"
shows "update rt dip (osn, kno, val, hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip"
unfolding rt_strictly_fresher_def'
proof (rule disjI1)
from ** have "nsqn (update rt dip (osn, kno, val, hops, nhip, {})) dip = osn"
by (rule nsqn_update_changed_kno_val)
with \<open>dip\<in>vD(rt2 nhip)\<close>
have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip)) = osn"
by (simp add: kD_nsqn)
also have "osn < sqn (rt2 nhip) dip" by (rule *)
also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))"
unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD (rt2 nhip)\<close>
by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1))
finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip))
< nsqn\<^sub>r (the (rt2 nhip dip))" .
qed
lemma dhops_le_hops_imp_update_strictly_fresher:
assumes "dip \<in> vD(rt2 nhip)"
and sqn: "sqn (rt2 nhip) dip = osn"
and hop: "the (dhops (rt2 nhip) dip) \<le> hops"
and **: "rt \<noteq> update rt dip (osn, kno, val, Suc hops, nhip, {})"
shows "update rt dip (osn, kno, val, Suc hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip"
unfolding rt_strictly_fresher_def'
proof (rule disjI2, rule conjI)
from ** have "nsqn (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip = osn"
by (rule nsqn_update_changed_kno_val)
with \<open>dip\<in>vD(rt2 nhip)\<close>
have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip)) = osn"
by (simp add: kD_nsqn)
also have "osn = sqn (rt2 nhip) dip" by (rule sqn [symmetric])
also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))"
unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD(rt2 nhip)\<close>
by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1))
finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip))
= nsqn\<^sub>r (the (rt2 nhip dip))" .
next
have "the (dhops (rt2 nhip) dip) \<le> hops" by (rule hop)
also have "hops < hops + 1" by simp
also have "hops + 1 = the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)"
using ** by simp
finally have "the (dhops (rt2 nhip) dip)
< the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)" .
thus "\<pi>\<^sub>5 (the (rt2 nhip dip)) < \<pi>\<^sub>5 (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip))"
using \<open>dip \<in> vD(rt2 nhip)\<close> by (simp add: proj5_eq_dhops)
qed
lemma nsqn_invalidate:
assumes "dip \<in> kD(rt)"
and "\<forall>ip\<in>dom(dests). ip \<in> vD(rt) \<and> the (dests ip) = inc (sqn rt ip)"
shows "nsqn (invalidate rt dests) dip = nsqn rt dip"
proof -
from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp
from assms have "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests"
by (rule rt_fresh_as_inc_invalidate)
with \<open>dip \<in> kD(rt)\<close> \<open>dip \<in> kD(invalidate rt dests)\<close> show ?thesis
by (simp add: kD_nsqn del: invalidate_kD_inv)
(erule(2) rt_fresh_as_nsqnr)
qed
end
|