Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 13,645 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
:: On a Mathematical Model of Programs
:: by Yatsuka Nakamura and Andrzej Trybulec
environ
vocabularies NUMBERS, SUBSET_1, XBOOLE_0, CARD_1, ZFMISC_1, FINSEQ_1, FUNCT_1,
CARD_3, RELAT_1, AMI_1, NAT_1, FUNCT_4, FUNCOP_1, INT_1, ARYTM_3,
ARYTM_1, XXREAL_0, FUNCT_5, TARSKI, AMI_2, GROUP_9, PBOOLE, AFINSQ_1,
PARTFUN1, ORDINAL1;
notations TARSKI, XBOOLE_0, ZFMISC_1, XTUPLE_0, SUBSET_1, ORDINAL1, CARD_1,
PARTFUN1, NUMBERS, XCMPLX_0, CARD_3, RELAT_1, FUNCT_1, FUNCT_2, PBOOLE,
AFINSQ_1, XXREAL_0, BINOP_1, MCART_1, INT_1, FUNCOP_1, FUNCT_4, CAT_2,
FINSEQ_1, FUNCT_5, SCM_INST;
constructors DOMAIN_1, CAT_2, CARD_3, ABIAN, RELSET_1, AFINSQ_1, VALUED_1,
SCM_INST, FUNCT_5, XTUPLE_0, FUNCT_4, NUMBERS;
registrations XBOOLE_0, FUNCOP_1, NUMBERS, XXREAL_0, XREAL_0, INT_1, CARD_3,
FINSET_1, ORDINAL2, CARD_1, FUNCT_1, RELSET_1, FUNCT_2, AFINSQ_1,
SCM_INST, RELAT_1, PBOOLE;
requirements NUMERALS, SUBSET, BOOLE;
definitions FUNCT_1;
equalities TARSKI, FUNCOP_1, SCM_INST, ORDINAL1;
theorems ZFMISC_1, FUNCT_2, TARSKI, FUNCOP_1, ENUMSET1, INT_1, CARD_3,
FUNCT_4, XBOOLE_0, XBOOLE_1, ORDINAL1, RELAT_1, NUMBERS, CARD_1,
AFINSQ_1, PARTFUN1, FUNCT_1, FUNCT_5, XTUPLE_0;
schemes FUNCT_2, BINOP_1;
begin :: A small concrete machine
reserve x,y,z for set;
:: Na razie potrzebny w SCM_INST
::definition
:: func SCM-Data-Loc equals
:: [:{1},NAT:];
:: coherence;
::end;
definition
func SCM-Memory -> set equals
{NAT} \/ SCM-Data-Loc;
coherence;
end;
registration
cluster SCM-Memory -> non empty;
coherence;
end;
definition
redefine func SCM-Data-Loc -> Subset of SCM-Memory;
coherence by XBOOLE_1:7;
end;
::registration
:: cluster SCM-Data-Loc -> non empty;
:: coherence;
::end;
reserve I,J,K for Element of Segm 9,
i,a,a1,a2 for Nat,
b,b1,b2,c,c1 for Element of SCM-Data-Loc;
Lm1: now
let k be Element of SCM-Memory;
k in {NAT} or k in SCM-Data-Loc by XBOOLE_0:def 3;
hence k = NAT or k in SCM-Data-Loc by TARSKI:def 1;
end;
Lm2: not NAT in SCM-Data-Loc
proof
assume NAT in SCM-Data-Loc;
then NAT in [:{1},NAT:];
then ex x,y being object st NAT = [x,y] by RELAT_1:def 1;
hence contradiction;
end;
definition
::$CD 2
func SCM-OK -> Function of SCM-Memory, Segm 2 means
:Def2: for k being Element of SCM-Memory
holds (k = NAT implies it.k = 0) &
(k in SCM-Data-Loc implies it.k = 1);
existence
proof
defpred P[set,set] means
$1 = NAT & $2 = 0 or $1 in SCM-Data-Loc & $2 = 1;
A1: now
let k be Element of SCM-Memory;
A2: {0} \/ { 1 } = {0, 1} by ENUMSET1:1;
then
A3: 0 in {1} \/ { 0 } by TARSKI:def 2;
A4: P[k,0] or P[k,1] by Lm1;
1 in {1} \/ { 0 } by A2,TARSKI:def 2;
hence ex b being Element of Segm 2 st P[k,b] by A2,A3,A4,CARD_1:50;
end;
consider h being Function of SCM-Memory, Segm 2 such
that
A5: for a being Element of SCM-Memory holds P[a,h.a] from FUNCT_2:sch 3(A1);
take h;
let k be Element of SCM-Memory;
thus k = NAT implies h.k = 0 by A5,Lm2;
thus k in SCM-Data-Loc implies h.k = 1 by A5,Lm2;
thus thesis;
end;
uniqueness
proof
let f,g be Function of SCM-Memory, Segm 2 such that
A6: for k being Element of SCM-Memory holds
(k = NAT implies f.k = 0) & (k in SCM-Data-Loc implies f.k = 1)
and
A7: for k being Element of SCM-Memory holds
(k = NAT implies g.k = 0) & (k in SCM-Data-Loc implies g.k = 1);
now
let k be Element of SCM-Memory;
now
per cases by Lm1;
suppose
A8: k = NAT;
hence f.k = 0 by A6
.= g.k by A7,A8;
end;
suppose
A9: k in SCM-Data-Loc;
hence f.k = 1 by A6
.= g.k by A7,A9;
end;
end;
hence f.k = g.k;
end;
hence thesis by FUNCT_2:63;
end;
end;
::$CT
definition
func SCM-VAL -> ManySortedSet of Segm 2 equals
<%NAT,INT%>;
coherence;
end;
Lm3: NAT in SCM-Memory
proof
NAT in {NAT} by TARSKI:def 1;
hence thesis by XBOOLE_0:def 3;
end;
::$CT 4
theorem Th1:
(SCM-VAL*SCM-OK).NAT = NAT
proof
NAT in dom SCM-OK by Lm3,PARTFUN1:def 2;
then
A1: (SCM-VAL*SCM-OK).NAT = SCM-VAL.(SCM-OK.NAT) by FUNCT_1:13;
(SCM-VAL*SCM-OK).NAT = SCM-VAL.0 by A1,Def2,Lm3;
hence thesis;
end;
theorem Th2:
for i being Element of SCM-Memory
holds i in SCM-Data-Loc implies (SCM-VAL*SCM-OK).i = INT
proof
let i be Element of SCM-Memory;
i in SCM-Memory;
then i in dom SCM-OK by PARTFUN1:def 2;
then
A1: (SCM-VAL*SCM-OK).i = SCM-VAL.(SCM-OK.i) by FUNCT_1:13;
assume i in SCM-Data-Loc;
then (SCM-VAL*SCM-OK).i = SCM-VAL.1 by A1,Def2;
hence thesis;
end;
Lm4: dom SCM-OK = SCM-Memory by PARTFUN1:def 2;
len <%NAT,INT%> = 2 by AFINSQ_1:38;
then rng SCM-OK c= dom SCM-VAL by RELAT_1:def 19;
then
Lm5:
dom(SCM-VAL*SCM-OK) = SCM-Memory by Lm4,RELAT_1:27;
registration
cluster SCM-VAL*SCM-OK -> non-empty;
coherence
proof set F = SCM-VAL*SCM-OK;
let n be object;
assume
A1: n in dom F;
per cases by A1,Lm1,Lm5;
suppose n = NAT;
hence F.n is non empty by Th1;
end;
suppose n in SCM-Data-Loc;
hence F.n is non empty by Th2;
end;
end;
end;
definition
mode SCM-State is Element of product(SCM-VAL*SCM-OK);
end;
theorem
for a being Element of SCM-Data-Loc
holds (SCM-VAL*SCM-OK).a = INT by Th2;
theorem Th4:
pi(product(SCM-VAL*SCM-OK),NAT) = NAT by Th1,Lm5,Lm3,CARD_3:12;
theorem Th5:
for a being Element of SCM-Data-Loc
holds pi(product(SCM-VAL*SCM-OK),a) = INT
proof
let a be Element of SCM-Data-Loc;
thus pi(product(SCM-VAL*SCM-OK),a) = (SCM-VAL*SCM-OK).a by Lm5,CARD_3:12
.= INT by Th2;
end;
definition
let s be SCM-State;
func IC(s) -> Element of NAT equals
s.NAT;
coherence by Th4,CARD_3:def 6;
end;
definition
let s be SCM-State, u be natural Number;
func SCM-Chg(s,u) -> SCM-State equals
s +* (NAT .--> u);
coherence
proof
A1: now
let x be object;
assume
A2: x in dom(SCM-VAL*SCM-OK);
per cases;
suppose
A3: x = NAT;
NAT in dom(NAT .--> u) by TARSKI:def 1;
then (s +* (NAT .--> u)).NAT = (NAT .--> u).NAT by FUNCT_4:13
.= u by FUNCOP_1:72;
hence (s +* (NAT .--> u)).x in (SCM-VAL*SCM-OK).x
by A3,Th1,ORDINAL1:def 12;
end;
suppose
A4: x <> NAT;
not x in dom(NAT .--> u) by A4,TARSKI:def 1;
then (s +* (NAT .--> u)).x = s.x by FUNCT_4:11;
hence (s +* (NAT .--> u)).x in (SCM-VAL*SCM-OK).x by A2,CARD_3:9;
end;
end;
dom s = SCM-Memory by Lm5,CARD_3:9;
then dom(s +* (NAT .--> u)) = SCM-Memory \/ dom(NAT .--> u) by
FUNCT_4:def 1
.= SCM-Memory \/ {NAT}
.= dom(SCM-VAL*SCM-OK) by Lm5,Lm3,ZFMISC_1:40;
hence thesis by A1,CARD_3:9;
end;
end;
theorem
for s being SCM-State, u being natural Number holds SCM-Chg(s,u).NAT = u
proof
let s be SCM-State, u be natural Number;
NAT in dom(NAT .--> u) by TARSKI:def 1;
hence SCM-Chg(s,u).NAT = (NAT .--> u).NAT by FUNCT_4:13
.= u by FUNCOP_1:72;
end;
theorem
for s being SCM-State, u being natural Number,
mk being Element of SCM-Data-Loc holds SCM-Chg(s,u).mk = s.mk
proof
let s be SCM-State, u be natural Number, mk be Element of SCM-Data-Loc;
(SCM-VAL*SCM-OK).NAT = NAT & (SCM-VAL*SCM-OK).mk = INT by Th1,Th2;
then not mk in dom(NAT .--> u) by NUMBERS:7,TARSKI:def 1;
hence thesis by FUNCT_4:11;
end;
theorem
for s being SCM-State, u,v being natural Number holds SCM-Chg(s,u).v = s.v
proof
let s be SCM-State, u,v be natural Number;
not v in dom(NAT .--> u) by TARSKI:def 1;
hence thesis by FUNCT_4:11;
end;
definition
let s be SCM-State, t be Element of SCM-Data-Loc, u be Integer;
func SCM-Chg(s,t,u) -> SCM-State equals
s +* (t .--> u);
coherence
proof
A1: now
let x be object;
assume
A2: x in dom(SCM-VAL*SCM-OK);
per cases;
suppose
A3: x = t;
t in dom(t .--> u) by TARSKI:def 1;
then (s +* (t .--> u)).t = (t .--> u).t by FUNCT_4:13
.= u by FUNCOP_1:72;
then (s +* (t .--> u)).t in INT by INT_1:def 2;
hence (s +* (t .--> u)).x in (SCM-VAL*SCM-OK).x by A3,Th2;
end;
suppose
A4: x <> t;
not x in dom(t .--> u) by A4,TARSKI:def 1;
then (s +* (t .--> u)).x = s.x by FUNCT_4:11;
hence (s +* (t .--> u)).x in (SCM-VAL*SCM-OK).x by A2,CARD_3:9;
end;
end;
dom s = SCM-Memory by Lm5,CARD_3:9;
then dom(s +* (t .--> u)) = SCM-Memory \/ dom(t .--> u) by FUNCT_4:def 1
.= SCM-Memory \/ {t}
.= dom(SCM-VAL*SCM-OK) by Lm5,ZFMISC_1:40;
hence thesis by A1,CARD_3:9;
end;
end;
theorem
for s being SCM-State, t being Element of SCM-Data-Loc, u being
Integer holds SCM-Chg(s,t,u).NAT = s.NAT
proof
let s be SCM-State, t be Element of SCM-Data-Loc, u be Integer;
(SCM-VAL*SCM-OK).NAT = NAT & (SCM-VAL*SCM-OK).t = INT by Th1,Th2;
then not NAT in dom(t .--> u) by NUMBERS:7,TARSKI:def 1;
hence thesis by FUNCT_4:11;
end;
theorem
for s being SCM-State, t being Element of SCM-Data-Loc, u being
Integer holds SCM-Chg(s,t,u).t = u
proof
let s be SCM-State, t be Element of SCM-Data-Loc, u be Integer;
t in dom(t .--> u) by TARSKI:def 1;
hence SCM-Chg(s,t,u).t = (t .--> u).t by FUNCT_4:13
.= u by FUNCOP_1:72;
end;
theorem
for s being SCM-State, t being Element of SCM-Data-Loc, u being
Integer, mk being Element of SCM-Data-Loc st mk <> t holds SCM-Chg(s,t,u).mk =
s.mk
proof
let s be SCM-State, t be Element of SCM-Data-Loc, u be Integer, mk be
Element of SCM-Data-Loc such that
A1: mk <> t;
not mk in dom(t .--> u) by A1,TARSKI:def 1;
hence thesis by FUNCT_4:11;
end;
registration
let s be SCM-State, a be Element of SCM-Data-Loc;
cluster s.a -> integer;
coherence
proof
s.a in pi(product(SCM-VAL*SCM-OK),a) by CARD_3:def 6;
then s.a in INT by Th5;
hence thesis;
end;
end;
registration
let x,y be ExtReal, a,b be Nat;
cluster IFGT(x,y,a,b) -> natural;
coherence;
end;
definition
::$CD 5
let x be Element of SCM-Instr, s be SCM-State;
func SCM-Exec-Res(x,s) -> SCM-State equals
SCM-Chg(SCM-Chg(s, x address_1,s.(x address_2)), IC s + 1)
if ex mk, ml being Element of SCM-Data-Loc st x = [1, {}, <*mk, ml*>],
SCM-Chg(SCM-Chg(s,x address_1, s.(x address_1)+s.(x address_2)),IC s + 1)
if ex mk, ml being Element of SCM-Data-Loc st x = [ 2, {}, <*mk, ml*>],
SCM-Chg(SCM-Chg(s,x address_1, s.(x address_1)-s.(x address_2)),IC s + 1)
if ex mk, ml being Element of SCM-Data-Loc st x = [ 3, {}, <*mk, ml*>],
SCM-Chg(SCM-Chg(s,x address_1, s.(x address_1)*s.(x address_2)),IC s + 1)
if ex mk, ml being Element of SCM-Data-Loc st x = [ 4, {}, <*mk, ml*>],
SCM-Chg(SCM-Chg( SCM-Chg(s,
x address_1, s.(x address_1) div s.(x address_2)),
x address_2, s.(x address_1) mod s.(x address_2)),IC s + 1)
if ex mk, ml being Element of SCM-Data-Loc st x = [ 5, {}, <*mk, ml*>],
SCM-Chg(s,x jump_address)
if ex mk being Nat st x = [ 6, <*mk*>, {}],
SCM-Chg(s,IFEQ(s.(x cond_address),0,x cjump_address,IC s + 1))
if ex mk being Nat, ml being Element of SCM-Data-Loc st
x = [7, <*mk*>, <*ml*>],
SCM-Chg(s,IFGT(s.(x cond_address),0,x cjump_address,IC s + 1))
if ex mk being Nat, ml being Element of SCM-Data-Loc st
x = [ 8, <*mk*>, <*ml*>]
otherwise s;
consistency by XTUPLE_0:3;
coherence;
end;
definition
func SCM-Exec -> Action of SCM-Instr, product(SCM-VAL*SCM-OK) means
for x being Element of SCM-Instr, y being SCM-State holds (it.x).y =
SCM-Exec-Res(x,y);
existence
proof
consider f being
Function of [:SCM-Instr,product(SCM-VAL*SCM-OK):], product(SCM-VAL*SCM-OK)
such that
A1: for x being Element of SCM-Instr, y being SCM-State holds f.(x,y)
= SCM-Exec-Res(x,y) from BINOP_1:sch 4;
take curry f;
let x be Element of SCM-Instr, y be SCM-State;
thus (curry f).x.y = f.(x,y) by FUNCT_5:69
.= SCM-Exec-Res(x,y) by A1;
end;
uniqueness
proof
let f,g be Action of SCM-Instr, product(SCM-VAL*SCM-OK) such that
A2: for x being Element of SCM-Instr, y being SCM-State holds (f.x).y
= SCM-Exec-Res(x,y) and
A3: for x being Element of SCM-Instr, y being SCM-State holds (g.x).y
= SCM-Exec-Res(x,y);
now
let x be Element of SCM-Instr;
reconsider gx=g.x, fx=f.x
as Function of product(SCM-VAL*SCM-OK), product(SCM-VAL*SCM-OK)
by FUNCT_2:66;
now
let y be SCM-State;
thus fx.y = SCM-Exec-Res(x,y) by A2
.= gx.y by A3;
end;
hence f.x = g.x by FUNCT_2:63;
end;
hence f = g by FUNCT_2:63;
end;
end;
begin :: Addenda
:: missing, 2007.07.27, A.T.
::$CT 3
theorem
not NAT in SCM-Data-Loc by Lm2;
::$CT
theorem
NAT in SCM-Memory by Lm3;
theorem
x in SCM-Data-Loc implies ex k being Nat st x = [1,k]
proof
assume x in SCM-Data-Loc;
then consider y,z being object such that
A1: y in {1} and
A2: z in NAT and
A3: x = [y,z] by ZFMISC_1:84;
reconsider k = z as Nat by A2;
take k;
thus thesis by A1,A3,TARSKI:def 1;
end;
theorem
for k being Nat holds [1,k] in SCM-Data-Loc
proof
let k be Nat;
1 in {1} & k in NAT by ORDINAL1:def 12,TARSKI:def 1;
hence thesis by ZFMISC_1:87;
end;
::$CT
theorem
for k being Element of SCM-Memory
holds k = NAT or k in SCM-Data-Loc by Lm1;
theorem
dom(SCM-VAL*SCM-OK) = SCM-Memory by Lm5;
theorem
for s being SCM-State holds dom s = SCM-Memory by Lm5,CARD_3:9;
definition let x be set;
attr x is Int-like means
x in SCM-Data-Loc;
end;
theorem
for S being SCM-State holds
S is total (SCM-Memory)-defined Function;
|