Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 35,531 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
(*  Title:       Fresher.thy
    License:     BSD 2-Clause. See LICENSE.
    Author:      Timothy Bourke, Inria
*)

section "Quality relations between routes"

theory Fresher
imports Aodv_Data
begin

subsection "Net sequence numbers"

subsubsection "On individual routes"

definition
  nsqn\<^sub>r :: "r \<Rightarrow> sqn"
where
  "nsqn\<^sub>r r \<equiv> if \<pi>\<^sub>4(r) = val \<or> \<pi>\<^sub>2(r) = 0 then \<pi>\<^sub>2(r) else (\<pi>\<^sub>2(r) - 1)"

lemma nsqnr_def':
  "nsqn\<^sub>r r = (if \<pi>\<^sub>4(r) = inv then \<pi>\<^sub>2(r) - 1 else \<pi>\<^sub>2(r))"
  unfolding nsqn\<^sub>r_def by simp

lemma nsqn\<^sub>r_zero [simp]:
  "\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (0, dsk, flag, hops, nhip, pre) = 0"
  unfolding nsqn\<^sub>r_def by clarsimp

lemma nsqn\<^sub>r_val [simp]:
  "\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre) = dsn"
  unfolding nsqn\<^sub>r_def by clarsimp

lemma nsqn\<^sub>r_inv [simp]:
  "\<And>dsn dsk hops nhip pre. nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre) = dsn - 1"
  unfolding nsqn\<^sub>r_def by clarsimp

lemma nsqn\<^sub>r_lte_dsn [simp]:
  "\<And>dsn dsk flag hops nhip pre. nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre) \<le> dsn"
  unfolding nsqn\<^sub>r_def by clarsimp

subsubsection "On routes in routing tables"

definition
  nsqn :: "rt \<Rightarrow> ip \<Rightarrow> sqn"
where
  "nsqn \<equiv> \<lambda>rt dip. case \<sigma>\<^bsub>route\<^esub>(rt, dip) of None \<Rightarrow> 0 | Some r \<Rightarrow> nsqn\<^sub>r(r)"

lemma nsqn_sqn_def:
  "\<And>rt dip. nsqn rt dip = (if flag rt dip = Some val \<or> sqn rt dip = 0
                            then sqn rt dip else sqn rt dip - 1)"
  unfolding nsqn_def sqn_def by (clarsimp split: option.split)

lemma not_in_kD_nsqn [simp]:
  assumes "dip \<notin> kD(rt)"
  shows "nsqn rt dip = 0"
  using assms unfolding nsqn_def by simp

lemma kD_nsqn:
  assumes "dip \<in> kD(rt)"
    shows "nsqn rt dip = nsqn\<^sub>r(the (\<sigma>\<^bsub>route\<^esub>(rt, dip)))"
  using assms [THEN kD_Some] unfolding nsqn_def by clarsimp

lemma nsqnr_r_flag_pred [simp, intro]:
    fixes dsn dsk flag hops nhip pre
  assumes "P (nsqn\<^sub>r (dsn, dsk, val, hops, nhip, pre))"
      and "P (nsqn\<^sub>r (dsn, dsk, inv, hops, nhip, pre))"
    shows "P (nsqn\<^sub>r (dsn, dsk, flag, hops, nhip, pre))"
  using assms by (cases flag) auto

lemma nsqn\<^sub>r_addpreRT_inv [simp]:
  "\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow>
   nsqn\<^sub>r (the (the (addpreRT rt dip npre) dip')) = nsqn\<^sub>r (the (rt dip'))"
  unfolding addpreRT_def nsqn\<^sub>r_def
  by (frule kD_Some) (clarsimp split: option.split)

lemma sqn_nsqn:
  "\<And>rt dip. sqn rt dip - 1 \<le> nsqn rt dip"
  unfolding sqn_def nsqn_def by (clarsimp split: option.split)

lemma nsqn_sqn: "nsqn rt dip \<le> sqn rt dip"
  unfolding sqn_def nsqn_def by (cases "rt dip") auto

lemma val_nsqn_sqn [elim, simp]:
  assumes "ip\<in>kD(rt)"
      and "the (flag rt ip) = val"
    shows "nsqn rt ip = sqn rt ip"
  using assms unfolding nsqn_sqn_def by auto

lemma vD_nsqn_sqn [elim, simp]:
  assumes "ip\<in>vD(rt)"
    shows "nsqn rt ip = sqn rt ip"
  proof -
    from \<open>ip\<in>vD(rt)\<close> have "ip\<in>kD(rt)"
                      and "the (flag rt ip) = val" by auto
    thus ?thesis ..
  qed

lemma inv_nsqn_sqn [elim, simp]:
  assumes "ip\<in>kD(rt)"
      and "the (flag rt ip) = inv"
    shows "nsqn rt ip = sqn rt ip - 1"
  using assms unfolding nsqn_sqn_def by auto

lemma iD_nsqn_sqn [elim, simp]:
  assumes "ip\<in>iD(rt)"
    shows "nsqn rt ip = sqn rt ip - 1"
  proof -
    from \<open>ip\<in>iD(rt)\<close> have "ip\<in>kD(rt)"
                      and "the (flag rt ip) = inv" by auto
    thus ?thesis ..
  qed

lemma nsqn_update_changed_kno_val [simp]: "\<And>rt ip dsn dsk hops nhip.
  rt \<noteq> update rt ip (dsn, kno, val, hops, nhip, {})
   \<Longrightarrow> nsqn (update rt ip (dsn, kno, val, hops, nhip, {})) ip = dsn"
  unfolding nsqn\<^sub>r_def update_def
  by (clarsimp simp: kD_nsqn split: option.split_asm option.split if_split_asm)
     (metis fun_upd_triv)

lemma nsqn_addpreRT_inv [simp]:
  "\<And>rt dip npre dip'. dip \<in> kD(rt) \<Longrightarrow>
   nsqn (the (addpreRT rt dip npre)) dip' = nsqn rt dip'"
  unfolding addpreRT_def nsqn_def nsqn\<^sub>r_def
  by (frule kD_Some) (clarsimp split: option.split)

lemma nsqn_update_other [simp]:
    fixes dsn dsk flag hops dip nhip pre rt ip
  assumes "dip \<noteq> ip"
    shows "nsqn (update rt ip (dsn, dsk, flag, hops, nhip, pre)) dip = nsqn rt dip"
    using assms unfolding nsqn_def
    by (clarsimp split: option.split)

lemma nsqn_invalidate_eq:
  assumes "dip \<in> kD(rt)"
      and "dests dip = Some rsn"
    shows "nsqn (invalidate rt dests) dip = rsn - 1"
  using assms
  proof -
    from assms obtain dsk hops nhip pre
      where "invalidate rt dests dip = Some (rsn, dsk, inv, hops, nhip, pre)"
      unfolding invalidate_def by auto
    moreover from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp
    ultimately show ?thesis
      using \<open>dests dip = Some rsn\<close> by simp
  qed

lemma nsqn_invalidate_other [simp]:
  assumes "dip\<in>kD(rt)"
      and "dip\<notin>dom dests"
    shows "nsqn (invalidate rt dests) dip = nsqn rt dip"
  using assms by (clarsimp simp add: kD_nsqn)

subsection "Comparing routes "

definition
  fresher :: "r \<Rightarrow> r \<Rightarrow> bool" ("(_/ \<sqsubseteq> _)"  [51, 51] 50)
where
  "fresher r r' \<equiv> ((nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r  = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')))"

lemma fresherI1 [intro]:
  assumes "nsqn\<^sub>r r < nsqn\<^sub>r r'"
    shows "r \<sqsubseteq> r'"
  unfolding fresher_def using assms by simp

lemma fresherI2 [intro]:
  assumes "nsqn\<^sub>r r = nsqn\<^sub>r r'"
      and "\<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r')"
    shows "r \<sqsubseteq> r'"
  unfolding fresher_def using assms by simp

lemma fresherI [intro]:
  assumes "(nsqn\<^sub>r r < nsqn\<^sub>r r') \<or> (nsqn\<^sub>r r  = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r'))"
    shows "r \<sqsubseteq> r'"
  unfolding fresher_def using assms .

lemma fresherE [elim]:
  assumes "r \<sqsubseteq> r'"
      and "nsqn\<^sub>r r < nsqn\<^sub>r r' \<Longrightarrow> P r r'"
      and "nsqn\<^sub>r r  = nsqn\<^sub>r r' \<and> \<pi>\<^sub>5(r) \<ge> \<pi>\<^sub>5(r') \<Longrightarrow> P r r'"
    shows "P r r'"
  using assms unfolding fresher_def by auto

lemma fresher_refl [simp]: "r \<sqsubseteq> r"
  unfolding fresher_def by simp

lemma fresher_trans [elim, trans]:
  "\<lbrakk> x \<sqsubseteq> y; y \<sqsubseteq> z \<rbrakk> \<Longrightarrow> x \<sqsubseteq> z"
  unfolding fresher_def by auto

lemma not_fresher_trans [elim, trans]:
  "\<lbrakk> \<not>(x \<sqsubseteq> y); \<not>(z \<sqsubseteq> x) \<rbrakk> \<Longrightarrow> \<not>(z \<sqsubseteq> y)"
  unfolding fresher_def by auto

lemma fresher_dsn_flag_hops_const [simp]:
  fixes dsn dsk dsk' flag hops nhip nhip' pre pre'
  shows "(dsn, dsk, flag, hops, nhip, pre) \<sqsubseteq> (dsn, dsk', flag, hops, nhip', pre')"
  unfolding fresher_def by (cases flag) simp_all

lemma addpre_fresher [simp]: "\<And>r npre. r \<sqsubseteq> (addpre r npre)"
  by clarsimp

subsection "Comparing routing tables "

definition
  rt_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
where
  "rt_fresher \<equiv> \<lambda>dip rt rt'. (the (\<sigma>\<^bsub>route\<^esub>(rt, dip))) \<sqsubseteq> (the (\<sigma>\<^bsub>route\<^esub>(rt', dip)))"

abbreviation
   rt_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubseteq>\<^bsub>_\<^esub> _)"  [51, 999, 51] 50)
where
  "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresher i rt1 rt2"

lemma rt_fresher_def':
  "(rt\<^sub>1 \<sqsubseteq>\<^bsub>i\<^esub> rt\<^sub>2) = (nsqn\<^sub>r (the (rt\<^sub>1 i)) < nsqn\<^sub>r (the (rt\<^sub>2 i)) \<or>
                     nsqn\<^sub>r (the (rt\<^sub>1 i)) = nsqn\<^sub>r (the (rt\<^sub>2 i)) \<and> \<pi>\<^sub>5 (the (rt\<^sub>2 i)) \<le> \<pi>\<^sub>5 (the (rt\<^sub>1 i)))"
  unfolding rt_fresher_def fresher_def by (rule refl)

lemma single_rt_fresher [intro]:
  assumes "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
    shows "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
  using assms unfolding rt_fresher_def .

lemma rt_fresher_single [intro]:
  assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
    shows "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
  using assms unfolding rt_fresher_def .

lemma rt_fresher_def2:
  assumes "dip \<in> kD(rt1)"
      and "dip \<in> kD(rt2)"
    shows "(rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) = (nsqn rt1 dip < nsqn rt2 dip
                               \<or> (nsqn rt1 dip = nsqn rt2 dip
                                   \<and> the (dhops rt1 dip) \<ge> the (dhops rt2 dip)))"
  using assms unfolding rt_fresher_def fresher_def by (simp add: kD_nsqn proj5_eq_dhops)

lemma rt_fresherI1 [intro]:
  assumes "dip \<in> kD(rt1)"
      and "dip \<in> kD(rt2)"
      and "nsqn rt1 dip < nsqn rt2 dip"
    shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
  unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3) by simp

lemma rt_fresherI2 [intro]:
  assumes "dip \<in> kD(rt1)"
      and "dip \<in> kD(rt2)"
      and "nsqn rt1 dip = nsqn rt2 dip"
      and "the (dhops rt1 dip) \<ge> the (dhops rt2 dip)"
    shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
  unfolding rt_fresher_def2 [OF assms(1-2)] using assms(3-4) by simp

lemma rt_fresherE [elim]:
  assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
      and "dip \<in> kD(rt1)"
      and "dip \<in> kD(rt2)"
      and "\<lbrakk> nsqn rt1 dip < nsqn rt2 dip \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
      and "\<lbrakk> nsqn rt1 dip = nsqn rt2 dip;
             the (dhops rt1 dip) \<ge> the (dhops rt2 dip) \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
    shows "P rt1 rt2 dip"
  using assms(1) unfolding rt_fresher_def2 [OF assms(2-3)]
  using assms(4-5) by auto

lemma rt_fresher_refl [simp]: "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt"
  unfolding rt_fresher_def by simp

lemma rt_fresher_trans [elim, trans]:
  assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
      and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
    shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
  using assms unfolding rt_fresher_def by auto

lemma rt_fresher_if_Some [intro!]:
  assumes "the (rt dip) \<sqsubseteq> r"
    shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> (\<lambda>ip. if ip = dip then Some r else rt ip)"
  using assms unfolding rt_fresher_def by simp

definition rt_fresh_as :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
where
  "rt_fresh_as \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"

abbreviation
   rt_fresh_as_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<approx>\<^bsub>_\<^esub> _)"  [51, 999, 51] 50)
where
  "rt1 \<approx>\<^bsub>i\<^esub> rt2 \<equiv> rt_fresh_as i rt1 rt2"

lemma rt_fresh_as_refl [simp]: "\<And>rt dip. rt \<approx>\<^bsub>dip\<^esub> rt"
  unfolding rt_fresh_as_def by simp

lemma rt_fresh_as_trans [simp, intro, trans]:
  "\<And>rt1 rt2 rt3 dip. \<lbrakk> rt1 \<approx>\<^bsub>dip\<^esub> rt2; rt2 \<approx>\<^bsub>dip\<^esub> rt3 \<rbrakk> \<Longrightarrow> rt1 \<approx>\<^bsub>dip\<^esub> rt3"
  unfolding rt_fresh_as_def rt_fresher_def
  by (metis (mono_tags) fresher_trans)

lemma rt_fresh_asI [intro!]:
  assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
      and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
    shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
  using assms unfolding rt_fresh_as_def by simp

lemma rt_fresh_as_fresherI [intro]:
  assumes "dip\<in>kD(rt1)"
      and "dip\<in>kD(rt2)"
      and "the (rt1 dip) \<sqsubseteq> the (rt2 dip)"
      and "the (rt2 dip) \<sqsubseteq> the (rt1 dip)"
    shows "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
  using assms unfolding rt_fresh_as_def
  by (clarsimp dest!: single_rt_fresher)

lemma nsqn_rt_fresh_asI:
  assumes "dip \<in> kD(rt)"
      and "dip \<in> kD(rt')"
      and "nsqn rt dip = nsqn rt' dip"
      and "\<pi>\<^sub>5(the (rt dip)) = \<pi>\<^sub>5(the (rt' dip))"
    shows "rt \<approx>\<^bsub>dip\<^esub> rt'"
  proof
    from assms(1-2,4) have dhops': "the (dhops rt' dip) \<le> the (dhops rt dip)"
      by (simp add: proj5_eq_dhops)
    with assms(1-3) show "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt'"
      by (rule rt_fresherI2)
  next
    from assms(1-2,4) have dhops: "the (dhops rt dip) \<le> the (dhops rt' dip)"
      by (simp add: proj5_eq_dhops)
    with assms(2,1) assms(3) [symmetric] show "rt' \<sqsubseteq>\<^bsub>dip\<^esub> rt"
      by (rule rt_fresherI2)
  qed

lemma rt_fresh_asE [elim]:
  assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
      and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2; rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1 \<rbrakk> \<Longrightarrow> P rt1 rt2 dip"
    shows "P rt1 rt2 dip"
  using assms unfolding rt_fresh_as_def by simp

lemma rt_fresh_asD1 [dest]:
  assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
    shows "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
  using assms unfolding rt_fresh_as_def by simp

lemma rt_fresh_asD2 [dest]:
  assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
    shows "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
  using assms unfolding rt_fresh_as_def by simp

lemma rt_fresh_as_sym:
  assumes "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
    shows "rt2 \<approx>\<^bsub>dip\<^esub> rt1"
  using assms unfolding rt_fresh_as_def by simp

lemma not_rt_fresh_asI1 [intro]:
  assumes "\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)"
    shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
  proof
    assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
    hence "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" ..
    with \<open>\<not> (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> show False ..
  qed

lemma not_rt_fresh_asI2 [intro]:
  assumes "\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
    shows "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
  proof
    assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
    hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
    with \<open>\<not> (rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> show False ..
  qed

lemma not_single_rt_fresher [elim]:
  assumes "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))"
    shows "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)"
  proof
    assume "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
    hence "the (rt1 ip) \<sqsubseteq> the (rt2 ip)" ..
    with \<open>\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))\<close> show False ..
  qed

lemmas not_single_rt_fresh_asI1 [intro] =  not_rt_fresh_asI1 [OF not_single_rt_fresher]
lemmas not_single_rt_fresh_asI2 [intro] =  not_rt_fresh_asI2 [OF not_single_rt_fresher]

lemma not_rt_fresher_single [elim]:
  assumes "\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)"
    shows "\<not>(the (rt1 ip) \<sqsubseteq> the (rt2 ip))"
  proof
    assume "the (rt1 ip) \<sqsubseteq> the (rt2 ip)"
    hence "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2" ..
    with \<open>\<not>(rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2)\<close> show False ..
  qed

lemma rt_fresh_as_nsqnr:
  assumes "dip \<in> kD(rt1)"
      and "dip \<in> kD(rt2)"
      and "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
    shows "nsqn\<^sub>r (the (rt2 dip)) = nsqn\<^sub>r (the (rt1 dip))"
  using assms(3) unfolding rt_fresh_as_def
  by (auto simp: rt_fresher_def2 [OF \<open>dip \<in> kD(rt1)\<close> \<open>dip \<in> kD(rt2)\<close>]
                 rt_fresher_def2 [OF \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close>]
                 kD_nsqn [OF \<open>dip \<in> kD(rt1)\<close>]
                 kD_nsqn [OF \<open>dip \<in> kD(rt2)\<close>])

lemma rt_fresher_mapupd [intro!]:
  assumes "dip\<in>kD(rt)"
      and "the (rt dip) \<sqsubseteq> r"
    shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(dip \<mapsto> r)"
  using assms unfolding rt_fresher_def by simp

lemma rt_fresher_map_update_other [intro!]:
  assumes "dip\<in>kD(rt)"
      and "dip \<noteq> ip"
    shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> rt(ip \<mapsto> r)"
  using assms unfolding rt_fresher_def by simp

lemma rt_fresher_update_other [simp]:
  assumes inkD: "dip\<in>kD(rt)"
     and "dip \<noteq> ip"
   shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r"
   using assms unfolding update_def
   by (clarsimp split: option.split) (fastforce)

theorem rt_fresher_update [simp]:
  assumes "dip\<in>kD(rt)"
      and "the (dhops rt dip) \<ge> 1"
      and "update_arg_wf r"
   shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt ip r"
  proof (cases "dip = ip")
    assume "dip \<noteq> ip" with \<open>dip\<in>kD(rt)\<close> show ?thesis
      by (rule rt_fresher_update_other)
  next
    assume "dip = ip"

    from \<open>dip\<in>kD(rt)\<close> obtain dsn\<^sub>n dsk\<^sub>n f\<^sub>n hops\<^sub>n nhip\<^sub>n pre\<^sub>n
      where rtn [simp]: "the (rt dip) = (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)"
      by (metis prod_cases6)
    with \<open>the (dhops rt dip) \<ge> 1\<close> and \<open>dip\<in>kD(rt)\<close> have "hops\<^sub>n \<ge> 1"
      by (metis proj5_eq_dhops projs(4))
    from \<open>dip\<in>kD(rt)\<close> rtn have [simp]: "sqn rt dip = dsn\<^sub>n"
                           and [simp]: "the (dhops rt dip) = hops\<^sub>n"
                           and [simp]: "the (flag rt dip) = f\<^sub>n"
      by (simp add: sqn_def proj5_eq_dhops [symmetric]
                            proj4_eq_flag [symmetric])+

    from \<open>update_arg_wf r\<close> have "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
                                  \<sqsubseteq> the ((update rt dip r) dip)"
      proof (rule wf_r_cases)
        fix nhip pre
        from \<open>hops\<^sub>n \<ge> 1\<close> have "\<And>pre'. (dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
                                        \<sqsubseteq> (dsn\<^sub>n, unk, val, Suc 0, nhip, pre')"
          unfolding fresher_def sqn_def by (cases f\<^sub>n) auto
        thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
               \<sqsubseteq> the (update rt dip (0, unk, val, Suc 0, nhip, pre) dip)"
          using \<open>dip\<in>kD(rt)\<close> by - (rule update_cases_kD, simp_all)
      next
        fix dsn :: sqn and hops nhip pre
        assume "0 < dsn"
        show "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
               \<sqsubseteq> the (update rt dip (dsn, kno, val, hops, nhip, pre) dip)"
        proof (rule update_cases_kD [OF _ \<open>dip\<in>kD(rt)\<close>], simp_all add: \<open>0 < dsn\<close>)
          assume "dsn\<^sub>n < dsn"
            thus "(dsn\<^sub>n, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
                   \<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
              unfolding fresher_def by auto
        next
          assume "dsn\<^sub>n = dsn"
             and "hops < hops\<^sub>n"
            thus "(dsn, dsk\<^sub>n, f\<^sub>n, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
                   \<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
              unfolding fresher_def nsqn\<^sub>r_def by simp
        next
          assume "dsn\<^sub>n = dsn"
            with \<open>0 < dsn\<close>
            show "(dsn, dsk\<^sub>n, inv, hops\<^sub>n, nhip\<^sub>n, pre\<^sub>n)
                   \<sqsubseteq> (dsn, kno, val, hops, nhip, pre \<union> pre\<^sub>n)"
              unfolding fresher_def by simp
        qed
      qed
    hence "rt \<sqsubseteq>\<^bsub>dip\<^esub> update rt dip r"
      by - (rule single_rt_fresher, simp)
    with \<open>dip = ip\<close> show ?thesis by simp
  qed

theorem rt_fresher_invalidate [simp]:
  assumes "dip\<in>kD(rt)"
      and indests: "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> sqn rt rip < the (dests rip)"
    shows "rt \<sqsubseteq>\<^bsub>dip\<^esub> invalidate rt dests"
  proof (cases "dip\<in>dom(dests)")
    assume "dip\<notin>dom(dests)"
      thus ?thesis using \<open>dip\<in>kD(rt)\<close>
      by - (rule single_rt_fresher, simp)
  next
    assume "dip\<in>dom(dests)"
    moreover with indests have "dip\<in>vD(rt)"
                           and "sqn rt dip < the (dests dip)"
      by auto
    ultimately show ?thesis
      unfolding invalidate_def sqn_def
      by - (rule single_rt_fresher, auto simp: fresher_def)
  qed

lemma nsqn\<^sub>r_invalidate [simp]:
  assumes "dip\<in>kD(rt)"
      and "dip\<in>dom(dests)"
    shows "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1"
  using assms unfolding invalidate_def by auto

lemma rt_fresh_as_inc_invalidate [simp]:
  assumes "dip\<in>kD(rt)"
      and "\<forall>rip\<in>dom(dests). rip\<in>vD(rt) \<and> the (dests rip) = inc (sqn rt rip)"
    shows "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests"
  proof (cases "dip\<in>dom(dests)")
    assume "dip\<notin>dom(dests)"
    with \<open>dip\<in>kD(rt)\<close> have "dip\<in>kD(invalidate rt dests)"
      by simp
    with \<open>dip\<in>kD(rt)\<close> show ?thesis
      by rule (simp_all add: \<open>dip\<notin>dom(dests)\<close>)
  next
    assume "dip\<in>dom(dests)"
    with assms(2) have "dip\<in>vD(rt)"
                  and "the (dests dip) = inc (sqn rt dip)" by auto
    from \<open>dip\<in>vD(rt)\<close> have "dip\<in>kD(rt)" by simp
    moreover then have "dip\<in>kD(invalidate rt dests)" by simp
    ultimately show ?thesis
    proof (rule nsqn_rt_fresh_asI)
      from \<open>dip\<in>vD(rt)\<close> have "nsqn rt dip = sqn rt dip" by simp
      also have "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))"
      proof -
        from \<open>dip\<in>kD(rt)\<close> have "nsqn\<^sub>r (the (invalidate rt dests dip)) = the (dests dip) - 1"
          using \<open>dip\<in>dom(dests)\<close> by (rule nsqn\<^sub>r_invalidate)
        with \<open>the (dests dip) = inc (sqn rt dip)\<close>
          show "sqn rt dip = nsqn\<^sub>r (the (invalidate rt dests dip))" by simp
      qed
      also from \<open>dip\<in>kD(invalidate rt dests)\<close>
        have "nsqn\<^sub>r (the (invalidate rt dests dip)) = nsqn (invalidate rt dests) dip"
          by (simp add: kD_nsqn)
      finally show "nsqn rt dip = nsqn (invalidate rt dests) dip" .
    qed simp
  qed

lemmas rt_fresher_inc_invalidate [simp] = rt_fresh_as_inc_invalidate [THEN rt_fresh_asD1]

lemma rt_fresh_as_addpreRT [simp]:
  assumes "ip\<in>kD(rt)"
    shows "rt \<approx>\<^bsub>dip\<^esub> the (addpreRT rt ip npre)"
  using assms [THEN kD_Some] by (auto simp: addpreRT_def)

lemmas rt_fresher_addpreRT [simp] = rt_fresh_as_addpreRT [THEN rt_fresh_asD1]

subsection "Strictly comparing routing tables "

definition rt_strictly_fresher :: "ip \<Rightarrow> rt \<Rightarrow> rt \<Rightarrow> bool"
where
  "rt_strictly_fresher \<equiv> \<lambda>dip rt1 rt2. (rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2) \<and> \<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)"

abbreviation
   rt_strictly_fresher_syn :: "rt \<Rightarrow> ip \<Rightarrow> rt \<Rightarrow> bool" ("(_/ \<sqsubset>\<^bsub>_\<^esub> _)"  [51, 999, 51] 50)
where
  "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 \<equiv> rt_strictly_fresher i rt1 rt2"

lemma rt_strictly_fresher_def'':
  "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 = ((rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2) \<and> \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1))"
  unfolding rt_strictly_fresher_def rt_fresh_as_def by auto

lemma rt_strictly_fresherI' [intro]:
  assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2"
      and "\<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1)"
    shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
  using assms unfolding rt_strictly_fresher_def'' by simp

lemma rt_strictly_fresherE' [elim]:
  assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
      and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt2 \<sqsubseteq>\<^bsub>i\<^esub> rt1) \<rbrakk> \<Longrightarrow> P rt1 rt2 i"
    shows "P rt1 rt2 i"
  using assms unfolding rt_strictly_fresher_def'' by simp

lemma rt_strictly_fresherI [intro]:
  assumes "rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2"
      and "\<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2)"
    shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
  unfolding rt_strictly_fresher_def using assms ..

lemmas rt_strictly_fresher_singleI [elim] = rt_strictly_fresherI [OF single_rt_fresher]

lemma rt_strictly_fresherE [elim]:
  assumes "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
      and "\<lbrakk> rt1 \<sqsubseteq>\<^bsub>i\<^esub> rt2; \<not>(rt1 \<approx>\<^bsub>i\<^esub> rt2) \<rbrakk> \<Longrightarrow> P rt1 rt2 i"
    shows "P rt1 rt2 i"
  using assms(1) unfolding rt_strictly_fresher_def
  by rule (erule(1) assms(2))

lemma rt_strictly_fresher_def':
  "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2 =
     (nsqn\<^sub>r (the (rt1 i)) < nsqn\<^sub>r (the (rt2 i))
       \<or> (nsqn\<^sub>r (the (rt1 i)) = nsqn\<^sub>r (the (rt2 i)) \<and> \<pi>\<^sub>5(the (rt1 i)) > \<pi>\<^sub>5(the (rt2 i))))"
  unfolding rt_strictly_fresher_def'' rt_fresher_def fresher_def by auto

lemma rt_strictly_fresher_fresherD [dest]:
  assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
    shows "the (rt1 dip) \<sqsubseteq> the (rt2 dip)"
  using assms unfolding rt_strictly_fresher_def rt_fresher_def by auto

lemma rt_strictly_fresher_not_fresh_asD [dest]:
  assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
    shows "\<not> rt1 \<approx>\<^bsub>dip\<^esub> rt2"
  using assms unfolding rt_strictly_fresher_def by auto

lemma rt_strictly_fresher_trans [elim, trans]:
  assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
      and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3"
    shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
  using assms proof -
    from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "the (rt1 dip) \<sqsubseteq> the (rt2 dip)" by auto
    also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "the (rt2 dip) \<sqsubseteq> the (rt3 dip)" by auto
    finally have "the (rt1 dip) \<sqsubseteq> the (rt3 dip)" .

    moreover have "\<not> (rt1 \<approx>\<^bsub>dip\<^esub> rt3)"
    proof -    
      from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> obtain "\<not>(the (rt2 dip) \<sqsubseteq> the (rt1 dip))" by auto
      also from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> obtain "\<not>(the (rt3 dip) \<sqsubseteq> the (rt2 dip))" by auto
      finally have "\<not>(the (rt3 dip) \<sqsubseteq> the (rt1 dip))" .
      thus ?thesis ..
    qed
    ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3" ..
 qed

lemma rt_strictly_fresher_irefl [simp]: "\<not> (rt \<sqsubset>\<^bsub>dip\<^esub> rt)"
  unfolding rt_strictly_fresher_def
  by clarsimp

lemma rt_fresher_trans_rt_strictly_fresher [elim, trans]:
  assumes "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
      and "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
    shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
  proof -
    from \<open>rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
                           and "\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
      unfolding rt_strictly_fresher_def'' by auto
    from this(1) and \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" ..

    moreover from \<open>\<not>(rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
      proof (rule contrapos_nn)
        assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
        with \<open>rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3\<close> show "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
      qed

    ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
      unfolding rt_strictly_fresher_def'' by auto
  qed

lemma rt_fresher_trans_rt_strictly_fresher' [elim, trans]:
  assumes "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2"
      and "rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3"
    shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
  proof -
    from \<open>rt2 \<sqsubset>\<^bsub>dip\<^esub> rt3\<close> have "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt3"
                           and "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)"
      unfolding rt_strictly_fresher_def'' by auto
    from \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> and this(1) have "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt3" ..

    moreover from \<open>\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2)\<close> have "\<not>(rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1)"
      proof (rule contrapos_nn)
        assume "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt1"
        thus "rt3 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" using \<open>rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2\<close> ..
      qed

    ultimately show "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt3"
      unfolding rt_strictly_fresher_def'' by auto
  qed

lemma rt_fresher_imp_nsqn_le:
  assumes "rt1 \<sqsubseteq>\<^bsub>ip\<^esub> rt2"
      and "ip \<in> kD rt1"
      and "ip \<in> kD rt2"
    shows "nsqn rt1 ip \<le> nsqn rt2 ip"
  using assms(1)
  by (auto simp add: rt_fresher_def2 [OF assms(2-3)])

lemma rt_strictly_fresher_ltI [intro]:
  assumes "dip \<in> kD(rt1)"
      and "dip \<in> kD(rt2)"
      and "nsqn rt1 dip < nsqn rt2 dip"
    shows "rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2"
  proof
    from assms show "rt1 \<sqsubseteq>\<^bsub>dip\<^esub> rt2" ..
  next
    show "\<not>(rt1 \<approx>\<^bsub>dip\<^esub> rt2)"
    proof
      assume "rt1 \<approx>\<^bsub>dip\<^esub> rt2"
      hence "rt2 \<sqsubseteq>\<^bsub>dip\<^esub> rt1" ..
      hence "nsqn rt2 dip \<le> nsqn rt1 dip"
        using \<open>dip \<in> kD(rt2)\<close> \<open>dip \<in> kD(rt1)\<close>
        by (rule rt_fresher_imp_nsqn_le)
      with \<open>nsqn rt1 dip < nsqn rt2 dip\<close> show "False"
        by simp
    qed
  qed

lemma rt_strictly_fresher_eqI [intro]:
  assumes "i\<in>kD(rt1)"
      and "i\<in>kD(rt2)"
      and "nsqn rt1 i = nsqn rt2 i"
      and "\<pi>\<^sub>5(the (rt2 i)) < \<pi>\<^sub>5(the (rt1 i))"
    shows "rt1 \<sqsubset>\<^bsub>i\<^esub> rt2"
  using assms unfolding rt_strictly_fresher_def' by (auto simp add: kD_nsqn)

lemma invalidate_rtsf_left [simp]:
  "\<And>dests dip rt rt'. dests dip = None \<Longrightarrow> (invalidate rt dests \<sqsubset>\<^bsub>dip\<^esub> rt') = (rt \<sqsubset>\<^bsub>dip\<^esub> rt')"
  unfolding invalidate_def rt_strictly_fresher_def'
  by (rule iffI) (auto split: option.split_asm)

lemma vD_invalidate_rt_strictly_fresher [simp]:
  assumes "dip \<in> vD(invalidate rt1 dests)"
    shows "(invalidate rt1 dests \<sqsubset>\<^bsub>dip\<^esub> rt2) = (rt1 \<sqsubset>\<^bsub>dip\<^esub> rt2)"
  proof (cases "dip \<in> dom(dests)")
    assume "dip \<in> dom(dests)"
    hence "dip \<notin> vD(invalidate rt1 dests)"
      unfolding invalidate_def vD_def
      by clarsimp (metis assms option.simps(3) vD_invalidate_vD_not_dests)
    with \<open>dip \<in> vD(invalidate rt1 dests)\<close> show ?thesis by simp
  next
    assume "dip \<notin> dom(dests)"
    hence "dests dip = None" by auto
    moreover with \<open>dip \<in> vD(invalidate rt1 dests)\<close> have "dip \<in> vD(rt1)"
      unfolding invalidate_def vD_def
      by clarsimp (metis (opaque_lifting, no_types) assms vD_Some vD_invalidate_vD_not_dests)
    ultimately show ?thesis
      unfolding invalidate_def rt_strictly_fresher_def' by auto
  qed

lemma rt_strictly_fresher_update_other [elim!]:
  "\<And>dip ip rt r rt'. \<lbrakk> dip \<noteq> ip; rt \<sqsubset>\<^bsub>dip\<^esub> rt' \<rbrakk> \<Longrightarrow> update rt ip r \<sqsubset>\<^bsub>dip\<^esub> rt'"
  unfolding rt_strictly_fresher_def' by clarsimp

lemma addpreRT_strictly_fresher [simp]:
  assumes "dip \<in> kD(rt)"
    shows "(the (addpreRT rt dip npre) \<sqsubset>\<^bsub>ip\<^esub> rt2) = (rt \<sqsubset>\<^bsub>ip\<^esub> rt2)"
  using assms unfolding rt_strictly_fresher_def' by clarsimp

lemma lt_sqn_imp_update_strictly_fresher:
  assumes "dip \<in> vD (rt2 nhip)"
      and  *: "osn < sqn (rt2 nhip) dip"
      and **: "rt \<noteq> update rt dip (osn, kno, val, hops, nhip, {})"
    shows "update rt dip (osn, kno, val, hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip"
  unfolding rt_strictly_fresher_def'
  proof (rule disjI1)
    from ** have "nsqn (update rt dip (osn, kno, val, hops, nhip, {})) dip = osn"
      by (rule nsqn_update_changed_kno_val)
    with \<open>dip\<in>vD(rt2 nhip)\<close>
      have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip)) = osn"
        by (simp add: kD_nsqn)
    also have "osn < sqn (rt2 nhip) dip" by (rule *)
    also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))"
      unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD (rt2 nhip)\<close>
      by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1))
    finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, hops, nhip, {}) dip))
                                                              < nsqn\<^sub>r (the (rt2 nhip dip))" .
  qed

lemma dhops_le_hops_imp_update_strictly_fresher:
  assumes "dip \<in> vD(rt2 nhip)"
      and sqn: "sqn (rt2 nhip) dip = osn"
      and hop: "the (dhops (rt2 nhip) dip) \<le> hops"
      and **: "rt \<noteq> update rt dip (osn, kno, val, Suc hops, nhip, {})"
    shows "update rt dip (osn, kno, val, Suc hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip"
  unfolding rt_strictly_fresher_def'
  proof (rule disjI2, rule conjI)
    from ** have "nsqn (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip = osn"
      by (rule nsqn_update_changed_kno_val)
    with \<open>dip\<in>vD(rt2 nhip)\<close>
      have "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip)) = osn"
        by (simp add: kD_nsqn)
    also have "osn = sqn (rt2 nhip) dip" by (rule sqn [symmetric])
    also have "sqn (rt2 nhip) dip = nsqn\<^sub>r (the (rt2 nhip dip))"
      unfolding nsqn\<^sub>r_def using \<open>dip \<in> vD(rt2 nhip)\<close>
      by - (metis vD_flag_val proj2_eq_sqn proj4_eq_flag vD_iD_gives_kD(1))
    finally show "nsqn\<^sub>r (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip))
                                                              = nsqn\<^sub>r (the (rt2 nhip dip))" .
  next
    have "the (dhops (rt2 nhip) dip) \<le> hops" by (rule hop)
    also have "hops < hops + 1" by simp
    also have "hops + 1 = the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)"
      using ** by simp
    finally have "the (dhops (rt2 nhip) dip)
                        < the (dhops (update rt dip (osn, kno, val, Suc hops, nhip, {})) dip)" .
    thus "\<pi>\<^sub>5 (the (rt2 nhip dip)) < \<pi>\<^sub>5 (the (update rt dip (osn, kno, val, Suc hops, nhip, {}) dip))"
      using \<open>dip \<in> vD(rt2 nhip)\<close> by (simp add: proj5_eq_dhops)
  qed

lemma nsqn_invalidate:
  assumes "dip \<in> kD(rt)"
      and "\<forall>ip\<in>dom(dests). ip \<in> vD(rt) \<and> the (dests ip) = inc (sqn rt ip)"
    shows "nsqn (invalidate rt dests) dip = nsqn rt dip"
  proof -
    from \<open>dip \<in> kD(rt)\<close> have "dip \<in> kD(invalidate rt dests)" by simp

    from assms have "rt \<approx>\<^bsub>dip\<^esub> invalidate rt dests"
      by (rule rt_fresh_as_inc_invalidate)
    with \<open>dip \<in> kD(rt)\<close> \<open>dip \<in> kD(invalidate rt dests)\<close> show ?thesis
      by (simp add: kD_nsqn del: invalidate_kD_inv)
         (erule(2) rt_fresh_as_nsqnr)
  qed

end