Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 36,688 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
:: A Construction of Analytical Projective Space
::  by Wojciech Leo\'nczuk and Krzysztof Pra\.zmowski

environ

 vocabularies RLVECT_1, SUBSET_1, REAL_1, RELAT_1, CARD_1, SUPINF_2, ARYTM_3,
      ARYTM_1, XCMPLX_0, EQREL_1, STRUCT_0, SETFAM_1, ZFMISC_1, XBOOLE_0,
      COLLSP, TARSKI, ANPROJ_1;
 notations TARSKI, XBOOLE_0, ZFMISC_1, XTUPLE_0, ORDINAL1, SUBSET_1, XCMPLX_0,
      XREAL_0, REAL_1, EQREL_1, SETFAM_1, NUMBERS, STRUCT_0, COLLSP, RLVECT_1,
      MCART_1;
 constructors REAL_1, EQREL_1, RLVECT_1, COLLSP, XTUPLE_0;
 registrations RELSET_1, STRUCT_0, RLVECT_1, COLLSP, XREAL_0, ORDINAL1;
 requirements NUMERALS, SUBSET, BOOLE, ARITHM;
 equalities STRUCT_0;
 expansions STRUCT_0;
 theorems RLVECT_1, RELAT_1, DOMAIN_1, FUNCSDOM, ANALOAF, TARSKI, EQREL_1,
      COLLSP, MCART_1, XCMPLX_0, XCMPLX_1, STRUCT_0, ZFMISC_1, XTUPLE_0;
 schemes EQREL_1, XBOOLE_0;

begin

reserve V for RealLinearSpace;
reserve p,q,r,u,v,w,y,u1,v1,w1 for Element of V;
reserve a,b,c,d,a1,b1,c1,a2,b2,c2,a3,b3,e,f for Real;

definition
  let V,p,q;

  pred are_Prop p,q means

  ex a,b st a*p = b*q & a<>0 & b<>0;
  reflexivity
  proof
    let p;
    1*p = 1*p;
    hence thesis;
  end;
  symmetry;
end;

theorem Th1:
  are_Prop p,q iff ex a st a<>0 & p = a*q
proof
A1: now
    assume are_Prop p,q;
    then consider a,b such that
A2: a*p = b*q and
A3: a<>0 and
A4: b<>0;
A5: a" <> 0 by A3,XCMPLX_1:202;
    p = 1*p by RLVECT_1:def 8
      .= (a"*a)*p by A3,XCMPLX_0:def 7
      .= (a")*(b*q) by A2,RLVECT_1:def 7
      .= (a"*b)*q by RLVECT_1:def 7;
    hence ex a st a<>0 & p = a*q by A4,A5,XCMPLX_1:6;
  end;
  now
    given a such that
A6: a<>0 and
A7: p = a*q;
    1*p = a*q by A7,RLVECT_1:def 8;
    hence are_Prop p,q by A6;
  end;
  hence thesis by A1;
end;

theorem Th2:
  are_Prop p,u & are_Prop u,q implies are_Prop p,q
proof
  assume that
A1: are_Prop p,u and
A2: are_Prop u,q;
  consider a,b such that
A3: a*p = b*u and
A4: a<>0 and
A5: b<>0 by A1;
  consider c,d such that
A6: c*u = d*q and
A7: c <>0 and
A8: d<>0 by A2;
  b" <>0 by A5,XCMPLX_1:202;
  then b"*a<>0 by A4,XCMPLX_1:6;
  then
A9: c*(b"*a)<>0 by A7,XCMPLX_1:6;
  (b"*a)*p = (b")*(b*u) by A3,RLVECT_1:def 7
    .= (b"*b)*u by RLVECT_1:def 7
    .= 1*u by A5,XCMPLX_0:def 7
    .= u by RLVECT_1:def 8;
  then d*q = (c*(b"*a))*p by A6,RLVECT_1:def 7;
  hence thesis by A8,A9;
end;

theorem Th3:
  are_Prop p,0.V iff p = 0.V
by RLVECT_1:11;

definition
  let V,u,v,w;
  pred u,v,w are_LinDep means

  ex a,b,c st a*u + b*v + c*w = 0.V & (a<>0 or b<>0 or c <>0);
end;

theorem Th4:
  are_Prop u,u1 & are_Prop v,v1 & are_Prop w,w1 & u,v,w are_LinDep
  implies u1,v1,w1 are_LinDep
proof
  assume that
A1: are_Prop u,u1 and
A2: are_Prop v,v1 and
A3: are_Prop w,w1 and
A4: u,v,w are_LinDep;
  consider b such that
A5: b<>0 and
A6: v = b*v1 by A2,Th1;
  consider a such that
A7: a<>0 and
A8: u = a*u1 by A1,Th1;
  consider d1,d2,d3 be Real such that
A9: d1*u + d2*v + d3*w = 0.V and
A10: d1<>0 or d2<>0 or d3<>0 by A4;
  consider c such that
A11: c <>0 and
A12: w = c*w1 by A3,Th1;
A13: d1*a<>0 or d2*b<>0 or d3*c <>0 by A7,A5,A11,A10,XCMPLX_1:6;
  0.V = (d1*a)*u1 + d2*(b*v1) + d3*(c*w1) by A8,A6,A12,A9,RLVECT_1:def 7
    .= (d1*a)*u1 + (d2*b)*v1 + d3*(c*w1) by RLVECT_1:def 7
    .= (d1*a)*u1 + (d2*b)*v1 + (d3*c)*w1 by RLVECT_1:def 7;
  hence thesis by A13;
end;

theorem Th5:
  u,v,w are_LinDep implies u,w,v are_LinDep & v,u,w are_LinDep & w
  ,v,u are_LinDep & w,u,v are_LinDep & v,w,u are_LinDep
proof
  assume u,v,w are_LinDep;
  then consider a,b,c such that
A1: a*u + b*v + c*w = 0.V and
A2: a<>0 or b<>0 or c <>0;
  a*u + c*w + b*v = 0.V & b*v + c*w + a*u = 0.V by A1,RLVECT_1:def 3;
  hence thesis by A1,A2;
end;

Lm1: a*v + b*w = 0.V implies a*v = (-b)*w
proof
  assume a*v + b*w = 0.V;
  then a*v = -b*w by RLVECT_1:6
    .= b*-w by RLVECT_1:25;
  hence thesis by RLVECT_1:24;
end;

Lm2: a*u + b*v + c*w = 0.V & a<>0 implies u = (-(a"*b))*v + (-(a"*c))*w
proof
  assume that
A1: a*u + b*v + c*w = 0.V and
A2: a<>0;
  a*u + b*v + c*w = a*u + (b*v + c*w) by RLVECT_1:def 3;
  then a*u = -(b*v + c*w) by A1,RLVECT_1:6
    .= -(b*v) + -(c*w) by RLVECT_1:31
    .= b*-v + -(c*w) by RLVECT_1:25
    .= b*-v + c*-w by RLVECT_1:25
    .= (-b)*v + c*-w by RLVECT_1:24
    .= (-b)*v + (-c)*w by RLVECT_1:24;
  hence u = a"*((-b)*v + (-c)*w) by A2,ANALOAF:5
    .= a"*((-b)*v) + a"*((-c)*w) by RLVECT_1:def 5
    .= (a"*(-b))*v + a"*((-c)*w) by RLVECT_1:def 7
    .= (-(a"*b))*v + (a"*(-c))*w by RLVECT_1:def 7
    .= (-(a"*b))*v + (-(a"*c))*w;
end;

theorem Th6:
  v is not zero & w is not zero & not are_Prop v,w implies (v,w,u
  are_LinDep iff ex a,b st u = a*v + b*w)
proof
  assume that
A1: v is not zero and
A2: w is not zero and
A3: not are_Prop v,w;
A4: w<>0.V by A2;
A5: v<>0.V by A1;
A6: v,w,u are_LinDep implies ex a,b st u = a*v + b*w
  proof
    assume v,w,u are_LinDep;
    then u,v,w are_LinDep by Th5;
    then consider a,b,c such that
A7: a*u + b*v + c*w = 0.V and
A8: a<>0 or b<>0 or c <>0;
    a<>0
    proof
      assume
A9:   a=0;
      then
A10:  0.V = 0.V + b*v + c*w by A7,RLVECT_1:10
        .= b*v + c*w;
A11:  b <> 0
      proof
        assume
A12:    b=0;
        then 0.V = 0.V + c*w by A10,RLVECT_1:10
          .= c*w;
        hence thesis by A4,A8,A9,A12,RLVECT_1:11;
      end;
A13:  c <> 0
      proof
        assume
A14:    c =0;
        then 0.V = b*v + 0.V by A10,RLVECT_1:10
          .= b*v;
        hence thesis by A5,A8,A9,A14,RLVECT_1:11;
      end;
      b*v = (-c)*w by A10,Lm1;
      then b=0 or -c =0 by A3;
      hence contradiction by A11,A13;
    end;
    then u = (-(a"*b))*v + (-(a"*c))*w by A7,Lm2;
    hence thesis;
  end;
  (ex a,b st u = a*v + b*w) implies v,w,u are_LinDep
  proof
    given a,b such that
A15: u = a*v + b*w;
    0.V = a*v + b*w + -u by A15,RLVECT_1:5
      .= a*v + b*w + (-1)*u by RLVECT_1:16;
    hence thesis;
  end;
  hence thesis by A6;
end;

Lm3: (a+b+c)*p = a*p + b*p + c*p
proof
  thus (a+b+c)*p = (a+b)*p + c*p by RLVECT_1:def 6
    .= a*p + b*p + c*p by RLVECT_1:def 6;
end;

Lm4: (u+v+w) + (u1+v1+w1) = (u+u1)+(v+v1)+(w+w1)
proof
  thus (u+u1)+(v+v1)+(w+w1) = u1+(u+(v+v1))+(w+w1) by RLVECT_1:def 3
    .= u1+(v1+(u+v))+(w+w1) by RLVECT_1:def 3
    .= (u1+v1)+(u+v)+(w+w1) by RLVECT_1:def 3
    .= (u1+v1)+((u+v)+(w+w1)) by RLVECT_1:def 3
    .= (u1+v1)+(w1+(u+v+w)) by RLVECT_1:def 3
    .= (u+v+w) + (u1+v1+w1) by RLVECT_1:def 3;
end;

Lm5: (a*a1)*p + (a*b1)*q = a*(a1*p + b1*q)
proof
  thus (a*a1)*p+(a*b1)*q = a*(a1*p)+(a*b1)*q by RLVECT_1:def 7
    .= a*(a1*p)+a*(b1*q) by RLVECT_1:def 7
    .= a*(a1*p+b1*q) by RLVECT_1:def 5;
end;

theorem
  not are_Prop p,q & a1*p + b1*q = a2*p + b2*q & p is not zero & q is
  not zero implies a1 = a2 & b1 = b2
proof
  assume that
A1: not are_Prop p,q and
A2: a1*p + b1*q = a2*p + b2*q and
A3: p is not zero and
A4: q is not zero;
  a2*p + b2*q + -b1*q = a1*p + (b1*q + -b1*q) by A2,RLVECT_1:def 3
    .= a1*p + 0.V by RLVECT_1:5
    .= a1*p;
  then a1*p = (b2*q + -b1*q) + a2*p by RLVECT_1:def 3
    .= (b2*q - b1*q) + a2*p by RLVECT_1:def 11
    .= (b2-b1)*q + a2*p by RLVECT_1:35;
  then a1*p + -a2*p = (b2-b1)*q + (a2*p + -a2*p) by RLVECT_1:def 3
    .= (b2-b1)*q + 0.V by RLVECT_1:5
    .= (b2-b1)*q;
  then
A5: (b2-b1 )*q = a1*p - a2*p by RLVECT_1:def 11
    .= (a1-a2)*p by RLVECT_1:35;
A6: q<>0.V by A4;
A7: now
    assume
A8: a1-a2=0;
    then (b2-b1)*q = 0.V by A5,RLVECT_1:10;
    then b2-b1=0 by A6,RLVECT_1:11;
    hence thesis by A8;
  end;
A9: p<>0.V by A3;
  now
    assume
A10: b2-b1=0;
    then (a1-a2)*p = 0.V by A5,RLVECT_1:10;
    then a1-a2=0 by A9,RLVECT_1:11;
    hence thesis by A10;
  end;
  hence thesis by A1,A5,A7;
end;

Lm6: p + a*v = q + b*v implies (a-b)*v + p = q
proof
  assume p + a*v = q + b*v;
  then p + a*v + -b*v = q + (b*v + -b*v) by RLVECT_1:def 3
    .= q + 0.V by RLVECT_1:5
    .= q;
  then q = p + (a*v + -b*v) by RLVECT_1:def 3
    .= p + (a*v - b*v) by RLVECT_1:def 11
    .= p + (a-b)*v by RLVECT_1:35;
  hence thesis;
end;

theorem
  not u,v,w are_LinDep & a1*u + b1*v + c1*w = a2*u + b2*v + c2*w implies
  a1 = a2 & b1 = b2 & c1 = c2
proof
A1: a1*u + b1*v + c1*w = a2*u + b2*v + c2*w implies (a1-a2)*u + (b1-b2)*v +
  (c1-c2)*w = 0.V
  proof
    assume a1*u + b1*v + c1*w = a2*u + b2*v + c2*w;
    then (c1-c2)*w + (a1*u + b1*v) = a2*u + b2*v by Lm6;
    then ((c1-c2)*w + a1*u) + b1*v = a2*u + b2*v by RLVECT_1:def 3;
    then (b1-b2)*v + ((c1-c2)*w + a1*u) = a2*u by Lm6;
    then ((b1-b2)*v + (c1-c2)*w) + a1*u = a2*u by RLVECT_1:def 3;
    then ((b1-b2)*v + (c1-c2)*w) + a1*u = 0.V + a2*u;
    then (a1-a2)*u + ((b1-b2)*v + (c1-c2)*w) = 0.V by Lm6;
    hence thesis by RLVECT_1:def 3;
  end;
  assume
A2: ( not u,v,w are_LinDep)& a1*u + b1*v + c1*w = a2*u + b2*v + c2*w;
  then
A3: c1 - c2 = 0 by A1;
  a1 - a2 = 0 & b1 - b2 = 0 by A2,A1;
  hence thesis by A3;
end;

theorem Th9:
  not are_Prop p,q & u = a1*p + b1*q & v = a2*p + b2*q & a1*b2 -
a2*b1=0 & p is not zero & q is not zero implies (are_Prop u,v or u = 0.V or v =
  0.V)
proof
  assume that
A1: not are_Prop p,q and
A2: u = a1*p + b1*q and
A3: v = a2*p + b2*q and
A4: a1*b2 - a2*b1=0 and
A5: p is not zero & q is not zero;
  now
    assume that
    u <> 0.V and
    v <> 0.V;
A6: for p,q,u,v,a1,a2,b1,b2 st not are_Prop p,q & u = a1*p + b1*q & v =
a2*p + b2*q & a1*b2 - a2*b1=0 & p is not zero & q is not zero & a1=0 & u <> 0.V
    & v <> 0.V holds are_Prop u,v
    proof
      let p,q,u,v,a1,a2,b1,b2;
      assume that
      not are_Prop p,q and
A7:   u = a1*p + b1*q and
A8:   v = a2*p + b2*q and
A9:   a1*b2 - a2*b1=0 and
      p is not zero and
      q is not zero and
A10:  a1=0 and
A11:  u <> 0.V and
A12:  v <> 0.V;
      0= (-a2)*b1 by A9,A10;
      then
A13:  -a2=0 or b1=0 by XCMPLX_1:6;
A14:  now
        assume b1=0;
        then u=0.V+0*q by A7,A10,RLVECT_1:10
          .= 0.V+0.V by RLVECT_1:10;
        hence contradiction by A11;
      end;
      then
A15:  b1"<>0 by XCMPLX_1:202;
A16:  now
        assume b2*b1"=0;
        then b2=0 by A15,XCMPLX_1:6;
        then v = 0.V + 0*q by A8,A13,A14,RLVECT_1:10
          .= 0.V + 0.V by RLVECT_1:10;
        hence contradiction by A12;
      end;
      u = 0.V + b1*q by A7,A10,RLVECT_1:10;
      then
A17:  u = b1*q;
      v = 0.V + b2*q by A8,A13,A14,RLVECT_1:10;
      then v = b2*q;
      then v = b2*(b1"*u) by A14,A17,ANALOAF:5;
      then v = (b2*b1")*u by RLVECT_1:def 7;
      then 1*v = (b2*b1")*u by RLVECT_1:def 8;
      hence thesis by A16;
    end;
    now
      assume that
A18:  a1<>0 and
A19:  a2<>0;
A20:  now
        a1"<>0 by A18,XCMPLX_1:202;
        then
A21:    a2*a1" <> 0 by A19,XCMPLX_1:6;
        assume
A22:    b1=0;
        then b2=0 by A4,A18,XCMPLX_1:6;
        then v = a2*p + 0.V by A3,RLVECT_1:10;
        then
A23:    v = a2*p;
        u = a1*p + 0.V by A2,A22,RLVECT_1:10;
        then u = a1*p;
        then v = a2*(a1"*u) by A18,A23,ANALOAF:5
          .= (a2*a1")*u by RLVECT_1:def 7;
        then 1*v = (a2*a1")*u by RLVECT_1:def 8;
        hence are_Prop u,v by A21;
      end;
      now
A24:    b2*u = (a1*b2)*p + (b2*b1)*q & b1*v = (a2*b1)*p + (b1*b2)*q by A2,A3
,Lm5;
        assume
A25:    b1<>0;
        then b2 <> 0 by A4,A19,XCMPLX_1:6;
        hence are_Prop u,v by A4,A25,A24;
      end;
      hence thesis by A20;
    end;
    hence thesis by A1,A2,A3,A4,A5,A6;
  end;
  hence thesis;
end;

theorem Th10:
  (u = 0.V or v = 0.V or w = 0.V) implies u,v,w are_LinDep
proof
A1: for u,v,w st u=0.V holds u,v,w are_LinDep
  proof
    let u,v,w such that
A2: u=0.V;
    0.V = 0.V + 0.V
      .= 1*u + 0.V by A2
      .= 1*u + 0 * v by RLVECT_1:10
      .= 1*u + 0*v + 0.V
      .= 1*u + 0*v + 0*w by RLVECT_1:10;
    hence thesis;
  end;
A3: now
    assume v=0.V;
    then v,w,u are_LinDep by A1;
    hence thesis by Th5;
  end;
A4: now
    assume w=0.V;
    then w,u,v are_LinDep by A1;
    hence thesis by Th5;
  end;
  assume u=0.V or v=0.V or w=0.V;
  hence thesis by A1,A3,A4;
end;

theorem Th11:
  (are_Prop u,v or are_Prop w,u or are_Prop v,w) implies w,u,v are_LinDep
proof
A1: for u,v,w st are_Prop u,v holds w,u,v are_LinDep
  proof
    let u,v,w;
A2: 0*w = 0.V by RLVECT_1:10;
    assume are_Prop u,v;
    then consider a,b such that
A3: a*u = b*v and
A4: a<>0 and
    b<>0;
    0.V=a*u + -b*v by A3,RLVECT_1:5
      .= a*u + (-1)*(b*v) by RLVECT_1:16
      .= a*u + (-1)*b*v by RLVECT_1:def 7;
    then 0.V=0*w + a*u + (-1)*b*v by A2;
    hence thesis by A4;
  end;
A5: now
    assume are_Prop w,u;
    then v,w,u are_LinDep by A1;
    hence thesis by Th5;
  end;
A6: now
    assume are_Prop v,w;
    then u,v,w are_LinDep by A1;
    hence thesis by Th5;
  end;
  assume are_Prop u,v or are_Prop w,u or are_Prop v,w;
  hence thesis by A1,A5,A6;
end;

theorem Th12:
  not u,v,w are_LinDep implies u is not zero & v is not zero & w
  is not zero & not are_Prop u,v & not are_Prop v,w & not are_Prop w,u
by Th10,Th11;

theorem Th13:
  p + q = 0.V implies are_Prop p,q
proof
  assume p + q = 0.V;
  then q = -p by RLVECT_1:def 10;
  then q = (-1)*p by RLVECT_1:16;
  hence thesis by Th1;
end;

theorem Th14:
  not are_Prop p,q & p,q,u are_LinDep & p,q,v are_LinDep & p,q,w
  are_LinDep & p is not zero & q is not zero implies u,v,w are_LinDep
proof
  assume that
A1: not are_Prop p,q and
A2: p,q,u are_LinDep and
A3: p,q,v are_LinDep and
A4: p,q,w are_LinDep and
A5: p is not zero & q is not zero;
  consider a1,b1 such that
A6: u = a1*p + b1*q by A1,A2,A5,Th6;
  consider a3,b3 such that
A7: w = a3*p + b3*q by A1,A4,A5,Th6;
  consider a2,b2 such that
A8: v = a2*p + b2*q by A1,A3,A5,Th6;
  set a = a2*b3 - a3*b2, b = -(a1*b3) + a3*b1, c = a1*b2 - a2*b1;
A9: now
A10: w=0.V & v=0.V & (are_Prop v,w or v = 0.V or w = 0.V) implies thesis
    by Th10;
A11: w=0.V & u=0.V & (are_Prop v,w or v=0.V or w=0.V) implies thesis by Th10;
A12: u=0.V & v=0.V & (are_Prop v,w or v = 0.V or w = 0.V) implies thesis
    by Th10;
A13: ( w=0.V & are_Prop u,v & w=0.V or u=0.V & u=0.V & are_Prop v,w or
    are_Prop w,u & v=0.V & v=0.V ) implies thesis by Th11;
A14: are_Prop w,u & are_Prop u,v & are_Prop v,w implies thesis by Th11;
    assume that
A15: a=0 and
A16: b=0 and
A17: c =0;
    0 = a3*b1-a1*b3 by A16;
    hence thesis by A1,A5,A6,A8,A7,A15,A17,A14,A13,A11,A10,A12,Th9;
  end;
  0.V = (a*a1 + b*a2 + c*a3)*p & 0.V = (a*b1 + b*b2 + c*b3)*q by RLVECT_1:10;
  then
A18: 0.V = (a*a1 + b*a2 + c*a3)*p + (a*b1 + b*b2 + c*b3)*q;
  (a*a1 + b*a2 + c*a3)*p = (a*a1)*p + (b*a2)*p + (c*a3)*p by Lm3;
  then
  0.V = ((a*a1)*p + (b*a2)*p + (c*a3)*p) + ((a*b1)*q + (b*b2)*q + (c*b3)*
  q) by A18,Lm3;
  then
A19: 0.V = ((a*a1)*p+(a*b1)*q) + ((b*a2)*p+(b*b2)*q) + ((c*a3)*p+(c*b3)* q)
  by Lm4;
A20: ((c*a3)*p+(c*b3)*q) = c*(a3*p+b3*q) by Lm5;
  ( (a*a1)*p+(a*b1)*q) = a*(a1*p+b1*q) & ((b*a2)*p+(b*b2)*q) = b*(a2*p+b2
  *q) by Lm5;
  hence thesis by A6,A8,A7,A19,A20,A9;
end;

Lm7: a*(b*v+c*w) = (a*b)*v+(a*c)*w
proof
  thus (a*b)*v+(a*c)*w = a*(b*v)+(a*c)*w by RLVECT_1:def 7
    .= a*(b*v)+a*(c*w) by RLVECT_1:def 7
    .= a*(b*v+c*w) by RLVECT_1:def 5;
end;

theorem
  not u,v,w are_LinDep & u,v,p are_LinDep & v,w,q are_LinDep implies ex
  y st u,w,y are_LinDep & p,q,y are_LinDep & y is not zero
proof
  assume that
A1: not u,v,w are_LinDep and
A2: u,v,p are_LinDep and
A3: v,w,q are_LinDep;
A4: v is not zero by A1,Th12;
A5: w is not zero by A1,Th12;
A6: now
A7: now
      assume not q is not zero;
      then q = 0.V;
      then
A8:   p,q,w are_LinDep by Th10;
      u,w,w are_LinDep by Th11;
      hence thesis by A5,A8;
    end;
A9: now
      assume not p is not zero;
      then p = 0.V;
      then
A10:  p,q,w are_LinDep by Th10;
      u,w,w are_LinDep by Th11;
      hence thesis by A5,A10;
    end;
A11: now
      assume are_Prop p,q;
      then
A12:  p,q,w are_LinDep by Th11;
      u,w,w are_LinDep by Th11;
      hence thesis by A5,A12;
    end;
    assume are_Prop p,q or not p is not zero or not q is not zero;
    hence thesis by A11,A9,A7;
  end;
A13: u is not zero by A1,Th12;
  not are_Prop u,v by A1,Th12;
  then consider a1,b1 such that
A14: p = a1*u + b1*v by A2,A13,A4,Th6;
A15: not are_Prop w,u by A1,Th12;
  not are_Prop v,w by A1,Th12;
  then consider a2,b2 such that
A16: q = a2*v + b2*w by A3,A4,A5,Th6;
A17: c*p + d*q = (c*a1)*u + (c*b1 + d*a2)*v + (d*b2)*w
  proof
    thus c*p + d*q = (c*a1)*u + (c*b1)*v + d*(a2*v + b2*w) by A14,A16,Lm7
      .= (c*a1)*u + (c*b1)*v + ((d*a2)*v + (d*b2)*w) by Lm7
      .= (c*a1)*u + (c*b1)*v + (d*a2)*v + (d*b2)*w by RLVECT_1:def 3
      .= (c*a1)*u + ((c*b1)*v + (d*a2)*v) + (d*b2)*w by RLVECT_1:def 3
      .= (c*a1)*u + (c*b1 + d*a2)*v + (d*b2)*w by RLVECT_1:def 6;
  end;
A18: now
    assume that
A19: not are_Prop p,q and
A20: p is not zero and
A21: q is not zero and
A22: b1 <> 0;
A23: now
      set c =1,d=-(b1*a2");
      set y=c*p + d*q;
      assume
A24:  a2<>0;
      then a2"<>0 by XCMPLX_1:202;
      then
A25:  b1*a2" <>0 by A22,XCMPLX_1:6;
A26:  y is not zero
      proof
        assume not y is not zero;
        then 0.V = 1*p + (-(b1*a2"))*q
          .= 1*p + (b1*a2")*(-q) by RLVECT_1:24
          .= 1*p + -((b1*a2")*q) by RLVECT_1:25;
        then -1*p = -((b1*a2")*q) by RLVECT_1:def 10;
        then 1*p = (b1*a2")*q by RLVECT_1:18;
        hence contradiction by A19,A25;
      end;
      c*b1 + d*a2 = b1 + (-b1)*(a2"*a2) .= b1 + (-b1)*1 by A24,XCMPLX_0:def 7
        .= 0;
      then y = (c*a1)*u + 0*v + (d*b2)*w by A17
        .= (c*a1)*u + 0.V + (d*b2)*w by RLVECT_1:10
        .= (c*a1)*u + (d*b2)*w;
      then
A27:  u,w,y are_LinDep by A15,A13,A5,Th6;
      p,q,y are_LinDep by A19,A20,A21,Th6;
      hence thesis by A26,A27;
    end;
    now
      set c =0,d=1;
      set y=c*p + d*q;
A28:  y = 0.V + 1*q by RLVECT_1:10
        .= 0.V + q by RLVECT_1:def 8
        .= q;
      assume a2=0;
      then c*b1 + d*a2 = 0;
      then y = (c*a1)*u + 0*v + (d*b2)*w by A17
        .= (c*a1)*u + 0.V + (d*b2)*w by RLVECT_1:10
        .= (c*a1)*u + (d*b2)*w;
      then
A29:  u,w,y are_LinDep by A15,A13,A5,Th6;
      p,q,y are_LinDep by A19,A20,A21,Th6;
      hence thesis by A21,A28,A29;
    end;
    hence thesis by A23;
  end;
  now
    assume that
A30: not are_Prop p,q and
A31: p is not zero and
A32: q is not zero and
A33: b1=0;
    now
      set c =1,d=0;
      set y=c*p + d*q;
A34:  y = p + 0*q by RLVECT_1:def 8
        .= p+0.V by RLVECT_1:10
        .= p;
      c*b1 + d*a2 = 0 by A33;
      then y = (c*a1)*u + 0*v + (d*b2)*w by A17
        .= (c*a1)*u + 0.V + (d*b2)*w by RLVECT_1:10
        .= (c*a1)*u + (d*b2)*w;
      then
A35:  u,w,y are_LinDep by A15,A13,A5,Th6;
      p,q,y are_LinDep by A30,A31,A32,Th6;
      hence thesis by A31,A34,A35;
    end;
    hence thesis;
  end;
  hence thesis by A6,A18;
end;

theorem
  not are_Prop p,q & p is not zero & q is not zero implies for u,v ex y
  st y is not zero & u,v,y are_LinDep & not are_Prop u,y & not are_Prop v,y
proof
  assume that
A1: not are_Prop p,q and
A2: p is not zero and
A3: q is not zero;
  let u,v;
A4: now
    assume that
    not are_Prop u,v and
A5: not u is not zero;
A6: u=0.V by A5;
    then
A7: not are_Prop v,q implies not are_Prop v,q & q is not zero & u,v,q
    are_LinDep & not are_Prop u,q by A3,Th3,Th10;
    not are_Prop v,p implies not are_Prop v,p & p is not zero & u,v,p
    are_LinDep & not are_Prop u,p by A2,A6,Th3,Th10;
    hence thesis by A1,A7,Th2;
  end;
A8: now
    set y=u+v;
    assume that
A9: not are_Prop u,v and
A10: u is not zero and
A11: v is not zero;
    u+v<>0.V by A9,Th13;
    hence y is not zero;
    1*u+1*v+(-1)*y = u+1*v+(-1)*(u+v) by RLVECT_1:def 8
      .= u+v+(-1)*(u+v) by RLVECT_1:def 8
      .= u + v + -(u+v) by RLVECT_1:16
      .= v+u+(-u+-v) by RLVECT_1:31
      .= v+(u+(-u+-v)) by RLVECT_1:def 3
      .= v+((u+-u)+-v) by RLVECT_1:def 3
      .= v+(0.V+-v) by RLVECT_1:5
      .= v+(-v)
      .= 0.V by RLVECT_1:5;
    hence u,v,y are_LinDep;
A12: v<>0.V by A11;
    now
      let a,b;
      assume a*u = b*y;
      then -b*u + a*u = -b*u + (b*u + b*v) by RLVECT_1:def 5
        .= (b*u + -b*u) + b*v by RLVECT_1:def 3
        .= 0.V + b*v by RLVECT_1:5
        .= b*v;
      then
A13:  b*v = a*u + b*(-u) by RLVECT_1:25
        .= a*u + (-b)*u by RLVECT_1:24
        .= (a + -b)*u by RLVECT_1:def 6;
      now
        assume a + -b = 0;
        then b*v = 0.V by A13,RLVECT_1:10;
        hence b = 0 by A12,RLVECT_1:11;
      end;
      hence a=0 or b=0 by A9,A13;
    end;
    hence not are_Prop u,y;
A14: u<>0.V by A10;
    now
      let a,b;
      assume a*v = b*y;
      then a*v + -b*v = b*u + b*v + -b*v by RLVECT_1:def 5
        .= b*u + (b*v + -b*v) by RLVECT_1:def 3
        .= b*u + 0.V by RLVECT_1:5
        .= b*u;
      then
A15:  b*u = a*v + b*(-v) by RLVECT_1:25
        .= a*v + (-b)*v by RLVECT_1:24
        .= (a + -b)*v by RLVECT_1:def 6;
      now
        assume a + -b = 0;
        then b*u = 0.V by A15,RLVECT_1:10;
        hence b = 0 by A14,RLVECT_1:11;
      end;
      hence a=0 or b=0 by A9,A15;
    end;
    hence not are_Prop v,y;
  end;
A16: now
    assume that
    not are_Prop u,v and
A17: not v is not zero;
A18: v = 0.V by A17;
    then
A19: not are_Prop u,q implies q is not zero & u,v,q are_LinDep & not
    are_Prop u,q & not are_Prop v,q by A3,Th3,Th10;
    not are_Prop u,p implies p is not zero & u,v,p are_LinDep & not
    are_Prop u,p & not are_Prop v,p by A2,A18,Th3,Th10;
    hence thesis by A1,A19,Th2;
  end;
  now
    assume
A20: are_Prop u,v;
    then
A21: not are_Prop u,q implies q is not zero & u,v,q are_LinDep & not
    are_Prop u,q & not are_Prop v,q by A3,Th2,Th11;
    not are_Prop u,p implies p is not zero & u,v,p are_LinDep & not
    are_Prop u,p & not are_Prop v,p by A2,A20,Th2,Th11;
    hence thesis by A1,A21,Th2;
  end;
  hence thesis by A8,A4,A16;
end;

Lm8: not p,q,r are_LinDep implies for u,v st u is not zero & v is not zero &
not are_Prop u,v ex y st not u,v,y are_LinDep
proof
  assume
A1: not p,q,r are_LinDep;
  let u,v;
  assume
A2: u is not zero & v is not zero & not are_Prop u,v;
  assume
A3: not thesis;
  then
A4: u,v,r are_LinDep;
  u,v,p are_LinDep & u,v,q are_LinDep by A3;
  hence contradiction by A1,A2,A4,Th14;
end;

theorem
  not p,q,r are_LinDep implies for u,v st u is not zero & v is not zero
  & not are_Prop u,v ex y st y is not zero & not u,v,y are_LinDep
proof
  assume
A1: not p,q,r are_LinDep;
  let u,v;
  assume u is not zero & v is not zero & not are_Prop u,v;
  then consider y such that
A2: not u,v,y are_LinDep by A1,Lm8;
  take y;
  thus y is not zero by A2,Th12;
  thus thesis by A2;
end;

Lm9: for A,B,C being Real
holds A*(a*u + b*w) + B*(c*w + d*y) + C*(e*u + f*y)
= (A*a + C*e)*u + (A*b + B*c)*w + (B*d + C*f)*y
proof
  let A,B,C be Real;
A1: C*(e*u + f*y) = (C*e)*u + (C*f)*y by Lm7;
  A*(a*u + b*w) = (A*a)*u + (A*b)*w & B*(c*w + d*y) = (B*c)*w + (B*d)*y by Lm7;
  hence
  A*(a*u + b*w) + B*(c*w + d*y) + C*(e*u + f*y) = ((((A*a)*u + (A*b)*w) +
  (B*c)*w) + (B*d)*y) + ((C*e)*u + (C*f)*y) by A1,RLVECT_1:def 3
    .= (((A*a)*u + ((A*b)*w + (B*c)*w)) + (B*d)*y) + ((C*e)*u + (C*f)*y) by
RLVECT_1:def 3
    .= (((A*a)*u + (A*b + B*c)*w) + (B*d)*y) + ((C*e)*u + (C*f)*y) by
RLVECT_1:def 6
    .= ((A*a)*u + (A*b + B*c)*w) + ((B*d)*y + ((C*f)*y + (C*e)*u)) by
RLVECT_1:def 3
    .= ((A*a)*u + (A*b + B*c)*w) + (((B*d)*y + (C*f)*y) + (C*e)*u) by
RLVECT_1:def 3
    .= ((A*a)*u + (A*b + B*c)*w) + ((B*d + C*f)*y + (C*e)*u) by RLVECT_1:def 6
    .= (A*a)*u + ((A*b + B*c)*w + ((B*d + C*f)*y + (C*e)*u)) by RLVECT_1:def 3
    .= (A*a)*u + ((C*e)*u + ((A*b + B*c)*w + (B*d + C*f)*y)) by RLVECT_1:def 3
    .= ((A*a)*u + (C*e)*u) + ((A*b + B*c)*w + (B*d + C*f)*y) by RLVECT_1:def 3
    .= (A*a + C*e)*u + ((A*b + B*c)*w + (B*d + C*f)*y) by RLVECT_1:def 6
    .= (A*a + C*e)*u + (A*b + B*c)*w + (B*d + C*f)*y by RLVECT_1:def 3;
end;

theorem
  u,v,q are_LinDep & w,y,q are_LinDep & u,w,p are_LinDep & v,y,p
are_LinDep & u,y,r are_LinDep & v,w,r are_LinDep & p,q,r are_LinDep & p is not
  zero & q is not zero & r is not zero implies (u,v,y are_LinDep or u,v,w
  are_LinDep or u,w,y are_LinDep or v,w,y are_LinDep)
proof
  assume that
A1: u,v,q are_LinDep and
A2: w,y,q are_LinDep and
A3: u,w,p are_LinDep and
A4: v,y,p are_LinDep and
A5: u,y,r are_LinDep and
A6: v,w,r are_LinDep and
A7: p,q,r are_LinDep and
A8: p is not zero and
A9: q is not zero and
A10: r is not zero;
  assume
A11: not thesis;
  then
A12: v is not zero by Th12;
A13: w is not zero by A11,Th12;
A14: y is not zero by A11,Th12;
A15: u is not zero by A11,Th12;
  not are_Prop v,y by A11,Th12;
  then consider a19,b19 being Real such that
A16: p = a19*v + b19*y by A4,A12,A14,Th6;
  not are_Prop u,v by A11,Th12;
  then consider a2,b2 such that
A17: q = a2*u + b2*v by A1,A15,A12,Th6;
  not are_Prop v,w by A11,Th12;
  then consider a39,b39 being Real such that
A18: r = a39*v + b39*w by A6,A12,A13,Th6;
  not are_Prop u,w by A11,Th12;
  then consider a1,b1 such that
A19: p = a1*u + b1*w by A3,A15,A13,Th6;
  not are_Prop w,y by A11,Th12;
  then consider a29,b29 being Real such that
A20: q = a29*w + b29*y by A2,A13,A14,Th6;
  not are_Prop y,u by A11,Th12;
  then consider a3,b3 such that
A21: r = a3*u + b3*y by A5,A15,A14,Th6;
  consider A,B,C being Real such that
A22: A*p + B*q + C*r = 0.V and
A23: A<>0 or B<>0 or C<>0 by A7;
A24: 0.V = (A*a1 + C*a3)*u + (A*b1 + B*a29)*w + (B*b29 + C*b3)*y by A19,A20,A21
,A22,Lm9;
  then
A25: A*a1 + C*a3 = 0 by A11;
A26: 0.V = C*(a39*v + b39*w) + B*(a29*w + b29*y) + A*(a19*v + b19*y) by A16,A20
,A18,A22,RLVECT_1:def 3
    .= (C*a39 + A*a19)*v + (C*b39 + B*a29)*w + (B*b29 + A*b19)*y by Lm9;
  then
A27: C*a39 + A*a19 = 0 by A11;
A28: 0.V = (B*a2 + C*a3)*u + (B*b2 + A*a19)*v + (A*b19 + C*b3)*y by A16,A17,A21
,A22,Lm9;
  then
A29: B*a2 + C*a3 = 0 by A11;
A30: 0.V = (B*a2 + A*a1)*u + (B*b2 + C*a39)*v + (C*b39 + A*b1)*w by A19,A17,A18
,A22,Lm9;
  then
A31: B*a2 + A*a1 = 0 by A11;
A32: C*b39 + B*a29 = 0 by A11,A26;
A33: C*b39 + A*b1 = 0 by A11,A30;
A34: B*b29 + A*b19 = 0 by A11,A26;
A35: A*b19 + C*b3 = 0 by A11,A28;
A36: B*b29 + C*b3 = 0 by A11,A24;
A37: now
    assume
A38: C<>0;
    then a3 = 0 by A25,A29,A31,XCMPLX_1:6;
    then r = 0*u + 0*y by A21,A36,A35,A34,A38,XCMPLX_1:6
      .= 0.V + 0*y by RLVECT_1:10
      .= 0.V + 0.V by RLVECT_1:10
      .= 0.V;
    hence contradiction by A10;
  end;
A39: B*b2 + C*a39 = 0 by A11,A30;
A40: B*b2 + A*a19 = 0 by A11,A28;
A41: now
    assume
A42: B<>0;
    then a2 = 0 by A25,A29,A31,XCMPLX_1:6;
    then q = 0*u + 0*v by A17,A40,A39,A27,A42,XCMPLX_1:6
      .= 0.V + 0*v by RLVECT_1:10
      .= 0.V + 0.V by RLVECT_1:10
      .= 0.V;
    hence contradiction by A9;
  end;
A43: A*b1 + B*a29= 0 by A11,A24;
  now
    assume
A44: A<>0;
    then a1 = 0 by A25,A29,A31,XCMPLX_1:6;
    then p = 0*u + 0*w by A19,A43,A33,A32,A44,XCMPLX_1:6
      .= 0.V + 0*w by RLVECT_1:10
      .= 0.V + 0.V by RLVECT_1:10
      .= 0.V;
    hence contradiction by A8;
  end;
  hence thesis by A23,A41,A37;
end;

reserve x,y,z for object;

definition

  let V;
  func Proportionality_as_EqRel_of V -> Equivalence_Relation of NonZero V
  means
  :Def3:
  for x,y holds [x,y] in it iff (x in NonZero V & y in NonZero V &
  ex u,v being Element of V st x=u & y=v & are_Prop u,v );
  existence
  proof
    defpred P[object,object] means
     ex u,v being Element of V st $1=u & $2=v & are_Prop u,v;
A1: for x being object st x in NonZero V holds P[x,x];
A2: for x,y being object st P[x,y] holds P[y,x];
A3: for x,y,z being object st P[x,y] & P[y,z] holds P[x,z] by Th2;
    consider R being Equivalence_Relation of NonZero V such that
A4: for x,y being object
   holds [x,y] in R iff x in NonZero V & y in NonZero V & P[x
    ,y] from EQREL_1:sch 1(A1,A2,A3);
    take R;
    thus thesis by A4;
  end;
  uniqueness
  proof
    let R1,R2 be Equivalence_Relation of NonZero V such that
A5: for x,y holds [x,y] in R1 iff (x in NonZero V & y in NonZero V &
    ex u,v being Element of V st x=u & y=v & are_Prop u,v ) and
A6: for x,y holds [x,y] in R2 iff (x in NonZero V & y in NonZero V &
    ex u,v being Element of V st x=u & y=v & are_Prop u,v );
    for x,y being object holds ( [x,y] in R1 iff [x,y] in R2 )
    proof
      let x,y be object;
A7:   now
        assume
A8:     [x,y] in R2;
        then
A9:     ex u,v being Element of V st x=u & y=v & are_Prop u,v by A6;
        x in NonZero V & y in NonZero V by A6,A8;
        hence [x,y] in R1 by A5,A9;
      end;
      now
        assume
A10:    [x,y] in R1;
        then
A11:    ex u,v being Element of V st x=u & y=v & are_Prop u,v by A5;
        x in NonZero V & y in NonZero V by A5,A10;
        hence [x,y] in R2 by A6,A11;
      end;
      hence thesis by A7;
    end;
    hence thesis by RELAT_1:def 2;
  end;
end;

theorem
  [x,y] in Proportionality_as_EqRel_of V implies x is Element of V & y
  is Element of V
proof
  assume [x,y] in Proportionality_as_EqRel_of V;
  then ex u,v st x=u & y=v & are_Prop u,v by Def3;
  then reconsider x,y as Element of V;
  x is Element of V & y is Element of V;
  hence thesis;
end;

theorem Th20:
  [u,v] in Proportionality_as_EqRel_of V iff u is not zero & v is
  not zero & are_Prop u,v
proof
A1: now
    assume
A2: [u,v] in Proportionality_as_EqRel_of V;
    then u in NonZero V & v in NonZero V by Def3;
    hence u is not zero & v is not zero by STRUCT_0:1;
    ex u1,v1 st u=u1 & v=v1 & are_Prop u1,v1 by A2,Def3;
    hence are_Prop u,v;
  end;
  now
    assume that
A3: u is not zero & v is not zero and
A4: are_Prop u,v;
    u in NonZero V & v in NonZero V by A3,STRUCT_0:1;
    hence [u,v] in Proportionality_as_EqRel_of V by A4,Def3;
  end;
  hence thesis by A1;
end;

definition
  let V;
  let v;
  func Dir(v) -> Subset of NonZero V equals
  Class(Proportionality_as_EqRel_of
  V,v);
  correctness;
end;

definition
  let V;
  func ProjectivePoints(V) -> set means
  :Def5:
  ex Y being Subset-Family of NonZero V
  st Y = Class Proportionality_as_EqRel_of V & it = Y;
  correctness;
end;

registration
  cluster strict non trivial for RealLinearSpace;
  existence
  proof
    consider V being strict RealLinearSpace such that
A1: ex u,v being Element of V st (for a,b st a*u + b*v = 0.V holds a=0
    & b=0) & for w being Element of V ex a,b st w = a*u + b*v by FUNCSDOM:23;
    consider u,v being Element of V such that
A2: for a,b st a*u + b*v = 0.V holds a=0 & b=0 and
    for w being Element of V ex a,b st w = a*u + b*v by A1;
    u <> 0.V
    proof
      assume
A3:   u = 0.V;
      0.V = 0.V + 0.V
        .= 1*u + 0.V by A3
        .= 1*u + 0*v by RLVECT_1:10;
      hence contradiction by A2;
    end;
    then V is non trivial;
    hence thesis;
  end;
end;

reserve V for non trivial RealLinearSpace;
reserve p,q,r,u,v,w for Element of V;

registration
  let V;
  cluster ProjectivePoints V -> non empty;
  coherence
  proof
    consider u be Element of V such that
A1: u <> 0.V by STRUCT_0:def 18;
    set Y = Dir(u);
    consider Z being Subset-Family of NonZero V such that
A2: Z = Class Proportionality_as_EqRel_of V and
A3: ProjectivePoints(V) = Z by Def5;
    u in NonZero V by A1,ZFMISC_1:56;
    then Y in Z by A2,EQREL_1:def 3;
    hence thesis by A3;
  end;
end;

theorem Th21:
  p is not zero implies Dir(p) is Element of ProjectivePoints(V)
proof
  assume p is not zero;
  then p in NonZero V by STRUCT_0:1;
  then Dir(p) in Class Proportionality_as_EqRel_of V by EQREL_1:def 3;
  hence thesis by Def5;
end;

theorem Th22:
  p is not zero & q is not zero implies (Dir(p) = Dir(q) iff are_Prop p,q)
proof
  assume that
A1: p is not zero and
A2: q is not zero;
A3: p in NonZero V by A1,STRUCT_0:1;
A4: now
    assume Dir(p) = Dir(q);
    then [p,q] in Proportionality_as_EqRel_of V by A3,EQREL_1:35;
    hence are_Prop p,q by Th20;
  end;
  now
    assume are_Prop p,q;
    then [p,q] in Proportionality_as_EqRel_of V by A1,A2,Th20;
    hence Dir(p) = Dir(q) by A3,EQREL_1:35;
  end;
  hence thesis by A4;
end;

definition

  let V;
  func ProjectiveCollinearity(V) -> Relation3 of ProjectivePoints(V) means
:Def6: for x,y,z being object
holds ([x,y,z] in it iff ex p,q,r st x = Dir(p) & y =
  Dir(q) & z = Dir(r) & p is not zero & q is not zero & r is not zero & p,q,r
  are_LinDep);
  existence
  proof
    defpred P[object] means
ex p,q,r st $1=[Dir(p),Dir(q),Dir(r)] & p is not zero
    & q is not zero & r is not zero & p,q,r are_LinDep;
    set D = ProjectivePoints(V), XXX = [:D,D,D:];
    consider R being set such that
A1: for xyz being object holds (xyz in R iff xyz in XXX & P[xyz]) from
    XBOOLE_0:sch 1;
    for x be object holds x in R implies x in XXX by A1;
    then R c= XXX by TARSKI:def 3;
    then reconsider R9 = R as Relation3 of D by COLLSP:def 1;
    take R9;
    let x,y,z be object;
A2: now
      set xyz = [x,y,z];
      given p,q,r such that
A3:   x=Dir(p) & y=Dir(q) & z=Dir(r) and
A4:   p is not zero & q is not zero and
A5:   r is not zero and
A6:   p,q,r are_LinDep;
A7:   Dir(r) is Element of D by A5,Th21;
      Dir(p) is Element of D & Dir(q) is Element of D by A4,Th21;
      then xyz in XXX by A3,A7,MCART_1:69;
      hence xyz in R9 by A1,A3,A4,A5,A6;
    end;
    now
      assume [x,y,z] in R9;
      then consider p,q,r such that
A8:   [x,y,z] = [Dir(p),Dir(q),Dir(r)] and
A9:   p is not zero & q is not zero & r is not zero & p,q,r are_LinDep by A1;
A10:  z = Dir(r) by A8,XTUPLE_0:3;
      x = Dir(p) & y = Dir(q) by A8,XTUPLE_0:3;
      hence ex p,q,r st x=Dir(p) & y=Dir(q) & z=Dir(r) & p is not zero & q is
      not zero & r is not zero & p,q,r are_LinDep by A9,A10;
    end;
    hence thesis by A2;
  end;
  uniqueness
  proof
    set X = ProjectivePoints(V), XXX = [:ProjectivePoints(V),ProjectivePoints(
    V),ProjectivePoints(V):];
    let R1,R2 be Relation3 of ProjectivePoints(V) such that
A11: for x,y,z being object holds ([x,y,z] in R1 iff ex p,q,r st x=Dir(p)
& y=Dir(q) & z=Dir(r) & p is not zero & q is not zero & r is not zero & p,q,r
    are_LinDep) and
A12: for x,y,z being object holds ([x,y,z] in R2 iff ex p,q,r st x=Dir(p)
& y=Dir(q) & z=Dir(r) & p is not zero & q is not zero & r is not zero & p,q,r
    are_LinDep);
A13: R2 c= XXX by COLLSP:def 1;
A14: R1 c= XXX by COLLSP:def 1;
    now
      let u be object;
A15:  now
        assume
A16:    u in R2;
        then consider x,y,z being Element of X such that
A17:    u = [x,y,z] by A13,DOMAIN_1:3;
        ex p,q,r st x=Dir(p) & y=Dir(q) & z=Dir(r) & p is not zero & q is
        not zero & r is not zero & p,q,r are_LinDep by A12,A16,A17;
        hence u in R1 by A11,A17;
      end;
      now
        assume
A18:    u in R1;
        then consider x,y,z being Element of X such that
A19:    u = [x,y,z] by A14,DOMAIN_1:3;
        ex p,q,r st x=Dir(p) & y=Dir(q) & z=Dir(r) & p is not zero & q is
        not zero & r is not zero & p,q,r are_LinDep by A11,A18,A19;
        hence u in R2 by A12,A19;
      end;
      hence u in R1 iff u in R2 by A15;
    end;
    hence thesis by TARSKI:2;
  end;
end;

definition
  let V;
  func ProjectiveSpace(V) -> strict CollStr equals
  CollStr (# ProjectivePoints
    (V),ProjectiveCollinearity(V) #);
  correctness;
end;

registration
  let V;
  cluster ProjectiveSpace V -> non empty;
  coherence;
end;

theorem
  for V holds (the carrier of ProjectiveSpace(V)) = ProjectivePoints(V)
  & (the Collinearity of ProjectiveSpace(V)) = ProjectiveCollinearity(V);

theorem
  [x,y,z] in the Collinearity of ProjectiveSpace(V) implies ex p,q,r st
x = Dir(p) & y = Dir(q) & z = Dir(r) & p is not zero & q is not zero & r is not
  zero & p,q,r are_LinDep by Def6;

theorem
  u is not zero & v is not zero & w is not zero implies ([Dir(u),Dir(v),
  Dir(w)] in the Collinearity of ProjectiveSpace(V) iff u,v,w are_LinDep)
proof
  assume that
A1: u is not zero & v is not zero and
A2: w is not zero;
  now
    reconsider du = Dir(u), dv = Dir(v), dw = Dir(w) as set;
    assume [Dir(u),Dir(v),Dir(w)] in the Collinearity of ProjectiveSpace(V);
    then consider p,q,r such that
A3: du = Dir(p) & dv = Dir(q) and
A4: dw = Dir(r) and
A5: p is not zero & q is not zero and
A6: r is not zero and
A7: p,q,r are_LinDep by Def6;
A8: are_Prop r,w by A2,A4,A6,Th22;
    are_Prop p,u & are_Prop q,v by A1,A3,A5,Th22;
    hence u,v,w are_LinDep by A7,A8,Th4;
  end;
  hence thesis by A1,A2,Def6;
end;

theorem
  x is Element of ProjectiveSpace(V) iff ex u st u is not zero & x = Dir (u)
proof
  now
    assume
A1: x is Element of ProjectiveSpace(V);
A2: ex Y being Subset-Family of NonZero V st Y = Class
    Proportionality_as_EqRel_of V & ProjectivePoints(V) = Y by Def5;
    then reconsider x9 = x as Subset of NonZero V by A1,TARSKI:def 3;
    consider y being object such that
A3: y in NonZero V and
A4: x9 = Class(Proportionality_as_EqRel_of V,y) by A1,A2,EQREL_1:def 3;
A5: y<>0.V by A3,ZFMISC_1:56;
    reconsider y as Element of V by A3;
    take y;
    thus y is not zero by A5;
    thus x = Dir(y) by A4;
  end;
  hence thesis by Th21;
end;