File size: 13,721 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
\chapter{Excision and relative homology}
We have already seen how to use the Mayer-Vietoris sequence:
we started with a sequence
\[ \dots \to H_n(U \cap V) \to H_n(U) \oplus H_n(V) \to H_n(U+V) \to H_{n-1}(U \cap V) \to \dots \]
and its reduced version,
then appealed to the geometric fact that $H_n(U+V) \cong H_n(X)$.
This allowed us to algebraically make computations on $H_n(X)$.

In this chapter, we turn our attention to the long exact
sequence associated to the chain complex
\[ 0 \to C_n(A) \injto C_n(X) \surjto C_n(X,A) \to 0. \]
The setup will look a lot like the previous two chapters,
except in addition to $H_n : \catname{hTop} \to \catname{Grp}$
we will have a functor $H_n : \catname{hPairTop} \to \catname{Grp}$
which takes a pair $(X,A)$ to $H_n(X,A)$.
Then, we state (again without proof) the key geometric result,
and use this to make deductions.

\section{The long exact sequences}
Recall \Cref{thm:long_exact_rel}, which says that the sequences
\[ \dots \to H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to \dots. \]
and
\[ \dots \to \wt H_n(A) \to \wt H_n(X) \to H_n(X,A) \to \wt H_{n-1}(A) \to \dots \]
are long exact.
By \Cref{prob:triple_long_exact} we even have a long exact sequence
\[
	\dots
	\to H_n(B,A)
	\to H_n(X,A)
	\to H_n(X,B)
	\to H_{n-1}(B,A)
	\to \dots.
\]
for $A \subseteq B \subseteq X$.
An application of the second long exact sequence above gives:
\begin{lemma}
	[Homology relative to contractible spaces]
	\label{lem:rel_contractible}
	Let $X$ be a topological space,
	and let $A \subseteq X$ be contractible.
	For all $n$, \[ H_n(X, A) \cong \wt H_n(X). \]
\end{lemma}
\begin{proof}
	Since $A$ is contractible, we have $\wt H_n(A) = 0$ for every $n$.
	For each $n$ there's a segment of the long exact sequence given by
	\[ \dots \to \underbrace{\wt H_n(A)}_{=0} \to \wt H_n(X) \to H_n(X,A)
	\to \underbrace{\wt H_{n-1}(A)}_{=0} \to \dots. \]
	So since $0 \to \wt H_n(X) \to H_n(X,A) \to 0$ is exact,
	this means $H_n(X,A) \cong \wt H_n(X)$.
\end{proof}

In particular, the theorem applies if $A$ is a single point.
The case $A = \varnothing$ is also worth noting.
We compile these results into a lemma:
\begin{lemma}
	[Relative homology generalizes absolute homology]
	Let $X$ be any space, and $\ast \in X$ a point. Then for all $n$,
	\[
		H_n(X, \{\ast\}) \cong \wt H_n(X)
		\qquad\text{and}\qquad
		H_n(X, \varnothing) = H_n(X).
	\]
\end{lemma}

\section{The category of pairs}
Since we now have an $H_n(X,A)$ instead of just $H_n(X)$,
a natural next step is to create a suitable category of \emph{pairs}
and give ourselves the same functorial setup as before.

\begin{definition}
	Let $\varnothing \neq A \subseteq X$ and $\varnothing \neq B \subseteq X$
	be subspaces, and consider a map $f : X \to Y$.
	If $f\im(A) \subseteq B$ we write
	\[ f : (X,A) \to (Y,B). \]
	We say $f$ is a \vocab{map of pairs},
	between the pairs $(X,A)$ and $(Y,B)$.
\end{definition}
\begin{definition}
	We say that $f,g : (X,A) \to (Y,B)$ are \vocab{pair-homotopic} if they
	are ``homotopic through maps of pairs''.

	More formally, a \vocab{pair-homotopy}
	$f, g : (X,A) \to (Y,B)$ is a map $F : [0,1] \times X \to Y$,
	which we'll write as $F_t(X)$, such that
	$F$ is a homotopy of the maps $f,g : X \to Y$
	and each $F_t$ is itself a map of pairs.
\end{definition}
Thus, we naturally arrive at two categories:
\begin{itemize}
	\ii $\catname{PairTop}$, the category of \emph{pairs} of
	topological spaces, and
	\ii $\catname{hPairTop}$, the same category except
	with maps only equivalent up to homotopy.
\end{itemize}
\begin{definition}
	As before, we say pairs $(X,A)$ and $(Y,B)$ are
	\vocab{pair-homotopy equivalent}
	if they are isomorphic in $\catname{hPairTop}$.
	An isomorphism of $\catname{hPairTop}$ is a
	\vocab{pair-homotopy equivalence}.
\end{definition}

We can do the same song and dance as before with the prism operator to obtain:
\begin{lemma}[Induced maps of relative homology]
	We have a functor
	\[ H_n : \catname{hPairTop} \to \catname{Grp}. \]
\end{lemma}
That is, if $f : (X,A) \to (Y,B)$ then we obtain an induced map
\[ f_\ast : H_n(X,A) \to H_n(Y,B). \]
and if two such $f$ and $g$ are pair-homotopic
then $f_\ast = g_\ast$.

Now, we want an analog of contractible spaces for our pairs:
i.e.\ pairs of spaces $(X,A)$ such that $H_n(X,A) = 0$.
The correct definition is:
\begin{definition}
	Let $A \subseteq X$.
	We say that $A$ is a \vocab{deformation retract} of $X$
	if there is a map of pairs $r : (X, A) \to (A, A)$
	which is a pair homotopy equivalence.
\end{definition}
\begin{example}
	[Examples of deformation retracts]
	\listhack
	\begin{enumerate}[(a)]
		\ii If a single point $p$ is a deformation retract of a space $X$,
		then $X$ is contractible, since the retraction $r : X \to \{\ast\}$
		(when viewed as a map $X \to X$)
		is homotopic to the identity map $\id_X : X \to X$.
		\ii The punctured disk $D^2 \setminus \{0\}$
		deformation retracts onto its boundary $S^1$.
		\ii More generally, $D^{n} \setminus \{0\}$
		deformation retracts onto its boundary $S^{n-1}$.
		\ii Similarly, $\RR^n \setminus \{0\}$
		deformation retracts onto a sphere $S^{n-1}$.
	\end{enumerate}
\end{example}
Of course in this situation we have that
\[ H_n(X,A) \cong H_n(A,A) = 0. \]

\begin{exercise}
	Show that if $A \subseteq V \subseteq X$,
	and $A$ is a deformation retract of $V$,
	then $H_n(X,A) \cong H_n(X,V)$ for all $n$.
	(Use \Cref{prob:triple_long_exact}. Solution in next section.)
\end{exercise}

\section{Excision}
Now for the key geometric result, which is the analog of
\Cref{thm:open_cover_homology} for our relative homology groups.
\begin{theorem}
	[Excision]
	Let $Z \subseteq A \subseteq X$ be subspaces such that
	the closure of $Z$ is contained in the interior of $A$.
	Then the inclusion $\iota (X \setminus Z, A \setminus Z) \injto (X,A)$
	(viewed as a map of pairs) induces an isomorphism of
	relative homology groups
	\[ H_n(X \setminus Z, A \setminus Z) \cong H_n(X,A). \]
\end{theorem}
This means we can \emph{excise} (delete) a subset $Z$ of $A$ in computing
the relative homology groups $H_n(X,A)$.
This should intuitively make sense:
since we are ``modding out by points in $A$'',
the internals of the point $A$ should not matter so much.

The main application of excision is to decide
when $H_n(X,A) \cong \wt H_n(X/A)$.
Answer:

\begin{theorem}
	[Relative homology $\implies$ quotient space]
	\label{thm:good_pair}
	Let $X$ be a space and $A$ be a subspace such that
	$A$ is a deformation retract of some open set $V \subseteq X$.
	Then the quotient map $q : X \to X/A$ induces an isomorphism
	\[ H_n(X,A) \cong H_n(X/A, A/A) \cong \wt H_n(X/A). \]
\end{theorem}
\begin{proof}
	By hypothesis, we can consider the following maps of pairs:
	\begin{align*}
		r & : (V,A) \to (A,A)  \\
		q & : (X,A) \to (X/A, A/A) \\
		\widehat q &: (X-A, V-A) \to (X/A-A/A, V/A-A/A).
	\end{align*}
	Moreover, $r$ is a pair-homotopy equivalence.
	Considering the long exact sequence of a triple
	(which was \Cref{prob:triple_long_exact})
	we have a diagram
	\begin{center}
		\begin{tikzcd}[row sep=huge]
		H_n(V,A) \ar[r] \ar[d, "\cong"', "r"]
			& H_n(X,A) \ar["f", r]
			& H_n(X, V) \ar[r]
			& H_{n-1}(V,A) \ar[d, "\cong"', "r"] \\
		\underbrace{H_n(A,A)}_{=0} & & & \underbrace{H_{n-1}(A,A)}_{=0}
	\end{tikzcd}
	\end{center}
	where the isomorphisms arise since $r$ is a pair-homotopy equivalence.
	So $f$ is an isomorphism.
	Similarly the map
	\[ g : H_n(X/A, A/A) \to H_n(X/A, V/A) \]
	is an isomorphism.

	Now, consider the commutative diagram
	\begin{center}
		\begin{tikzcd}[sep=huge]
		H_n(X,A) \ar[r, "f"] \ar[d, "q_\ast"']
			& H_n(X,V)
			& H_n(X-A, V-A) \ar[l, "\text{Excise}"'] \ar[d, "\widehat{q}_\ast", "\cong"']
			\\
		H_n(X/A,A/A) \ar[r, "g"']
			& H_n(X/A,V/A)
			& \ar["\text{Excise}"', l] H_n(X/A-A/A, V/A-A/A)
	\end{tikzcd}
	\end{center}
	and observe that the rightmost arrow $\widehat{q}_\ast$ is an isomorphism,
	because outside of $A$ the map $\widehat q$ is the identity.
	We know $f$ and $g$ are isomorphisms,
	as are the two arrows marked with ``Excise'' (by excision).
	From this we conclude that $q_\ast$ is an isomorphism.
	Of course we already know that homology relative to a point
	is just the relative homology groups
	(this is the important case of \Cref{lem:rel_contractible}).
\end{proof}

\section{Some applications}
One nice application of excision is to compute $\wt H_n(X \vee Y)$.
\begin{theorem}[Homology of wedge sums]
	Let $X$ and $Y$ be spaces with basepoints $x_0 \in X$ and $y_0 \in Y$,
	and assuming each point is a deformation retract of some open neighborhood.
	Then for every $n$ we have
	\[
		\wt H_n(X \vee Y)
		= \wt H_n(X) \oplus \wt H_n(Y).
	\]
\end{theorem}
\begin{proof}
	Apply \Cref{thm:good_pair} with the subset $\{x_0, y_0\}$ of $X \amalg Y$,
	\begin{align*}
		\wt H_n (X \vee Y)
		\cong \wt H_n( (X \amalg Y) / \{x_0, y_0\} )
		&\cong H_n(X \amalg Y, \{x_0,y_0\}) \\
		&\cong H_n(X, \{x_0\}) \oplus H_n(Y, \{y_0\}) \\
		&\cong\wt H_n(X) \oplus \wt H_n(Y). \qedhere
	\end{align*}
\end{proof}

Another application is to give a second method
of computing $H_n(S^m)$.
To do this, we will prove that
\[ \wt H_n(S^m) \cong \wt H_{n-1}(S^{m-1}) \]
for any $n,m > 1$.
However,
\begin{itemize}
	\ii $\wt H_0(S^n)$ is $\ZZ$ for $n=0$ and $0$ otherwise.
	\ii $\wt H_n(S^0)$ is $\ZZ$ for $m=0$ and $0$ otherwise.
\end{itemize}
So by induction on $\min \{m,n\}$ we directly obtain that
\[
	\wt H_n(S^m) \cong
	\begin{cases}
		\ZZ & m=n \\
		0 & \text{otherwise}
	\end{cases}
\]
which is what we wanted.

To prove the claim, let's consider the exact sequence
formed by the pair $X = D^2$ and $A = S^1$.
\begin{example}[The long exact sequence for $(X,A) = (D^2, S^1)$]
	Consider $D^2$ (which is contractible) with boundary $S^1$.
	Clearly $S^1$ is a deformation retraction of $D^2 \setminus \{0\}$,
	and if we fuse all points on the boundary together we get $D^2 / S^1 \cong S^2$.
	So we have a long exact sequence
	\begin{center}
	\begin{tikzcd}
		\wt H_2(S^1) \ar[r] & \underbrace{\wt H_2(D^2)}_{=0} \ar[r] & \wt H_2(S^2) \ar[lld] \\
		\wt H_1(S^1) \ar[r] & \underbrace{\wt H_1(D^2)}_{=0} \ar[r] & \wt H_1(S^2) \ar[lld] \\
		\wt H_0(S^1) \ar[r] & \underbrace{\wt H_0(D^2)}_{=0} \ar[r] & \underbrace{\wt H_0(S^2)}_{=0}
	\end{tikzcd}
	\end{center}
	From this diagram we read that
	\[
		\dots, \quad
		\wt H_3(S^2) = \wt H_2(S^1), \quad
		\wt H_2(S^2) = \wt H_1(S^1), \quad
		\wt H_1(S^2) = \wt H_0(S^1).
	\]
\end{example}
More generally, the exact sequence for the pair $(X,A) = (D^m, S^{m-1})$
shows that $\wt H_n(S^m) \cong \wt H_{n-1}(S^{m-1})$,
which is the desired conclusion.

\section{Invariance of dimension}
Here is one last example of an application of excision.
\begin{definition}
	Let $X$ be a space and $p \in X$ a point.
	The $k$th \vocab{local homology group} of $p$ at $X$ is defined as
	\[ H_k(X, X \setminus \{p\}). \]
\end{definition}
Note that for any open neighborhood $U$ of $p$, we have by excision that
\[ H_k(X, X \setminus \{p\}) \cong H_k(U, U \setminus \{p\}). \]
Thus this local homology group only depends on the space near $p$.

\begin{theorem}
	[Invariance of dimension, Brouwer 1910]
	Let $U \subseteq \RR^n$ and $V \subseteq \RR^m$ be nonempty open sets.
	If $U$ and $V$ are homeomorphic, then $m = n$.
\end{theorem}
\begin{proof}
	Consider a point $x \in U$ and its local homology groups. By excision,
	\[ H_k(\RR^n, \RR^n \setminus \{x\}) \cong
		H_k(U, U \setminus \{x\}). \]
	But since $\RR^n \setminus \{x\}$ is homotopic to $S^{n-1}$,
	the long exact sequence of \Cref{thm:long_exact_rel} tells us
	that
	\[
		H_k(\RR^n, \RR^n \setminus \{x\})
		\cong
		\begin{cases}
			\ZZ & k = n \\
			0 & \text{otherwise}.
		\end{cases}
	\]
	Analogously, given $y \in V$ we have
	\[ H_k(\RR^m, \RR^m \setminus\{y\}) \cong H_k(V, V\setminus\{y\}). \]
	If $U \cong V$, we thus
	deduce that
	\[ H_k(\RR^n, \RR^n\setminus\{x\}) \cong H_k(\RR^m, \RR^m\setminus\{y\}) \]
	for all $k$.  This of course can only happen if $m=n$.
\end{proof}

\section\problemhead
\begin{problem}
	Let $X = S^1 \times S^1$ and $Y = S^1 \vee S^1 \vee S^2$.
	Show that \[ H_n(X) \cong H_n(Y) \] for every integer $n$.
\end{problem}

\begin{problem}[Hatcher \S2.1 exercise 18]
	Consider $\QQ \subset \RR$.
	Compute $\wt H_1(\RR, \QQ)$.
	\begin{hint}
		Use \Cref{thm:long_exact_rel}.
	\end{hint}
	\begin{sol}
		We have an exact sequence
		\[
			\underbrace{\wt H_1(\RR)}_{=0}
			\to \wt H_1(\RR, \QQ) \to \wt H_0(\QQ) \to
			\underbrace{\wt H_0(\RR)}_{=0}.
		\]
		Now, since $\QQ$ is path-disconnected
		(i.e.\ no two of its points are path-connected)
		it follows that $\wt H_0(\QQ)$ consists of
		countably infinitely many copies of $\ZZ$.
	\end{sol}
\end{problem}

\begin{sproblem}
	What are the local homology groups of a topological $n$-manifold?
\end{sproblem}

\begin{problem}
	Let \[ X = \{(x,y) \mid x \ge 0\} \subseteq \RR^2 \]
	denote the half-plane.
	What are the local homology groups of points in $X$?
	% http://math.stackexchange.com/questions/350667/local-homology-group-a-homeomorphism-takes-the-boundary-to-the-boundary
\end{problem}

\begin{problem}
	[Brouwer-Jordan separation theorem,
	generalizing Jordan curve theorem]
	\yod
	Let $X \subseteq \RR^n$ be a subset
	which is homeomorphic to $S^{n-1}$.
	Prove that $\RR^n \setminus X$
	has exactly two path-connected components.
	\begin{hint}
		For any $n$, prove by induction for $k=1,\dots,n-1$ that
		(a) if $X$ is a subset of $S^n$ homeomorphic to $D^k$
		then $\wt H_i(S^n \setminus X) = 0$;
		(b) if $X$ is a subset of $S^n$ homeomorphic to $S^k$
		then $\wt H_i(S^n \setminus X) = \ZZ$ for $i=n-k-1$
		and $0$ otherwise.
	\end{hint}
	\begin{sol}
		This is shown in detail in Section 2.B of Hatcher.
	\end{sol}
\end{problem}