Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,961 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c91a5cf
afd65d6
c91a5cf
afd65d6
81d0091
 
 
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f293502
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bdf6a3
afd65d6
 
b1df04a
 
18b1f9d
afd65d6
 
 
 
 
 
 
 
c91a5cf
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c91a5cf
 
81d0091
f293502
9bdf6a3
0443587
 
 
 
 
81d0091
 
 
 
 
f293502
 
 
 
 
 
81d0091
f3afa17
0443587
ab0d7f5
c91a5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d0091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab0d7f5
5473bd4
 
81d0091
 
 
 
 
ab0d7f5
81d0091
 
 
 
 
 
ab0d7f5
81d0091
 
 
afd65d6
 
 
 
 
 
d06970b
 
3d7992e
d06970b
 
 
 
 
25dc5a2
0443587
c91a5cf
 
 
 
 
 
 
 
 
d06970b
 
 
 
 
 
 
 
 
ab0d7f5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""


import csv
import json
import ndjson
import os
import sys # just for debugging, delete

import itertools
from itertools import islice

import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
    "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
}


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class ProofPile(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
    datasets.BuilderConfig(name="arxiv", version=VERSION, description="All of English arxiv.math up to 03/22"),
    datasets.BuilderConfig(name="books", version=VERSION, description="Open source math textbooks"),
    datasets.BuilderConfig(name="formal", version=VERSION, description="Formal math libraries"), 
    datasets.BuilderConfig(name="stack-exchange", version=VERSION, description="math overflow and math stack exchange"), 
    datasets.BuilderConfig(name="wiki", version=VERSION, description="wikipedia articles and proofwiki."), 
    datasets.BuilderConfig(name="math-dataset", version=VERSION, description="the MATH dataset."), 
    ]


    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        features = datasets.Features(
            {
                "text": datasets.Value("string"),
                "meta": datasets.Value("string")
                # These are the features of your dataset like images, labels ...
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive

        self.archived_configs = ["arxiv", "wiki"]
        self.jsonl_configs = ["stack-exchange", "math-dataset", "books", "formal"]

        if self.config.name in self.archived_configs: 
            if self.config.name=="arxiv": 
                with open(dl_manager.download("splits.json")) as f: 
                    split = json.load(f)

                train_paths = split["arxiv-train"]
                val_paths = split["arxiv-valid"]
            if self.config.name=="stack-exchange": 
                train_paths = [os.path.join("./stack-exchange", x) for x in ["math_overflow.tar.gz",
                    "math_stack_exchange.tar.gz"]]
                val_paths = [os.path.join("./stack-exchange", x) for x in ["math_overflow_val.tar.gz",
                    "math_stack_exchange_val.tar.gz"]]
            if self.config.name=="math-dataset": 
                train_paths = ["math-dataset/train.tar.gz"]
                val_paths = ["math-dataset/val.tar.gz"]
            if self.config.name=="wiki": 
                train_paths = ["wiki/proofwiki.tar.gz", "wiki/wikipedia.tar.gz"]
                val_paths = ["wiki/proofwiki_val.tar.gz"]

            train_files = itertools.chain.from_iterable(dl_manager.iter_archive(dl_manager.download(x)) for x in train_paths)
            val_files = itertools.chain.from_iterable(dl_manager.iter_archive(dl_manager.download(x)) for x in val_paths)
 
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_files": train_files,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION, 
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_files": val_files,
                    },
                ),
            ]

        elif self.config.name in self.jsonl_configs: 
            if self.config.name=="stack-exchange": 
                exchanges = ["math_overflow", "math_stack_exchange", "cstheory_stack_exchange", 
                        "physics_stack_exchange", "proofassistants_stack_exchange"]

                train_paths = [os.path.join("./stack-exchange", x, "train.jsonl.gz") for x in exchanges]
                val_paths = [os.path.join("./stack-exchange", x, "val.jsonl.gz") for x in exchanges]
            elif self.config.name=="math-dataset":
                train_paths = ["./math-dataset/train.jsonl.gz"]
                val_paths = ["./math-dataset/val.jsonl.gz"]
            elif self.config.name=="books": 
                train_paths = [os.path.join("./books", x) for x in os.listdir("./books") if "train.jsonl.gz" in x]
                val_paths = [os.path.join("./books", x) for x in os.listdir("./books") if "val.jsonl.gz" in x]
            elif self.config.name=="formal": 
                train_paths = [os.path.join("./formal", x) for x in os.listdir("./formal") if "train.jsonl.gz" in x]
                val_paths = [os.path.join("./formal", x) for x in os.listdir("./formal") if "val.jsonl.gz" in x]
 
            train_files = itertools.chain.from_iterable([dl_manager.download_and_extract(x)] for x in train_paths)
            val_files = itertools.chain.from_iterable([dl_manager.download_and_extract(x)] for x in val_paths)

            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_files": train_files,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION, 
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_files": val_files,
                    },
                ),
            ]
        else: 
            with open(dl_manager.download("splits.json")) as f: 
                splits = json.load(f)

            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_files": [dl_manager.download(x) for x in splits[self.config.name + "-train"]],
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION, 
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "data_files": [dl_manager.download(x) for x in splits[self.config.name + "-valid"]],
                    },
                ),
            ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, data_files):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        key = 0 
        if self.config.name in self.archived_configs: 
            for name, obj in data_files: 
                text = obj.read().decode()
                # Yields examples as (key, example) tuples
                yield key, {
                    "config": self.config.name, 
                    "file": name, 
                    "text": text,
                    }
                key += 1
        elif self.config.name in self.jsonl_configs: 
            key = 0 
            for name in data_files: 
                with open(name) as f: 
                    instances = ndjson.load(f)
                for instance in instances: 
                    yield key, {"text": instance["text"], 
                            "meta": json.dumps(instance["meta"])}
                    key += 1 
        else: 
            for name in data_files: 
                with open(name, encoding="utf-8") as f:
                    text = f.read()
                # Yields examples as (key, example) tuples
                yield key, {
                    "config": self.config.name, 
                    "file": name, 
                    "text": text,
                }
            key += 1