Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 20,515 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
:: On the Composition of Macro Instructions of Standard Computers
:: by Artur Korni{\l}owicz
environ
vocabularies NUMBERS, ORDINAL1, SETFAM_1, ARYTM_1, ARYTM_3, CARD_1, SUBSET_1,
AMI_1, XBOOLE_0, RELAT_1, TARSKI, FUNCOP_1, GLIB_000, GOBOARD5, AMISTD_1,
FUNCT_1, CARD_3, FRECHET, STRUCT_0, FSM_1, FUNCT_4, TURING_1, CIRCUIT2,
AMISTD_2, PARTFUN1, EXTPRO_1, NAT_1, RELOC, XXREAL_0, COMPOS_1, QUANTAL1,
GOBRD13, MEMSTR_0;
notations TARSKI, XBOOLE_0, XTUPLE_0, SUBSET_1, ORDINAL1, SETFAM_1, MEMBERED,
RELAT_1, FUNCT_1, PARTFUN1, FUNCT_2, FUNCT_4, PBOOLE, CARD_1, NUMBERS,
XCMPLX_0, XXREAL_0, NAT_1, CARD_3, FINSEQ_1, FUNCOP_1, NAT_D, FUNCT_7,
VALUED_0, VALUED_1, AFINSQ_1, STRUCT_0, MEMSTR_0, COMPOS_0, COMPOS_1,
MEASURE6, EXTPRO_1, AMISTD_1;
constructors WELLORD2, REALSET1, NAT_D, AMISTD_1, XXREAL_2, PRE_POLY,
AFINSQ_1, ORDINAL4, VALUED_1, NAT_1, FUNCT_7, PBOOLE, FUNCT_4, MEMSTR_0,
RELSET_1, MEASURE6, XTUPLE_0;
registrations RELAT_1, FUNCT_1, FUNCOP_1, FINSET_1, XREAL_0, NAT_1, MEMBERED,
CARD_3, STRUCT_0, AMISTD_1, FUNCT_4, EXTPRO_1, MEMSTR_0, MEASURE6,
COMPOS_0, XTUPLE_0;
requirements NUMERALS, BOOLE, SUBSET, ARITHM;
definitions AMISTD_1, XBOOLE_0, TARSKI, COMPOS_0;
equalities COMPOS_1, EXTPRO_1, AMISTD_1, XBOOLE_0, FUNCOP_1, VALUED_1,
MEMSTR_0, COMPOS_0, XTUPLE_0;
expansions AMISTD_1, XBOOLE_0;
theorems AMISTD_1, FUNCOP_1, FUNCT_1, FUNCT_4, GRFUNC_1, MCART_1, SETFAM_1,
TARSKI, CARD_3, XBOOLE_0, PARTFUN1, VALUED_1, COMPOS_1, EXTPRO_1,
ORDINAL1, NAT_1, MEMSTR_0, COMPOS_0;
schemes NAT_1;
begin :: Properties of AMI-Struct
reserve k, m for Nat,
x, x1, x2, x3, y, y1, y2, y3, X,Y,Z for set,
N for with_zero set;
theorem
for I being Instruction of STC N holds JumpPart I = 0;
definition
let N be with_zero set,
S be IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I be Instruction of S;
attr I is with_explicit_jumps means
:Def1: JUMP I = rng JumpPart I;
end;
definition
let N be with_zero set,
S be IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N;
attr S is with_explicit_jumps means
:Def2: for I being Instruction of S holds I is with_explicit_jumps;
end;
registration
let N be with_zero set;
cluster standard for IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N;
existence
proof
take STC N;
thus thesis;
end;
end;
theorem Th2:
for S being standard IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I being Instruction of S
st for f being Element of NAT holds NIC(I,f)={f+1}
holds JUMP I is empty
proof
let S be standard IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I be Instruction of S;
assume
A1: for f being Element of NAT holds NIC(I,f)={f+1};
set p=1, q=2;
reconsider p,q as Element of NAT;
set X = the set of all NIC(I,f) where f is Nat;
assume not thesis;
then consider x being object such that
A2: x in meet X;
A3: NIC(I,p) = {p+1} by A1;
A4: NIC(I,q) = {q+1} by A1;
A5: {succ p} in X by A3;
A6: {succ q} in X by A4;
A7: x in {succ p} by A2,A5,SETFAM_1:def 1;
A8: x in {succ q} by A2,A6,SETFAM_1:def 1;
x = succ p by A7,TARSKI:def 1;
hence contradiction by A8,TARSKI:def 1;
end;
registration
let N be with_zero set,
I be Instruction of STC N;
cluster JUMP I -> empty;
coherence
proof
per cases by AMISTD_1:6;
suppose InsCode I = 0;
then for f being Nat holds NIC(I,f)={f} by AMISTD_1:2,4;
hence thesis by AMISTD_1:1;
end;
suppose InsCode I = 1;
then for f being Element of NAT holds NIC(I,f)={f+1} by AMISTD_1:10;
hence thesis by Th2;
end;
end;
end;
theorem
for T being InsType of the InstructionsF of STC N holds JumpParts T = {0}
proof
let T be InsType of the InstructionsF of STC N;
set A = { JumpPart I where I is Instruction of STC N: InsCode I = T };
{0} = A
proof
hereby
let a be object;
assume a in {0};
then
A1: a = 0 by TARSKI:def 1;
A2: the InstructionsF of STC N = {[0,0,0],[1,0,0]} by AMISTD_1:def 7;
then
A3: InsCodes the InstructionsF of STC N = {0,1} by MCART_1:91;
per cases by A3,TARSKI:def 2;
suppose
A4: T = 0;
reconsider I = [0,0,0] as Instruction of STC N by A2,TARSKI:def 2;
A5: JumpPart I = 0;
InsCode I = 0;
hence a in A by A1,A4,A5;
end;
suppose
A6: T = 1;
reconsider I = [1,0,0] as Instruction of STC N by A2,TARSKI:def 2;
A7: JumpPart I = 0;
InsCode I = 1;
hence a in A by A1,A6,A7;
end;
end;
let a be object;
assume a in A;
then ex I being Instruction of STC N st a = JumpPart I & InsCode I = T;
then a = 0;
hence thesis by TARSKI:def 1;
end;
hence thesis;
end;
Lm1: for I being Instruction of Trivial-AMI N holds JumpPart I = 0
proof
let I be Instruction of Trivial-AMI N;
the InstructionsF of Trivial-AMI N = {[0,0,{}]} by EXTPRO_1:def 1;
then I = [0,0,0] by TARSKI:def 1;
hence thesis;
end;
Lm2: for T being InsType of the InstructionsF of Trivial-AMI N
holds JumpParts T = {0}
proof
let T be InsType of the InstructionsF of Trivial-AMI N;
set A =
{ JumpPart I where I is Instruction of Trivial-AMI N: InsCode I = T };
{0} = A
proof
hereby
let a be object;
assume a in {0};
then
A1: a = 0 by TARSKI:def 1;
A2: the InstructionsF of Trivial-AMI N = {[0,0,{}]} by EXTPRO_1:def 1;
then InsCodes the InstructionsF of Trivial-AMI N = {0} by MCART_1:92;
then
A3: T = 0 by TARSKI:def 1;
reconsider I = [0,0,0] as Instruction of Trivial-AMI N
by A2,TARSKI:def 1;
A4: JumpPart I = 0;
InsCode I = 0;
hence a in A by A1,A3,A4;
end;
let a be object;
assume a in A;
then ex I being Instruction of Trivial-AMI N
st a = JumpPart I & InsCode I = T;
then a = 0 by Lm1;
hence thesis by TARSKI:def 1;
end;
hence thesis;
end;
registration
let N be with_zero set;
cluster STC N -> with_explicit_jumps;
coherence
proof
let I be Instruction of STC N;
thus JUMP I = rng JumpPart I;
end;
end;
registration
let N be with_zero set;
cluster standard
halting with_explicit_jumps for IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N;
existence
proof
take STC N;
thus thesis;
end;
end;
registration
let N be with_zero set,
I be Instruction of Trivial-AMI N;
cluster JUMP I -> empty;
coherence
proof
for f being Nat holds NIC(I,f)={f} by AMISTD_1:2,17;
hence thesis by AMISTD_1:1;
end;
end;
registration
let N be with_zero set;
cluster Trivial-AMI N -> with_explicit_jumps;
coherence
proof
thus Trivial-AMI N is with_explicit_jumps
proof
let I be Instruction of Trivial-AMI N;
the InstructionsF of Trivial-AMI N = {[0,0,{}]} by EXTPRO_1:def 1;
then I = [0,0,0] by TARSKI:def 1;
hence JUMP I = rng JumpPart I;
end;
end;
end;
registration
let N be with_zero set;
cluster with_explicit_jumps halting
for IC-Ins-separated non empty with_non-empty_values AMI-Struct over N;
existence
proof
take Trivial-AMI N;
thus thesis;
end;
end;
registration
let N be with_zero set;
let S be with_explicit_jumps IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N;
cluster -> with_explicit_jumps for Instruction of S;
coherence by Def2;
end;
theorem Th4:
for S being IC-Ins-separated non empty with_non-empty_values
AMI-Struct over N,
I being Instruction of S st I is halting holds JUMP I is empty
proof
let S be IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N, I be Instruction of S;
assume I is halting;
then for l being Nat holds NIC(I,l)={l} by AMISTD_1:2;
hence thesis by AMISTD_1:1;
end;
registration
let N be with_zero set,
S be halting
IC-Ins-separated non empty with_non-empty_values AMI-Struct over N,
I be halting Instruction of S;
cluster JUMP I -> empty;
coherence by Th4;
end;
theorem
for S being halting with_explicit_jumps
IC-Ins-separated non empty
with_non-empty_values AMI-Struct over N,
I being Instruction of S st I is ins-loc-free holds JUMP I is empty
proof
let S be halting with_explicit_jumps IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N,
I be Instruction of S such that
A1: JumpPart I is empty;
A2: rng JumpPart I = {} by A1;
JUMP I c= rng JumpPart I by Def1;
hence thesis by A2;
end;
registration
let N be with_zero set,
S be with_explicit_jumps
IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N;
cluster halting -> ins-loc-free for Instruction of S;
coherence
proof
let I be Instruction of S;
assume I is halting;
then
A1: JUMP I is empty by Th4;
rng JumpPart I = JUMP I by Def1;
hence JumpPart I is empty by A1;
end;
end;
registration
let N be with_zero set,
S be with_explicit_jumps
IC-Ins-separated non empty with_non-empty_values AMI-Struct over N;
cluster sequential -> ins-loc-free for Instruction of S;
coherence
proof
let I be Instruction of S;
assume I is sequential;
then
A1: JUMP I is empty by AMISTD_1:13;
rng JumpPart I = JUMP I by Def1;
hence JumpPart I is empty by A1;
end;
end;
begin :: On the composition of macro instructions
registration
let N be with_zero set,
S be halting with_explicit_jumps IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N,
I be halting Instruction of S, k be Nat;
cluster IncAddr(I,k) -> halting;
coherence by COMPOS_0:4;
end;
theorem
for S being standard halting
with_explicit_jumps IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N,
I being Instruction of S st I is sequential
holds IncAddr(I,k) is sequential by COMPOS_0:4;
definition
let N be with_zero set,
S be halting
IC-Ins-separated non empty with_non-empty_values AMI-Struct over N,
I be Instruction of S;
attr I is IC-relocable means
:Def3:
for j,k being Nat, s being State of S
holds IC Exec(IncAddr(I,j),s) + k = IC Exec(IncAddr(I,j+k),IncIC(s,k));
end;
definition
let N be with_zero set,
S be halting IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N;
attr S is IC-relocable means
:Def4:
for I being Instruction of S holds I is IC-relocable;
end;
registration
let N be with_zero set,
S be with_explicit_jumps IC-Ins-separated halting
non empty with_non-empty_values AMI-Struct over N;
cluster sequential -> IC-relocable for Instruction of S;
coherence
proof
let I be Instruction of S such that
A1: I is sequential;
let j,k be Nat, s1 be State of S;
set s2 = IncIC(s1,k);
IC S in dom (IC S .--> (IC s1 + k)) by TARSKI:def 1;
then
A2: IC s2 = (IC S .--> (IC s1 + k)).IC S by FUNCT_4:13
.= IC s1 + k by FUNCOP_1:72;
A3: IC Exec(I, s2) = IC s2 + 1 by A1
.= IC s1 + 1 + k by A2;
A4: IncAddr(I,j) = I by A1,COMPOS_0:4;
IC Exec(I,s1) = IC s1 + 1 by A1;
hence IC Exec(IncAddr(I,j),s1) + k
= IC Exec(IncAddr(I,j+k), s2) by A1,A3,A4,COMPOS_0:4;
end;
end;
registration
let N be with_zero set,
S be with_explicit_jumps IC-Ins-separated halting
non empty with_non-empty_values AMI-Struct over N;
cluster halting -> IC-relocable for Instruction of S;
coherence
proof
let I be Instruction of S such that
A1: I is halting;
let j,k be Nat, s1 be State of S;
set s2 = IncIC(s1,k);
A2: IC S in dom (IC S .--> (IC s1 + k)) by TARSKI:def 1;
thus IC Exec(IncAddr(I,j),s1) + k = IC s1 + k by A1,EXTPRO_1:def 3
.= (IC S .--> (IC s1 + k)).IC S by FUNCOP_1:72
.= IC s2 by A2,FUNCT_4:13
.= IC Exec(IncAddr(I,j+k), s2) by A1,EXTPRO_1:def 3;
end;
end;
registration
let N be with_zero set;
cluster STC N -> IC-relocable;
coherence
proof
thus STC N is IC-relocable
proof
let I be Instruction of STC N, j,k be Nat,
s1 be State of STC N;
set s2 = IncIC(s1,k);
IC STC N in dom (IC STC N .--> (IC s1 + k)) by TARSKI:def 1;
then
A1: IC s2 = (IC STC N .--> (IC s1 + k)).IC STC N by FUNCT_4:13
.= IC s1 + k by FUNCOP_1:72;
per cases by AMISTD_1:6;
suppose
A2: InsCode I = 1;
then
A3: InsCode IncAddr(I,k) = 1 by COMPOS_0:def 9;
A4: IncAddr(I,j) = I by COMPOS_0:4;
IC Exec(I,s1) = IC s1 + 1 by A2,AMISTD_1:9;
hence IC Exec(IncAddr(I,j),s1) + k = IC s2 + 1 by A1,A4
.= IC Exec(IncAddr(IncAddr(I,j),k), s2) by A4,A3,AMISTD_1:9
.= IC Exec(IncAddr(I,j+k), s2) by COMPOS_0:7;
end;
suppose InsCode I = 0;
then
A5: I is halting by AMISTD_1:4;
hence IC Exec(IncAddr(I,j),s1) + k = IC s1 + k by EXTPRO_1:def 3
.= IC Exec(IncAddr(I,j+k), s2) by A1,A5,EXTPRO_1:def 3;
end;
end;
end;
end;
registration
let N be with_zero set;
cluster halting with_explicit_jumps
for standard IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N;
existence
proof
take STC N;
thus thesis;
end;
end;
registration
let N be with_zero set;
cluster IC-relocable for
with_explicit_jumps halting
standard IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N;
existence
proof
take STC N;
thus thesis;
end;
end;
registration
let N be with_zero set,
S be IC-relocable IC-Ins-separated halting
non empty with_non-empty_values AMI-Struct over N;
cluster -> IC-relocable for Instruction of S;
coherence by Def4;
end;
registration
let N be with_zero set,
S be with_explicit_jumps IC-Ins-separated halting
non empty with_non-empty_values AMI-Struct over N;
cluster IC-relocable for Instruction of S;
existence
proof
take the halting Instruction of S;
thus thesis;
end;
end;
theorem Th7:
for S be halting
with_explicit_jumps
IC-Ins-separated non empty with_non-empty_values
AMI-Struct over N,
I being IC-relocable Instruction of S
for k being Nat, s being State of S
holds IC Exec(I,s) + k = IC Exec(IncAddr(I,k),IncIC(s,k))
proof
let S be halting
with_explicit_jumps IC-Ins-separated
non empty with_non-empty_values AMI-Struct over N,
I being IC-relocable Instruction of S;
let k being Nat, s being State of S;
A1: k+(0 qua Nat)=k;
thus IC Exec(I,s) + k
= IC Exec(IncAddr(I,0),s) + k by COMPOS_0:3
.= IC Exec(IncAddr(I,k),IncIC(s,k)) by Def3,A1;
end;
registration
let N be with_zero set,
S be IC-relocable standard with_explicit_jumps
halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N,
F, G be really-closed Program of S;
cluster F ';' G -> really-closed;
coherence
proof
set P = F ';' G, k = card F -' 1;
let f be Nat such that
A1: f in dom P;
A2: dom P = dom CutLastLoc F \/ dom Reloc(G,k) by FUNCT_4:def 1;
A3: dom CutLastLoc F c= dom F by GRFUNC_1:2;
A4: dom Reloc(G,k) =
{(m+k) where m is Nat: m in dom IncAddr(G,k)}
by VALUED_1:def 12;
let x be object;
assume x in NIC(P/.f,f);
then consider s2 being Element of product the_Values_of S
such that
A5: x = IC Exec(P/.f,s2) and
A6: IC s2 = f;
A7: P/.f = P.f by A1,PARTFUN1:def 6;
per cases by A1,A2,XBOOLE_0:def 3;
suppose
A8: f in dom CutLastLoc F;
then
A9: NIC(F/.f,f) c= dom F by A3,AMISTD_1:def 9;
dom CutLastLoc F = dom F \ {LastLoc F} by VALUED_1:36;
then
A10: f in dom F by A8;
dom CutLastLoc F misses dom Reloc(G,card F -' 1)
by COMPOS_1:18;
then
A11: not f in dom Reloc(G,card F -' 1)
by A8,XBOOLE_0:3;
A12: P/.f = P.f by A1,PARTFUN1:def 6
.= (CutLastLoc F).f by A11,FUNCT_4:11
.= F.f by A8,GRFUNC_1:2
.= F/.f by A10,PARTFUN1:def 6;
IC Exec(F/.f,s2) in NIC(F/.f,f) by A6;
then
A13: x in dom F by A5,A9,A12;
dom F c= dom P by COMPOS_1:21;
hence thesis by A13;
end;
suppose
A14: f in dom Reloc(G,k);
then consider m being Nat such that
A15: f = m+k and
A16: m in dom IncAddr(G,k) by A4;
A17: m in dom G by A16,COMPOS_1:def 21;
then
A18: NIC(G/.m,m) c= dom G by AMISTD_1:def 9;
A19: Values IC S = NAT by MEMSTR_0:def 6;
reconsider m as Element of NAT by ORDINAL1:def 12;
reconsider v = IC S .--> m as FinPartState of S by A19;
set s1 = s2 +* v;
A20: P/.f = Reloc(G,k).f by A7,A14,FUNCT_4:13
.= IncAddr(G,k).m by A15,A16,VALUED_1:def 12;
A21: (IC S .--> m).IC S = m by FUNCOP_1:72;
A22: IC S in {IC S} by TARSKI:def 1;
A23: dom (IC S .--> m) = {IC S};
reconsider w = IC S .--> (IC s1 + k) as FinPartState of S by A19;
A24: dom (s1 +* (IC S .--> (IC s1 + k))) = the carrier of S by PARTFUN1:def 2;
A25: dom s2 = the carrier of S by PARTFUN1:def 2;
for a being object st a in dom s2 holds
s2.a = (s1 +* (IC S .--> (IC s1 + k))).a
proof
let a be object such that a in dom s2;
A26: dom (IC S .--> (IC s1 + k)) = {IC S};
per cases;
suppose
A27: a = IC S;
hence s2.a = IC s1 + k by A6,A15,A23,A21,A22,FUNCT_4:13
.= (IC S .--> (IC s1 + k)).a by A27,FUNCOP_1:72
.= (s1 +* (IC S .--> (IC s1 + k))).a by A22,A26,A27,FUNCT_4:13;
end;
suppose
A28: a <> IC S;
then
A29: not a in dom (IC S .--> (IC s1 + k)) by TARSKI:def 1;
not a in dom (IC S .--> m) by A28,TARSKI:def 1;
then s1.a = s2.a by FUNCT_4:11;
hence thesis by A29,FUNCT_4:11;
end;
end;
then
A30: s2 = IncIC(s1,k) by A24,A25,FUNCT_1:2;
set s3 = s1;
A31: IC s3 = m by A21,A22,A23,FUNCT_4:13;
reconsider s3 as Element of product the_Values_of S by CARD_3:107;
reconsider k,m as Element of NAT;
A32: x = IC Exec(IncAddr(G/.m,k),s2) by A5,A17,A20,COMPOS_1:def 21
.= IC Exec(G/.m, s3) + k by A30,Th7;
IC Exec(G/.m, s3) in NIC(G/.m,m) by A31;
then IC Exec(G/.m, s3) in dom G by A18;
then IC Exec(G/.m, s3) in dom IncAddr(G,k) by COMPOS_1:def 21;
then x in dom Reloc(G,k) by A4,A32;
hence thesis by A2,XBOOLE_0:def 3;
end;
end;
end;
theorem
for I being Instruction of Trivial-AMI N holds JumpPart I = 0 by Lm1;
theorem
for T being InsType of the InstructionsF of Trivial-AMI N
holds JumpParts T = {0} by Lm2;
reserve n,m for Nat;
theorem
for S being IC-Ins-separated non empty with_non-empty_values AMI-Struct over N
for s being State of S, I being Program of S
for P1,P2 being Instruction-Sequence of S
st I c= P1 & I c= P2 &
for m st m < n holds IC Comput(P2,s,m) in dom I
for m st m <= n holds Comput(P1,s,m) = Comput(P2,s,m)
proof
let S be IC-Ins-separated non empty with_non-empty_values AMI-Struct over N;
let s be State of S, I be Program of S;
let P1,P2 be Instruction-Sequence of S
such that
A1: I c= P1 & I c= P2;
assume that
A2: for m st m < n holds IC Comput(P2,s,m) in dom I;
defpred X[Nat] means $1 <= n implies
Comput(P1,s,$1) = Comput(P2,s,$1);
A3: for m st X[m] holds X[m+1]
proof
let m such that
A4: X[m];
A5: Comput(P2,s,m+1) = Following(P2,Comput(P2,s,m)) by EXTPRO_1:3
.= Exec(CurInstr(P2,Comput(P2,s,m)),Comput(P2,s,m));
A6: Comput(P1,s,m+1) = Following(P1,Comput(P1,s,m)) by EXTPRO_1:3
.= Exec(CurInstr(P1,Comput(P1,s,m)),Comput(P1,s,m));
assume
A7: m+1 <= n;
then m < n by NAT_1:13;
then
A8: IC Comput(P1,s,m) = IC Comput(P2,s,m) by A4;
m < n by A7,NAT_1:13;
then
A9: IC Comput(P2,s,m) in dom I by A2;
dom P2 = NAT by PARTFUN1:def 2;
then
A10: IC Comput(P2,s,m) in dom P2;
dom P1 = NAT by PARTFUN1:def 2;
then IC Comput(P1,s,m) in dom P1;
then CurInstr(P1,Comput(P1,s,m))
= P1.IC( Comput(P1,s,m)) by PARTFUN1:def 6
.= I.IC( Comput(P1,s,m)) by A9,A8,A1,GRFUNC_1:2
.= P2.IC Comput(P2,s,m) by A9,A8,A1,GRFUNC_1:2
.= CurInstr(P2,Comput(P2,s,m)) by A10,PARTFUN1:def 6;
hence thesis by A4,A6,A5,A7,NAT_1:13;
end;
A11: X[0];
thus for m holds X[m] from NAT_1:sch 2(A11,A3);
end;
theorem
for S being IC-Ins-separated halting non empty with_non-empty_values
AMI-Struct over N,
P being Instruction-Sequence of S,
s being State of S st s = Following(P,s)
holds for n holds Comput(P,s,n) = s
proof
let S be IC-Ins-separated halting non empty with_non-empty_values
AMI-Struct over N,
P be Instruction-Sequence of S,
s be State of S;
defpred X[Nat] means Comput(P,s,$1) = s;
assume
A1: s = Following(P,s);
A2: for n st X[n] holds X[n+1] by A1,EXTPRO_1:3;
A3: X[ 0];
thus for n holds X[n] from NAT_1:sch 2(A3, A2);
end;
|