Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 33,606 Bytes
afd65d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
\chapter{Minkowski bound and class groups}
We now have a neat theory of unique factorization of ideals.
In the case of a PID, this in fact gives us a UFD. Sweet.

We'll define, in a moment, something called the \emph{class group}
which measures how far $\OO_K$ is from being a PID;
the bigger the class group, the farther $\OO_K$ is from being a PID.
In particular, the $\OO_K$ is a PID if it has trivial class group.

Then we will provide some inequalities which let us put restrictions on the class group;
for instance, this will let us show in some cases that the class group must be trivial.
Astonishingly, the proof will use Minkowski's theorem, a result from geometry.

\section{The class group}
\prototype{PID's have trivial class group.}
Let $K$ be a number field,
and let $J_K$ denote the multiplicative group of fractional ideals of $\OO_K$.
Let $P_K$ denote the multiplicative group of \vocab{principal fractional ideals}:
those of the form $(x) = x \OO_K$ for some $x \in K$.
\begin{ques}
Check that $P_K$ is also a multiplicative group.
(This is really easy: name $x\OO_K \cdot y\OO_K$ and $(x\OO_K)\inv$.)
\end{ques}
As $J_K$ is abelian, we can now define the \vocab{class group} to be the quotient
\[ \Cl_K \defeq J_K / P_K. \]
The elements of $\Cl_K$ are called \vocab{classes}.

Equivalently,
\begin{moral}
The class group $\Cl_K$ is the set of nonzero fractional ideals modulo
scaling by a constant in $K$.
\end{moral}
In particular, $\Cl_K$ is trivial if all ideals are principal,
since the nonzero principal ideals are the same up to scaling.

The size of the class group is called the \vocab{class number}.
It's a beautiful theorem that the class number is always finite,
and the bulk of this chapter will build up to this result.
It requires several ingredients.


\section{The discriminant of a number field}
\prototype{Quadratic fields.}
Let's say I have $K = \QQ(\sqrt 2)$.
As we've seen before, this means $\OO_K = \ZZ[\sqrt 2]$, meaning
\[ \OO_K = \left\{ a + b \sqrt 2 \mid a,b \in \ZZ \right\}. \]
The key insight now is that you might think of this as a \emph{lattice}:
geometrically, we want to think about this the same way we think about $\ZZ^2$.

Perversely, we might try to embed this into $\QQ^2$ by sending $a+b\sqrt 2$ to $(a, b)$.
But this is a little stupid, since we're rudely making $K$,
which somehow lives inside $\RR$ and is
``one-dimensional'' in that sense, into a two-dimensional space.
It also depends on a choice of basis, which we don't like.
A better way is to think about the fact that there are two embeddings
$\sigma_1 : K \to \CC$ and $\sigma_2 : K \to \CC$, namely the identity, and conjugation:
\begin{align*}
	\sigma_1(a+b\sqrt2) &= a+b\sqrt 2 \\
	\sigma_2(a+b\sqrt2) &= a-b\sqrt 2.
\end{align*}
Fortunately for us, these embeddings both have real image.
This leads us to consider the set of points
\[ \left( \sigma_1(\alpha), \sigma_2(\alpha) \right) \in \RR^2
\quad\text{as}\quad \alpha \in K. \]
This lets us visualize what $\OO_K$ looks like in $\RR^2$.
The points of $K$ are dense in $\RR^2$, but the points of $\OO_K$ cut out a lattice.

\begin{center}
	\begin{asy}
		size(8cm);
		real T = 1.414;
		int N = 10;
		real M = 5;
		for (int a = -N; a <= N; ++a) {
			for (int b = -N; b <= N; ++b) {
				if ((abs(a+T*b) <= M) && (abs(a-T*b) <= M))
				dot( (a+T*b, a-T*b) );
			}
		}
		draw( (-M,0)--(M,0), dotted);
		draw( (0,-M)--(0,M), dotted);
		label("$-2$", (-2,-2), dir(135));
		label("$-1$", (-1,-1), dir(135));
		label("$0$", (0,0), dir(135));
		label("$1$", (1,1), dir(135));
		label("$2$", (2,2), dir(135));
		label("$-\sqrt 2$", (-T,T), dir(135));
		label("$\sqrt 2$", (T,-T), dir(-45));
		label("$1+\sqrt 2$", (1+T,1-T), dir(-45));

		filldraw((0,0)--(1,1)--(1+T,1-T)--(T,-T)--cycle, heavycyan, blue);
	\end{asy}
\end{center}

To see how big the lattice is, we look at how $\{1, \sqrt2\}$, the generators
of $\OO_K$, behave.
The point corresponding to $a+b\sqrt2$ in the lattice is
\[ a \cdot (1,1) + b \cdot (\sqrt 2, -\sqrt 2). \]
The \vocab{mesh} of the lattice\footnote{Most authors call this the volume, but I
think this is not the right word to use -- lattices have ``volume'' zero since they
are just a bunch of points! In contrast, the English word ``mesh'' really
does refer to the width of a ``gap''.}
is defined as the hypervolume of the ``fundamental parallelepiped'' I've colored blue above.
For this particular case, it ought to be equal to the
area of that parallelogram, which is
\[
	\det
	\begin{bmatrix}
		1 & -\sqrt 2 \\
		1 & \sqrt 2
	\end{bmatrix}
	= 2\sqrt 2.
\]
The definition of the discriminant is precisely this, except with an extra square factor
(since permutation of rows could lead to changes in sign in the matrix above).
\Cref{prob:trace_discriminant} shows that the squaring makes $\Delta_K$ an integer.

To make the next definition, we invoke:
\begin{theorem}[The $n$ embeddings of a number field]
	Let $K$ be a number field of degree $n$.
	Then there are exactly $n$ field homomorphisms $K \injto \CC$,
	say $\sigma_1, \dots, \sigma_n$, which fix $\QQ$.
\end{theorem}
\begin{proof}
	Deferred to \Cref{thm:n_embeddings}, once we have the tools of Galois theory.
\end{proof}
In fact, in \Cref{thm:conj_distrb} we see that
for $\alpha \in K$, we have that $\sigma_i(\alpha)$
runs over the conjugates of $\alpha$ as $i=1,\dots,n$.
It follows that
\[
	\Tr_{K/\QQ}(\alpha) = \sum_{i=1}^n \sigma_i(\alpha)
	\quad\text{and}\quad
	\Norm_{K/\QQ}(\alpha) = \prod_{i=1}^n \sigma_i(\alpha).
\]

This allows us to define:
\begin{definition}
	Suppose $\alpha_1, \dots, \alpha_n$ is a $\ZZ$-basis of $\OO_K$.
	The \vocab{discriminant} of the number field $K$ is defined by
	\[
	\Delta_K \defeq \det
	\begin{bmatrix}
		\sigma_1(\alpha_1) & \dots & \sigma_n(\alpha_1) \\
		\vdots & \ddots & \vdots \\
		\sigma_1(\alpha_n) & \dots & \sigma_n(\alpha_n) \\
	\end{bmatrix}^2.
	\]
\end{definition}
This does not depend on the choice of the $\{\alpha_i\}$;
we will not prove this here.
\begin{example}[Discriminant of $K = \QQ(\sqrt2)$]
	We have $\OO_K = \ZZ[\sqrt 2]$
	and as discussed above the discriminant is
	\[
		\Delta_K =
		(-2 \sqrt 2)^2 = 8.
	\]
\end{example}
\begin{example}[Discriminant of $\QQ(i)$]
	Let $K = \QQ(i)$.
	We have $\OO_K = \ZZ[i] = \ZZ \oplus i \ZZ$.
	The embeddings are the identity and complex conjugation
	which take $1$ to $(1,1)$ and $i$ to $(i, -i)$.
	So
	\[
		\Delta_K =
		\det
		\begin{bmatrix}
			1 & 1 \\
			i & -i
		\end{bmatrix}^2
		=
		(-2i)^2 = -4.
	\]
	This example illustrates that the discriminant need not be positive
	for number fields which wander into the complex plane
	(the lattice picture is a less perfect analogy).
	But again, as we'll prove in the problems the discriminant is always
	an integer.
\end{example}
\begin{example}
	[Discriminant of $\QQ(\sqrt 5)$]
	Let $K = \QQ(\sqrt5)$.
	This time, $\OO_K = \ZZ \oplus \frac{1+\sqrt5}{2} \ZZ$, and so the discriminant
	is going to look a little bit different.
	The embeddings are still $a+b\sqrt 5 \mapsto a+b\sqrt5, a-b\sqrt5$.

	Applying this to the $\ZZ$-basis $\left\{ 1, \frac{1+\sqrt5}{2} \right\}$, we get
	\[
		\Delta_K
		=
		\det
		\begin{bmatrix}
			1 & 1 \\
			\frac{1+\sqrt5}{2} & \frac{1-\sqrt5}{2}
		\end{bmatrix}^2
		= (-\sqrt 5)^2 = 5.
	\]
\end{example}
\begin{exercise}
	Extend all this to show that
	if $K = \QQ(\sqrt d)$ for $d \neq 1$ squarefree, we have
	\[
		\Delta_K =
		\begin{cases}
			d & \text{if } d \equiv 1 \pmod 4 \\
			4d & \text{if } d \equiv 2, 3 \pmod 4.
		\end{cases}
	\]
\end{exercise}

Actually, let me point out something curious: recall that the polynomial discriminant of $Ax^2+Bx+C$ is $B^2-4AC$. Then:
\begin{itemize}
	\ii In the $d \equiv 1 \pmod 4$ case,
	$\Delta_K$ is the discriminant of $x^2 - x - \frac{d-1}{4}$,
	which is the minimal polynomial of $\half(1+\sqrt d)$.
	Of course, $\OO_K = \ZZ[\half(1+\sqrt d)]$.
	\ii In the $d \equiv 2,3 \pmod 4$ case,
	$\Delta_K$ is the discriminant of $x^2 - d$
	which is the minimal polynomial of $\sqrt d$. Once again, $\OO_K = \ZZ[\sqrt d]$.
\end{itemize}
This is not a coincidence! \Cref{prob:root_discriminant} asserts that this is true in general;
hence the name ``discriminant''.

\section{The signature of a number field}
\prototype{$\QQ(\sqrt[100]{2})$ has signature $(2, 49)$.}
In the example of $K = \QQ(i)$,
we more or less embedded $K$ into the space $\CC$.
However, $K$ is a degree two extension,
so what we'd really like to do is embed it into $\RR^2$.
To do so, we're going to take advantage of complex conjugation.

Let $K$ be a number field and $\sigma_1, \dots, \sigma_n$ be its embeddings.
We distinguish between the \vocab{real embeddings}
(which map all of $K$ into $\RR$)
and the \vocab{complex embeddings}
(which map some part of $K$ outside $\RR$).
Notice that if $\sigma$ is a complex embedding,
then so is the conjugate $\ol{\sigma} \ne \sigma$;
hence complex embeddings come in pairs.

\begin{definition}
	Let $K$ be a number field of degree $n$, and set
	\begin{align*}
		r_1 &= \text{number of real embeddings} \\
		r_2 &= \text{number of pairs of complex embeddings}.
	\end{align*}
	The \vocab{signature} of $K$ is the pair $(r_1, r_2)$.
	Observe that $r_1 + 2r_2 = n$.
\end{definition}
\begin{example}[Basic examples of signatures]
	\listhack
	\begin{enumerate}[(a)]
		\ii $\QQ$ has signature $(1,0)$.
		\ii $\QQ(\sqrt 2)$ has signature $(2,0)$.
		\ii $\QQ(i)$ has signature $(0,1)$.
		\ii Let $K = \QQ(\sqrt[3]{2})$, and let $\omega$ be a cube root of unity.
		The elements of $K$ are
		\[ K = \left\{ a + b\cbrt2 + c\cbrt4 \mid a,b,c \in \QQ  \right\}. \]
		Then the signature is $(1,1)$, because the three embeddings are
		\[ \sigma_1 : \cbrt 2 \mapsto \cbrt 2,
			\quad
			\sigma_2 : \cbrt 2 \mapsto \cbrt 2 \omega,
			\quad
			\sigma_3 : \cbrt 2 \mapsto \cbrt 2 \omega^2. \]
		The first of these is real and the latter two are conjugate pairs.
	\end{enumerate}
\end{example}
\begin{example}[Even more signatures]
	In the same vein $\QQ(\sqrt[99]{2})$ and $\QQ(\sqrt[100]{2})$
	have signatures $(1,49)$ and $(2,49)$.
\end{example}
\begin{ques}
	Verify the signatures of the above two number fields.
\end{ques}

From now on, we will number the embeddings of $K$ in such a way that
\[ \sigma_1, \sigma_2, \dots, \sigma_{r_1}  \]are the real embeddings,
while
\[
	\sigma_{r_1+1} = \ol{\sigma_{r_1+r_2+1}}, \quad
	\sigma_{r_1+2} = \ol{\sigma_{r_1+r_2+2}}, \quad
	\dots, \quad
	\sigma_{r_1+r_2} = \ol{\sigma_{r_1+2r_2}}.
\]
are the $r_2$ pairs of complex embeddings.
We define the \vocab{canonical embedding} of $K$ as
\[
	K \overset\iota\injto \RR^{r_1} \times \CC^{r_2} \
	\quad\text{by}\quad
	\alpha \mapsto  \left( \sigma_1(\alpha), \dots, \sigma_{r_1}(\alpha),
	\sigma_{r_1+1}(\alpha), \dots, \sigma_{r_1+r_2}(\alpha) \right).
\]
All we've done is omit, for the complex case, the second of the embeddings in each conjugate pair.
This is no big deal, since they are just conjugates;
the above tuple is all the information we need.

For reasons that will become obvious in a moment, I'll let $\tau$ denote the isomorphism
\[
	\tau : \RR^{r_1} \times \CC^{r_2} \taking{\sim} \RR^{r_1+2r_2} = \RR^n
\]
by breaking each complex number into its real and imaginary part, as
\begin{align*}
\alpha \mapsto  \big(& \sigma_1(\alpha), \dots, \sigma_{r_1}(\alpha), \\
& \Re \sigma_{r_1+1}(\alpha), \;\; \Im \sigma_{r_1+1}(\alpha), \\
& \Re \sigma_{r_1+2}(\alpha), \;\; \Im \sigma_{r_1+2}(\alpha), \\
& \dots, \\
& \Re \sigma_{r_1+r_2}(\alpha), \;\; \Im \sigma_{r_1+r_2}(\alpha) \big).
\end{align*}
\begin{example}[Example of canonical embedding]
	As before let $K = \QQ(\sqrt[3]{2})$ and set
	\[ \sigma_1 : \cbrt 2 \mapsto \cbrt 2,
		\quad
		\sigma_2 : \cbrt 2 \mapsto \cbrt 2 \omega,
		\quad
		\sigma_3 : \cbrt 2 \mapsto \cbrt 2 \omega^2 \]
	where $\omega = - \half + \frac{\sqrt3}{2} i$,
	noting that we've already arranged indices so $\sigma_1 = \id$ is real
	while $\sigma_2$ and $\sigma_3$ are a conjugate pair.
	So the embeddings $K \overset\iota\injto \RR \times \CC \taking\sim \RR^3$ are given by
	\[
		\alpha \overset\iota\longmapsto \left( \sigma_1(\alpha), \sigma_2(\alpha) \right)
		\overset\tau\longmapsto \left( \sigma_1(\alpha), \; \Re\sigma_2(\alpha), \; \Im\sigma_2(\alpha)  \right). \]
	For concreteness, taking $\alpha = 9 + \cbrt 2$ gives
	\begin{align*}
		9 + \cbrt 2 &\overset\iota\mapsto
		\left( 9 + \cbrt 2, \;\; 9 + \cbrt2\omega \right) \\
		&= \left( 9 + \cbrt 2, \;\;
		9 - \half\cbrt2 + \frac{\sqrt[6]{108}}{2} i  \right) \in \RR \times \CC \\
		&\overset\tau\mapsto \left( 9 + \cbrt 2, \;\; 9 - \half \cbrt 2,
		\;\; \frac{\sqrt[6]{108}}{2}  \right) \in \RR^3.
	\end{align*}
\end{example}

Now, the whole point of this is that we want to consider the resulting lattice
when we take $\OO_K$. In fact, we have:
\begin{lemma}
	\label{lem:vol_OK_mesh}
	Consider the composition of the embeddings $K \injto \RR^{r_1} \times \CC^{r_2} \taking\sim \RR^n$.
	Then as before, $\OO_K$ becomes a lattice $L$ in $\RR^n$, with mesh equal to
	\[ \frac{1}{2^{r_2}} \sqrt{\left\lvert \Delta_K \right\rvert}. \]
\end{lemma}
\begin{proof}
	Fun linear algebra problem (you just need to manipulate determinants).
	Left as \Cref{prob:OK_linalg}.
\end{proof}
From this we can deduce:
\begin{lemma}
	Consider the composition of the embeddings $K \injto \RR^{r_1} \times \CC^{r_2} \taking\sim \RR^n$.
	Let $\ka$ be an ideal in $\OO_K$.
	Then the image of $\ka$ is a lattice $L_\ka$ in $\RR^n$ with mesh equal to
	\[ \frac{\Norm(\ka)}{2^{r_2}} \sqrt{\left\lvert \Delta_K \right\rvert}. \]
\end{lemma}
\begin{proof}[Sketch of Proof]
	Let \[ d = \Norm(\ka) \defeq [\OO_K : \ka]. \]
	Then in the lattice $L_\ka$, we somehow only take $\frac 1d$th of the points
	which appear in the lattice $L$, which is why the area increases by a factor of $\Norm(\ka)$.
	To make this all precise I would need to do a lot more with lattices and geometry
	than I have space for in this chapter, so I will omit the details.
	But I hope you can see why this is intuitively true.
\end{proof}

\section{Minkowski's theorem}
Now I can tell you why I insisted we move from $\RR^{r_1} \times \CC^{r_2}$ to $\RR^n$.
In geometry, there's a really cool theorem of Minkowski's that goes as follows.
\begin{theorem}
	[Minkowski]
	Let $S \subseteq \RR^n$ be a convex set containing $0$
	which is centrally symmetric (meaning that $x \in S \iff -x \in S$).
	Let $L$ be a lattice with mesh $d$.
	If either
	\begin{enumerate}[(a)]
		\ii The volume of $S$ exceeds $2^n d$, or
		\ii The volume of $S$ equals $2^n d$ and $S$ is compact,
	\end{enumerate}
	then $S$ contains a nonzero lattice point of $L$.
\end{theorem}
\begin{ques}
	Show that the condition $0 \in S$ is actually extraneous
	in the sense that any nonempty, convex, centrally symmetric set contains the origin.
\end{ques}

\begin{proof}[Sketch of Proof]
	Part (a) is surprisingly simple and has a very olympiad-esque solution:
	it's basically Pigeonhole on areas.
	We'll prove part (a) in the special case $n=2$,
	$L = \ZZ^2$ for simplicity as the proof
	can easily be generalized to any lattice and any $n$.
	Thus we want to show that any such convex set $S$
	with area more than $4$ contains a lattice point.

	Dissect the plane into $2 \times 2$ squares
	\[ [2a-1, 2a+1] \times [2b-1, 2b+1] \]
	and overlay all these squares on top of each other.
	By the Pigeonhole Principle, we find there exist two points $p \neq q \in S$ which map to the same point.
	Since $S$ is symmetric, $-q \in S$. Then $\half (p-q) \in S$ (convexity) and is a nonzero lattice point.

	I'll briefly sketch part (b): the idea is to consider $(1+\eps) S$ for $\eps > 0$
	(this is ``$S$ magnified by a small factor $1+\eps$'').
	This satisfies condition (a). So for each $\eps > 0$ the set of nonzero lattice points in $(1+\eps) S$,
	say $S_\eps$, is a \emph{finite nonempty set} of (discrete) points
	(the ``finite'' part follows from the fact that $(1+\eps)S$ is bounded).
	So there has to be some point that's in $S_\eps$ for every $\eps > 0$ (why?), which implies it's in $S$.
\end{proof}

\section{The trap box}
The last ingredient we need is a set to apply Minkowski's theorem to.  I propose:
\begin{definition}
	Let $M$ be a positive real.
	In $\RR^{r_1} \times \CC^{r_2}$, define the box $S$ to be the
	set of points $(x_1, \dots, x_{r_1}, z_1, \dots, z_{r_2})$ such that
	\[
		\sum_{i=1}^{r_1} \left\lvert x_i \right\rvert
		+ 2 \sum_{j=1}^{r_2} \left\lvert z_j \right\rvert
		\le M.
	\]
	Note that this depends on the value of $M$.
\end{definition}

Think of this box as a \emph{mousetrap}: anything that falls in it is going to have a small norm,
and our goal is to use Minkowski to lure some nonzero element into it.

\begin{center}
	\begin{asy}
		size(6cm);
		real T = 1.414;
		int N = 10;
		real M = 3;

		real K = 2.4;
		filldraw( (K,0)--(0,K)--(-K,0)--(0,-K)--cycle, palered, darkred);
		label("$S$", (2*K/3,K/3), dir(45));

		for (int a = -N; a <= N; ++a) {
			for (int b = -N; b <= N; ++b) {
				if ((abs(a+T*b) <= M) && (abs(a-T*b) <= M))
				dot( (a+T*b, a-T*b) );
			}
		}
		draw( (-M,0)--(M,0), dotted);
		draw( (0,-M)--(0,M), dotted);
		label("$-2$", (-2,-2), dir(135));
		label("$-1$", (-1,-1), dir(135));
		label("$0$", (0,0), dir(135));
		label("$1$", (1,1), dir(135));
		label("$2$", (2,2), dir(135));
		label("$-\sqrt 2$", (-T,T), dir(135));
		label("$\sqrt 2$", (T,-T), dir(-45));
		label("$1+\sqrt 2$", (1+T,1-T), dir(-45));
	\end{asy}
\end{center}

That is, suppose $\alpha \in \ka$ falls into the box I've defined above, which means
\[
	M \ge
	\sum_{i=1}^{r_1} \left\lvert \sigma_i(\alpha) \right\rvert
	+ 2 \sum_{i=r_1+1}^{r_1+r_2} \left\lvert \sigma_i(\alpha) \right\rvert
	= \sum_{i=1}^{n} \left\lvert \sigma_i(\alpha) \right\rvert,
\]
where we are remembering that the last few $\sigma$'s come in conjugate pairs.
This looks like the trace, but the absolute values are in the way.
So instead, we apply AM-GM to obtain:
\begin{lemma}[Effect of the mousetrap]
	Let $\alpha \in \OO_K$, and suppose $\iota(\alpha)$ is in $S$
	(where $\iota : K \injto \RR^{r_1} \times \CC^{r_2}$ as usual).
	Then
	\[ \Norm_{K/\QQ}(\alpha)
		= \prod_{i=1}^n \left\lvert \sigma_i(\alpha) \right\rvert
		\le \left( \frac Mn \right)^n. \]
\end{lemma}
The last step we need to do is compute the volume of the box.
This is again some geometry I won't do, but take my word for it:
\begin{lemma}[Size of the mousetrap]
	Let $\tau : \RR^{r_1} \times \CC^{r_2} \taking\sim \RR^n$ as before.
	Then the image of $S$ under $\tau$ is a convex, compact, centrally symmetric set with volume
	\[ 2^{r_1} \cdot \left( \frac{\pi}{2} \right)^{r_2} \cdot \frac{M^n}{n!}. \]
\end{lemma}
\begin{ques}
	(Sanity check)
	Verify that the above is correct for the signatures $(r_1, r_2) = (2,0)$ and $(r_1,r_2) = (0,1)$,
	which are the possible signatures when $n=2$.
\end{ques}


\section{The Minkowski bound}
We can now put everything we have together to obtain the great Minkowski bound.
\begin{theorem}
	[Minkowski bound]
	Let $\ka \subseteq \OO_K$ be any nonzero ideal.
	Then there exists $0 \neq \alpha \in \ka$ such that
	\[ \Norm_{K/\QQ}(\alpha) \le \left( \frac 4\pi \right)^{r_2} \frac{n!}{n^n} \sqrt{\left\lvert \Delta_K \right\rvert}
	\cdot \Norm(\ka). \]
\end{theorem}
\begin{proof}
	This is a matter of putting all our ingredients together.
	Let's see what things we've defined already:
	\begin{center}
	\begin{tikzcd}
		K \ar[r, "\iota", hook]
			& \RR^{r_1} \times \CC^{r_2} \ar[r, "\tau"]
			& \RR^n \\
		& \text{box } S \ar[r, mapsto]
			& \tau\im(S)
			& \quad\text{with volume }
			2^{r_1} \left( \frac\pi2 \right)^{r_2} \frac{M^n}{n!} \\
		\OO_K \ar[rr, mapsto]
			&& \text{Lattice } L
			& \quad\text{with mesh }
			2^{-r_2} \sqrt{\left\lvert \Delta_K \right\rvert} \\
		\ka \ar[rr, mapsto]
			&& \text{Lattice } L_\ka
			& \quad\text{with mesh }
			2^{-r_2} \sqrt{\left\lvert \Delta_K \right\rvert} \Norm(\ka)
	\end{tikzcd}
	\end{center}
	Pick a value of $M$ such that the mesh of $L_\ka$
	equals $2^{-n}$ of the volume of the box.
	Then Minkowski's theorem gives that some $0 \neq \alpha \in \ka$ lands inside the box ---
	the mousetrap is configured to force $\Norm_{K/\QQ}(\alpha) \le \frac{1}{n^n} M^n$.
	The correct choice of $M$ is
	\[
		M^n
		= M^n \cdot 2^n \cdot \frac{\text{mesh}}{\text{vol box}}
		= 2^n \cdot \frac{n!}{2^{r_1} \cdot \left( \frac \pi 2 \right)^{r_2}}
		\cdot 2^{-r_2} \sqrt{\left\lvert \Delta_K \right\rvert} \Norm(\ka)
	\]
	which gives the bound after some arithmetic.
\end{proof}

\section{The class group is finite}
\begin{definition}
	Let
	$M_K = \left( \frac 4\pi \right)^{r_2} \frac{n!}{n^n} \sqrt{\left\lvert \Delta_K \right\rvert}$
	for brevity.
	Note that it is a constant depending on $K$.
\end{definition}
So that's cool and all, but what we really wanted was to show that
the class group is finite.
How can the Minkowski bound help?
Well, you might notice that we can rewrite it to say
\[ \Norm\left( (\alpha) \cdot \ka\inv \right) \le M_K \]
where $M_K$ is some constant depending on $K$, and $\alpha \in \ka$.
\begin{ques}
	Show that $(\alpha) \cdot \ka\inv$ is an integral ideal.
	(Unwind definitions.)
\end{ques}
But in the class group we \emph{mod out} by principal ideals like $(\alpha)$.
If we shut our eyes for a moment and mod out, the above statement becomes ``$\Norm(\ka\inv)\le M_K$''.
The precise statement of this is
\begin{corollary}
	\label{cor:class_rep_minkowski}
	Let $K$ be a number field, and pick a fractional ideal $J$.
	Then we can find $\alpha$ such that $\kb = (\alpha) \cdot J$ is integral
	and $\Norm(\kb) \le M_K$.
\end{corollary}
\begin{proof}
	For fractional ideals $I$ and $J$ write $I \sim J$ to mean
	that $I = (\alpha)J$ for some $\alpha$; then $\Cl_K$ is just modding out by $\sim$.
	Let $J$ be a fractional ideal.
	Then $J\inv$ is some other fractional ideal.
	By definition, for some $\alpha \in \OO_K$ we have that $\alpha J\inv$ is an integral ideal $\ka$.
	The Minkowski bound tells us that for some $x \in \ka$, we have $\Norm(x\ka\inv) \le M_K$.
	But $x\ka\inv \sim \ka\inv = (\alpha J\inv)\inv \sim J$.
\end{proof}

\begin{corollary}[Finiteness of class group]
	Class groups are always finite.
\end{corollary}
\begin{proof}
	For every class in $\Cl_K$,
	we can identify an integral ideal $\ka$ with norm less than $M_K$.
	We just have to show there are finitely many such integral ideals;
	this will mean there are finitely many classes.

	Suppose we want to build such an ideal $\ka = \kp_1^{e_1} \dots \kp_m^{e_m}$.
	Recall that a prime ideal $\kp_i$ must have some rational prime $p$ inside it,
	meaning $\kp_i$ divides $(p)$ and $p$ divides $\Norm(\kp_i)$.
	So let's group all the $\kp_i$ we want to build $\ka$ with based on which $(p)$ they came from.
	\begin{center}
		\begin{asy}
			size(4cm);
			label("$(2)$", (1,0), dir(90));
			for (int i=1; i <= 4; ++i) dot( (1, -i/4) );
			label("$(3)$", (2,0), dir(90));
			for (int i=1; i <= 6; ++i) dot( (2, -i/4) );
			label("$(5)$", (3,0), dir(90));
			for (int i=1; i <= 2; ++i) dot( (3, -i/4) );
			label("$\dots$", (4,0), dir(90));
		\end{asy}
	\end{center}
	To be more dramatic: imagine you have a \emph{cherry tree};
	each branch corresponds to a prime $(p)$
	and contains as cherries (prime ideals) the factors of $(p)$ (finitely many).
	Your bucket (the ideal $\ka$ you're building) can only hold a total weight
	(norm) of $M_K$.  So you can't even touch the branches higher than $M_K$.
	You can repeat cherries (oops),
	but the weight of a cherry on branch $(p)$ is definitely $\ge p$;
	all this means that the number of ways to build $\ka$ is finite.
\end{proof}

\section{Computation of class numbers}
\begin{definition}
The order of $\Cl_K$ is called the \vocab{class number} of $K$.
\end{definition}
\begin{remark}
	If $\Cl_K = 1$, then $\OO_K$ is a PID, hence a UFD.
\end{remark}

By computing the actual value of $M_K$,
we can quite literally build the entire ``cherry tree'' mentioned in the previous proof.
Let's give an example how!
\begin{proposition}
	The field $\QQ(\sqrt{-67})$ has class number $1$.
\end{proposition}
\begin{proof}
	Since $K = \QQ(\sqrt{-67})$ has signature $(0,1)$
	and discriminant $\Delta_K = -67$ (since $-67 \equiv 1 \pmod 4$)
	we can compute
	\[ M_K = \left( \frac 4\pi \right)^{1} \cdot \frac{2!}{2^2} \sqrt{67} \approx 5.2. \]
	That means we can cut off the cherry tree after $(2)$, $(3)$, $(5)$, since any
	cherries on these branches will necessarily have norm $\ge M_K$.
	We now want to factor each of these in $\OO_K = \ZZ[\theta]$, where $\theta = \frac{1+\sqrt{-67}}{2}$
	has minimal polynomial $x^2 - x + 17$.
	But something miraculous happens:
	\begin{itemize}
		\ii When we try to reduce $x^2-x+17 \pmod 2$, we get an irreducible polynomial $x^2-x+1$.
		By the factoring algorithm (\Cref{thm:factor_alg}) this means $(2)$ is prime.
		\ii Similarly, reducing mod $3$ gives $x^2-x+2$, which is irreducible.
		This means $(3)$ is prime.
		\ii Finally, for the same reason, $(5)$ is prime.
	\end{itemize}
	It's our lucky day;
	all of the ideals $(2)$, $(3)$, $(5)$ are prime (already principal).
	To put it another way,
	each of the three branches has only one (large) cherry on it.
	That means any time we put together an integral ideal with norm $\le M_K$,
	it is actually principal.
	In fact, these guys have norm $4$, $9$, $25$ respectively\dots
	so we can't even touch $(3)$ and $(5)$,
	and the only ideals we can get are $(1)$ and $(2)$ (with norms $1$ and $4$).

	Now we claim that's all.
	Pick a fractional ideal $J$.
	By \Cref{cor:class_rep_minkowski},
	we can find an integral ideal $\kb \sim J$ with $\Norm(\kb) \le M_K$.
	But by the above, either $\kb = (1)$ or $\kb = (2)$, both of which are principal,
	and hence trivial in $\Cl_K$.
	So $J$ is trivial in $\Cl_K$ too, as needed.
\end{proof}
Let's do a couple more.
\begin{theorem}[Gaussian integers {$\ZZ[i]$} form a UFD]
	The field $\QQ(i)$ has class number $1$.
\end{theorem}
\begin{proof}
	This is $\OO_K$ where $K = \QQ(i)$, so we just want $\Cl_K$ to be trivial.
	We have $M_K = \frac{2}{\pi}\sqrt{4} < 2$.
	So every class
	has an integral ideal of norm $\kb$ satisfying
	\[
		\Norm(\kb)
		\le \left( \frac4\pi \right)^{1} \cdot \frac{2!}{2^2} \cdot \sqrt{4}
		= \frac4\pi < 2.
	\]
	Well, that's silly: we don't have any branches to pick from at all.
	In other words, we can only have $\kb = (1)$.
\end{proof}

Here's another example of something that still turns out to be unique factorization,
but this time our cherry tree will actually have cherries that can be picked.
\begin{proposition}[{$\ZZ[\sqrt7]$} is a UFD]
	The field $\QQ(\sqrt7)$ has class number $1$.
\end{proposition}
\begin{proof}
	First we compute the Minkowski bound.
	\begin{ques}
		Check that $M_K \approx 2.646$.
	\end{ques}
	So this time, the only branch is $(2)$. Let's factor $(2)$ as usual: the polynomial $x^2+7$
	reduces as $(x-1)(x+1) \pmod 2$, and hence
	\[ (2) = \left( 2, \sqrt7-1 \right) \left( 2, \sqrt7+1 \right). \]
	Oops! We now have two cherries, and they both seem reasonable.
	But actually, I claim that
	\[ \left( 2, \sqrt7-1 \right) = \left( 3 - \sqrt 7 \right). \]
	\begin{ques}
		Prove this.
	\end{ques}
	So both the cherries are principal ideals, and as before we conclude that $\Cl_K$ is trivial.
	But note that this time, the prime ideal $(2)$ actually splits; we got lucky
	that the two cherries were principal but this won't always work.
\end{proof}

How about some nontrivial class groups?
First, we use a lemma that will help us with
narrowing down the work in our cherry tree.
\begin{lemma}[Ideals divide their norms]
	Let $\kb$ be an integral ideal with $\Norm(\kb) = n$.
	Then $\kb$ divides the ideal $(n)$.
\end{lemma}
\begin{proof}
	By definition, $n = \left\lvert \OO_K / \kb \right\rvert$.
	Treating $\OO_K/\kb$ as an (additive) abelian group and using Lagrange's theorem, we find
	\[ 0 \equiv
		\underbrace{\alpha + \dots + \alpha}_{n\text{ times}} = n\alpha
		\pmod \kb \qquad\text{for all } \alpha \in \OO_K. \]
	Thus $(n) \subseteq \kb$, done.
\end{proof}

Now we can give such an example.
\begin{proposition}[Class group of $\QQ(\sqrt{-17})$]
	The number field $K = \QQ(\sqrt{-17})$ has class group $\Zc 4$.
\end{proposition}
You are not obliged to read the entire proof in detail,
as it is somewhat gory.
The idea is just that there are some cherries which are not trivial in the class group.
\begin{proof}
Since $\Delta_K = -68$, we compute
the Minkowski bound
\[ M_K = \frac{4}{\pi} \sqrt{17} < 6. \]

Now, it suffices to factor with $(2)$, $(3)$, $(5)$.
The minimal polynomial of $\sqrt{-17}$ is $x^2+17$, so as usual
\begin{align*}
	(2) &= (2, \sqrt{-17}+1)^2 \\
	(3) &= (3, \sqrt{-17}-1)(3,\sqrt{-17}+1) \\
	(5) &= (5)
\end{align*}
corresponding to the factorizations of $x^2+17$ modulo each of $2$, $3$, $5$.
Set $\kp = (2, \sqrt{-17}+1)$ and $\kq_1 = (3, \sqrt{-17}-1)$, $\kq_2 = (3, \sqrt{-17}+1)$.
We can compute
\[ \Norm(\kp) = 2 \quad\text{and}\quad \Norm(\kq_1) = \Norm(\kq_2) = 3. \]
In particular, they are not principal.
The ideal $(5)$ is out the window; it has norm $25$.
Hence, the three cherries are $\kp$, $\kq_1$, $\kq_2$.

The possible ways to arrange these cherries into ideals with norm $\le 5$ are
\[ \left\{ (1), \kp, \kq_1, \kq_2, \kp^2 \right\}. \]
However, you can compute \[ \kp^2 = (2) \] so $\kp^2$ and $(1)$ are in the same class group;
that is, they are trivial.
In particular, the class group has order at most $4$.

From now on, let $[\ka]$ denote the class (member of the class group) that $\ka$ is in.
Since $\kp$ isn't principal (so $[\kp] \neq [(1)]$), it follows that $\kp$ has order two.
So Lagrange's theorem says that $\Cl_K$ has order either $2$ or $4$.

Now we claim $[\kq_1]^2 \neq [(1)]$, which implies that $\kq_1$ has order greater than $2$.
If not, $\kq_1^2$ is principal.
We know $\Norm(\kq_1) = 3$,
so this can only occur if $\kq_1^2 = (3)$;
this would force $\kq_1 = \kq_2$.
This is impossible since $\kq_1 + \kq_2 = (1)$.

Thus, $\kq_1$ has even order greater than $2$.
So it has to have order $4$.
From this we deduce \[ \Cl_K \cong \Zc 4. \qedhere \]
\end{proof}




\begin{remark}
	When we did this at Harvard during Math 129,
	there was a five-minute interruption in which students (jokingly) complained
	about the difficulty of evaluating $\frac{4}{\pi} \sqrt{17}$. Excerpt:
	\begin{quote}
		``Will we be allowed to bring a small calculator on the exam?'' -- Student 1 \\
		``What does the size have to do with anything?  You could have an Apple Watch'' -- Professor \\
		``Just use the fact that $\pi \ge 3$'' -- me \\
		``Even [other professor] doesn't know that, how are we supposed to?'' -- Student 2 \\
		``You have to do this yourself!'' -- Professor \\
		``This is an outrage.'' -- Student 1
	\end{quote}
\end{remark}
\section\problemhead
\begin{problem}
	Show that $K = \QQ(\sqrt{-163})$ has trivial class group,
	and hence $\OO_K = \ZZ\left[ \frac{1+\sqrt{-163}}{2} \right]$
	is a UFD.\footnote{In fact,
		$n = 163$ is the largest number
		for which $\QQ(\sqrt{-n})$ has trivial class group.
		The complete list is $1, 2, 3, 7, 11, 19, 43, 67, 163$,
		the \vocab{Heegner numbers}.
		You might notice Euler's prime-generating polynomial $t^2+t+41$
		when doing the above problem.  Not a coincidence!}
	\begin{hint}
		Repeat the previous procedure.
	\end{hint}
\end{problem}

\begin{problem}
	Determine the class group of $\QQ(\sqrt{-31})$.
	\begin{hint}
		You should get a group of order three.
	\end{hint}
\end{problem}

\begin{problem}[China TST 1998]
	Let $n$ be a positive integer.
	A polygon in the plane (not necessarily convex) has area greater than $n$.
	Prove that one can translate it so that it contains at least $n+1$ lattice points.
	\begin{hint}
		Mimic the proof of part (a) of Minkowski's theorem.
	\end{hint}
\end{problem}

\begin{problem}
	[\Cref{lem:vol_OK_mesh}]
	\label{prob:OK_linalg}
	Consider the composition of the embeddings $K \injto \RR^{r_1} \times \CC^{r_2} \taking\sim \RR^n$.
	Show that the image of $\OO_K \subseteq K$ has mesh equal to
	\[ \frac{1}{2^{r_2}} \sqrt{\left\lvert \Delta_K \right\rvert}. \]
	\begin{hint}
		Linear algebra.
	\end{hint}
\end{problem}

\begin{problem}
	Let $p \equiv 1 \pmod 4$ be a prime.
	Show that there are unique integers $a > b > 0$ such that $a^2+b^2=p$.
	\begin{hint}
		Factor in $\QQ(i)$.
	\end{hint}
%	\begin{sol}
%		Let's factor $(p)$ in $\QQ(i)$, which has ring of integers $\ZZ[i]$.
%		Using \Cref{thm:factor_alg}, we get $\ZZ[x] / (p,x^2+1) \cong \FF_p[x] / (x^2+1)$.
%		Since $p \equiv 1 \pmod 4$, $x^2+1 \equiv (x+t)(x-t) \pmod p$ for some $t$.
%		Thus $(p) = (p, t+i)(p, t-i)$ is the full decomposition into prime factors.
%	\end{sol}
\end{problem}


\begin{problem}
	[Korea national olympiad 2014]
	Let $p$ be an odd prime and $k$ a positive integer such that $p \mid k^2+5$.
	Prove that there exist positive integers $m$, $n$ such that $p^2 = m^2+5n^2$.
	\begin{hint}
		Factor $p$, show that the class group of $\QQ(\sqrt{-5})$ has order two.
	\end{hint}
	\begin{sol}
		Let $K = \QQ(\sqrt{-5})$. Check that $\Cl_K$ has order two using the Minkowski bound;
		moreover $\Delta_K = 20$.
		Now note that $\OO_K = \ZZ[\sqrt{-5}]$, and $x^2+5$ factors mod $p$ as $(x+k)(x-k)$;
		hence in $\OO_K$ we have $(p) = (p, \sqrt{-5}+k)(p, \sqrt{-5}-k) = \kp_1 \kp_2$, say.
		For $p > 5$ the prime $p$ does not ramify and we have $\kp_1 \neq \kp_2$, since $\Delta_K = 20$.

		Then $(p^2) = \kp_1^2 \cdot \kp_2^2$. Because the class group has order two,
		both $\kp_1^2$ and $\kp_2^2$ are principal, and because $\kp_1 \neq \kp_2$ they are distinct.
		Thus $p^2$ is a nontrivial product of two elements of $\OO_K$; from this we can extract the desired factorization.
	\end{sol}
\end{problem}