Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 22,382 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
:: From Loops to Abelian Multiplicative Groups with Zero
::  by Micha{\l} Muzalewski and Wojciech Skaba

environ

 vocabularies XBOOLE_0, ALGSTR_0, SUBSET_1, ARYTM_3, SUPINF_2, RLVECT_1,
      STRUCT_0, ARYTM_1, VECTSP_1, RELAT_1, MESFUNC1, GROUP_1, BINOP_1,
      NUMBERS, BINOP_2, CARD_1, REAL_1, ALGSTR_1, ZFMISC_1, FUNCT_7;
 notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0,
      REAL_1, BINOP_2, FUNCT_7, STRUCT_0, ALGSTR_0, GROUP_1, VECTSP_1,
      RLVECT_1;
 constructors BINOP_1, BINOP_2, VECTSP_1, RLVECT_1, FUNCT_5, XXREAL_0, REAL_1,
      FUNCT_7, GROUP_1;
 registrations NUMBERS, VECTSP_1, ALGSTR_0, XREAL_0, ORDINAL1, STRUCT_0;
 requirements NUMERALS, SUBSET, BOOLE, ARITHM;
 definitions ALGSTR_0, RLVECT_1, GROUP_1;
 equalities STRUCT_0, ALGSTR_0, ORDINAL1;
 expansions STRUCT_0, VECTSP_1, ALGSTR_0, RLVECT_1, GROUP_1;
 theorems RLVECT_1, VECTSP_1, TARSKI, XCMPLX_1, BINOP_2, GROUP_1, ALGSTR_0,
      STRUCT_0;

begin :: GROUPS

reserve L for non empty addLoopStr;
reserve a,b,c,x for Element of L;

theorem Th1:
  (for a holds a + 0.L = a) & (for a ex x st a+x = 0.L) & (for a,b,
  c holds (a+b)+c = a+(b+c)) implies (a+b = 0.L implies b+a = 0.L)
proof
  assume that
A1: for a holds a + 0.L = a and
A2: for a ex x st a+x = 0.L and
A3: for a,b,c holds (a+b)+c = a+(b+c);
  consider x such that
A4: b + x = 0.L by A2;
  assume
A5: a+b = 0.L;
  thus b+a = (b+a) + (b+x) by A1,A4
    .= ((b+a) + b) + x by A3
    .= (b + 0.L) + x by A3,A5
    .= 0.L by A1,A4;
end;

theorem
  (for a holds a + 0.L = a) & (for a ex x st a+x = 0.L) & (for a,b,c
  holds (a+b)+c = a+(b+c)) implies 0.L+a = a+0.L
proof
  assume that
A1: for a holds a + 0.L = a and
A2: for a ex x st a+x = 0.L and
A3: for a,b,c holds (a+b)+c = a+(b+c);
  consider x such that
A4: a + x = 0.L by A2;
  thus 0.L+a = a + (x+a) by A3,A4
    .= a+0.L by A1,A2,A3,A4,Th1;
end;

theorem
  (for a holds a + 0.L = a) & (for a ex x st a+x = 0.L) & (for a,b,c
  holds (a+b)+c = a+(b+c)) implies for a ex x st x+a = 0.L
proof
  assume that
A1: for a holds a + 0.L = a and
A2: for a ex x st a+x = 0.L and
A3: for a,b,c holds (a+b)+c = a+(b+c);
  let a;
  consider x such that
A4: a + x = 0.L by A2;
  x+a=0.L by A1,A2,A3,A4,Th1;
  hence thesis;
end;

definition
  let x be set;

  func Extract x -> Element of {x} equals
  x;
  coherence by TARSKI:def 1;
end;

theorem Th4:
  for a,b being Element of Trivial-addLoopStr holds a = b
proof
  let a,b be Element of Trivial-addLoopStr;
  thus a = {} by TARSKI:def 1
    .= b by TARSKI:def 1;
end;

theorem
  for a,b be Element of Trivial-addLoopStr holds a+b = 0.
  Trivial-addLoopStr by Th4;

Lm1: ( for a be Element of Trivial-addLoopStr holds a + 0.Trivial-addLoopStr =
a)& for a be Element of Trivial-addLoopStr holds 0.Trivial-addLoopStr + a = a
by Th4;

Lm2: for a,b be Element of Trivial-addLoopStr ex x be Element of
Trivial-addLoopStr st a+x=b
proof
  let a,b be Element of Trivial-addLoopStr;
  take 0.Trivial-addLoopStr;
  thus thesis by Th4;
end;

Lm3: for a,b be Element of Trivial-addLoopStr ex x be Element of
Trivial-addLoopStr st x+a=b
proof
  let a,b be Element of Trivial-addLoopStr;
  take 0.Trivial-addLoopStr;
  thus thesis by Th4;
end;

Lm4: ( for a,x,y be Element of Trivial-addLoopStr holds a+x=a+y implies x=y)&
for a,x,y be Element of Trivial-addLoopStr holds x+a=y+a implies x=y by Th4;

definition
  let IT be non empty addLoopStr;

  attr IT is left_zeroed means

  for a being Element of IT holds 0.IT + a = a;
end;

definition
  let L be non empty addLoopStr;

  attr L is add-left-invertible means
  :Def3:
  for a,b be Element of L ex x being Element of L st x + a = b;
  attr L is add-right-invertible means
  :Def4:
  for a,b be Element of L ex x being Element of L st a + x = b;
end;

definition
  let IT be non empty addLoopStr;

  attr IT is Loop-like means

  IT is left_add-cancelable
  right_add-cancelable add-left-invertible add-right-invertible;
end;

registration
  cluster Loop-like -> left_add-cancelable right_add-cancelable
    add-left-invertible add-right-invertible for non empty addLoopStr;
  coherence;
  cluster left_add-cancelable right_add-cancelable add-left-invertible
    add-right-invertible -> Loop-like for non empty addLoopStr;
  coherence;
end;

theorem Th6:
  for L being non empty addLoopStr holds L is Loop-like iff (for a,
b be Element of L ex x being Element of L st a+x=b) & (for a,b be Element of L
  ex x being Element of L st x+a=b) & (for a,x,y be Element of L holds a+x=a+y
  implies x=y) & for a,x,y be Element of L holds x+a=y+a implies x=y
proof
  let L be non empty addLoopStr;
  thus L is Loop-like implies (for a,b be Element of L ex x being Element of L
st a+x=b) & (for a,b be Element of L ex x being Element of L st x+a=b) & (for a
,x,y be Element of L holds a+x=a+y implies x=y) & for a,x,y being Element of L
  st x+a=y+a holds x=y by Def3,Def4,ALGSTR_0:def 3,def 4;
  assume that
A1: ( for a,b be Element of L ex x being Element of L st a+x=b)& for a,b
  be Element of L ex x being Element of L st x+a=b and
A2: for a,x,y be Element of L holds a+x=a+y implies x=y and
A3: for a,x,y be Element of L holds x+a=y+a implies x=y;
  thus L is left_add-cancelable
  proof
    let x,x,x be Element of L;
    thus thesis by A2;
  end;
  thus L is right_add-cancelable
  proof
    let x,x,x be Element of L;
    thus thesis by A3;
  end;
  thus thesis by A1;
end;

Lm5: for a,b,c be Element of Trivial-addLoopStr holds (a+b)+c = a+(b+c) by Th4;

Lm6: for a,b be Element of Trivial-addLoopStr holds a+b = b+a by Th4;

registration
  cluster Trivial-addLoopStr -> add-associative Loop-like right_zeroed
    left_zeroed;
  coherence by Lm1,Lm2,Lm3,Lm4,Lm5,Th6;
end;

registration
  cluster strict left_zeroed right_zeroed Loop-like for non empty addLoopStr;
  existence
  proof
    take Trivial-addLoopStr;
    thus thesis;
  end;
end;

definition
  mode Loop is left_zeroed right_zeroed Loop-like non empty addLoopStr;
end;

registration
  cluster strict add-associative for Loop;
  existence
  proof
    take Trivial-addLoopStr;
    thus thesis;
  end;
end;

registration
  cluster Loop-like -> add-left-invertible for non empty addLoopStr;
  coherence;
  cluster add-associative right_zeroed right_complementable -> left_zeroed
    Loop-like for non empty addLoopStr;
  coherence
  proof
    let L;
    assume
A1: L is add-associative right_zeroed right_complementable;
    then reconsider
    G = L as add-associative right_zeroed right_complementable non
    empty addLoopStr;
A2: for a,x,y be Element of L holds x+a=y +a implies x=y by A1,RLVECT_1:8;
    thus for a holds 0.L + a = a by A1,RLVECT_1:4;
A3: for a,b ex x st x+a=b
    proof
      let a,b;
      reconsider a9 = a, b9 = b as Element of G;
      reconsider x = b9 + -a9 as Element of L;
      take x;
      (b9+-a9)+a9 = b9+(-a9+a9) by RLVECT_1:def 3
        .= b9+0.G by RLVECT_1:5
        .= b by RLVECT_1:4;
      hence thesis;
    end;
    ( for a,b ex x st a+x=b)& for a,x,y be Element of L holds a+x=a+y
    implies x=y by A1,RLVECT_1:7,8;
    hence thesis by A3,A2,Th6;
  end;
end;

theorem Th7:
  L is AddGroup iff (for a holds a + 0.L = a) & (for a ex x st a+x
  = 0.L) & for a,b,c holds (a+b)+c = a+(b+c)
proof
  thus L is AddGroup implies (for a holds a + 0.L = a) & (for a ex x st a+x =
  0.L) & for a,b,c holds (a+b)+c = a+(b+c) by Th6,RLVECT_1:def 3,def 4;
  assume that
A1: for a holds a + 0.L = a and
A2: for a ex x st a+x = 0.L and
A3: for a,b,c holds (a+b)+c = a+(b+c);
  L is right_complementable
  proof
    let a be Element of L;
    thus ex x st a+x = 0.L by A2;
  end;
  hence thesis by A1,A3,RLVECT_1:def 3,def 4;
end;

registration
  cluster Trivial-addLoopStr -> Abelian;
  coherence by Lm6;
end;

registration
  cluster strict Abelian for AddGroup;
  existence
  proof
    take Trivial-addLoopStr;
    thus thesis;
  end;
end;

theorem
  L is Abelian AddGroup iff (for a holds a + 0.L = a) & (for a ex x st a
  +x = 0.L) & (for a,b,c holds (a+b)+c = a+(b+c)) & for a,b holds a+b = b+a by
Th7,RLVECT_1:def 2;

registration
  cluster Trivial-multLoopStr -> non empty;
  coherence;
end;

theorem Th9:
  for a,b being Element of Trivial-multLoopStr holds a = b
proof
  let a,b be Element of Trivial-multLoopStr;
  thus a = {} by TARSKI:def 1
    .= b by TARSKI:def 1;
end;

theorem
  for a,b be Element of Trivial-multLoopStr holds a*b = 1.
  Trivial-multLoopStr by Th9;

Lm7: ( for a be Element of Trivial-multLoopStr holds a * 1.
Trivial-multLoopStr = a)& for a be Element of Trivial-multLoopStr holds 1.
Trivial-multLoopStr * a = a by Th9;

Lm8: for a,b be Element of Trivial-multLoopStr ex x be Element of
Trivial-multLoopStr st a*x=b
proof
  let a,b be Element of Trivial-multLoopStr;
  take 1_Trivial-multLoopStr;
  thus thesis by Th9;
end;

Lm9: for a,b be Element of Trivial-multLoopStr ex x be Element of
Trivial-multLoopStr st x*a=b
proof
  let a,b be Element of Trivial-multLoopStr;
  take 1_Trivial-multLoopStr;
  thus thesis by Th9;
end;

definition
  let IT be non empty multLoopStr;

  attr IT is invertible means
  :Def6:
  (for a,b be Element of IT ex x being
Element of IT st a*x=b) & for a,b be Element of IT ex x being Element of IT st
  x*a=b;

end;

notation
  let L be non empty multLoopStr;
  synonym L is cancelable for L is mult-cancelable;
end;

registration
  cluster strict well-unital invertible cancelable for non empty multLoopStr;
  existence
  proof
    Trivial-multLoopStr is well-unital invertible cancelable by Lm7,Lm8
,Lm9;
    hence thesis;
  end;
end;

definition
  mode multLoop is well-unital invertible cancelable non empty multLoopStr;
end;

registration
  cluster Trivial-multLoopStr -> well-unital invertible cancelable;
  coherence by Lm7,Lm8,Lm9;
end;

Lm10: for a,b,c be Element of Trivial-multLoopStr holds (a*b)*c = a*(b*c) by
Th9;

registration
  cluster strict associative for multLoop;
  existence
  proof
    Trivial-multLoopStr is associative by Lm10;
    hence thesis;
  end;
end;

definition
  mode multGroup is associative multLoop;
end;

reserve L for non empty multLoopStr;
reserve a,b,c,x,y,z for Element of L;

Lm11: (for a holds a * 1.L = a) & (for a ex x st a*x = 1.L) & (for a,b,c holds
(a*b)*c = a*(b*c)) implies (a*b = 1.L implies b*a = 1.L)
proof
  assume that
A1: for a holds a * 1.L = a and
A2: for a ex x st a*x = 1.L and
A3: for a,b,c holds (a*b)*c = a*(b*c);
  consider x such that
A4: b * x = 1.L by A2;
  assume
A5: a*b = 1.L;
  thus b*a = (b*a) * (b*x) by A1,A4
    .= ((b*a) * b) * x by A3
    .= (b * 1.L) * x by A3,A5
    .= 1.L by A1,A4;
end;

Lm12: (for a holds a * 1.L = a) & (for a ex x st a*x = 1.L) & (for a,b,c holds
(a*b)*c = a*(b*c)) implies 1.L*a = a*1.L
proof
  assume that
A1: for a holds a * 1.L = a and
A2: for a ex x st a*x = 1.L and
A3: for a,b,c holds (a*b)*c = a*(b*c);
  consider x such that
A4: a * x = 1.L by A2;
  thus 1.L*a = a * (x*a) by A3,A4
    .= a*1.L by A1,A2,A3,A4,Lm11;
end;

Lm13: (for a holds a * 1.L = a) & (for a ex x st a*x = 1.L) & (for a,b,c holds
(a*b)*c = a*(b*c)) implies for a ex x st x*a = 1.L
proof
  assume that
A1: for a holds a * 1.L = a and
A2: for a ex x st a*x = 1.L and
A3: for a,b,c holds (a*b)*c = a*(b*c);
  let a;
  consider x such that
A4: a * x = 1.L by A2;
  x*a=1.L by A1,A2,A3,A4,Lm11;
  hence thesis;
end;

theorem Th11:
  L is multGroup iff (for a holds a * 1.L = a) & (for a ex x st a*
  x = 1.L) & for a,b,c holds (a*b)*c = a*(b*c)
proof
  thus L is multGroup implies (for a holds a * 1.L = a) & (for a ex x st a*x =
1.L) & for a,b,c holds (a*b)*c = a*(b*c) by Def6,GROUP_1:def 3;
  assume that
A1: for a holds a * 1.L = a and
A2: for a ex x st a*x = 1.L and
A3: for a,b,c holds (a*b)*c = a*(b*c);
A4: for a,b be Element of L ex x being Element of L st x*a=b
  proof
    let a,b;
    consider y such that
A5: y*a = 1.L by A1,A2,A3,Lm13;
    take x = b*y;
    thus x*a = b * 1.L by A3,A5
      .= b by A1;
  end;
A6: for a be Element of L holds 1.L * a = a
  proof
    let a;
    thus 1.L*a = a*1.L by A1,A2,A3,Lm12
      .= a by A1;
  end;
A7: L is left_mult-cancelable
  proof
    let a,x,y;
    consider z such that
A8: z*a = 1.L by A1,A2,A3,Lm13;
    assume a*x = a*y;
    then (z*a)*x = z*(a*y) by A3
      .= (z*a)*y by A3;
    hence x = 1.L * y by A6,A8
      .= y by A6;
  end;
A9: L is right_mult-cancelable
  proof
    let a,x,y;
    consider z such that
A10: a*z = 1.L by A2;
    assume x*a = y*a;
    then x*(a*z) = (y*a)*z by A3
      .= y*(a*z) by A3;
    hence x = y * 1.L by A1,A10
      .= y by A1;
  end;
  for a,b be Element of L ex x being Element of L st a*x=b
  proof
    let a,b;
    consider y such that
A11: a*y = 1.L by A2;
    take x = y*b;
    thus a*x = 1.L * b by A3,A11
      .= b by A6;
  end;
  hence thesis by A1,A3,A6,A4,A7,A9,Def6,GROUP_1:def 3,VECTSP_1:def 6;
end;

registration
  cluster Trivial-multLoopStr -> associative;
  coherence by Lm10;
end;

Lm14: for a,b be Element of Trivial-multLoopStr holds a*b = b*a by Th9;

registration
  cluster strict commutative for multGroup;
  existence
  proof
    Trivial-multLoopStr is commutative by Lm14;
    hence thesis;
  end;
end;

theorem
  L is commutative multGroup iff (for a holds a * 1.L = a) & (for a ex x
  st a*x = 1.L) & (for a,b,c holds (a*b)*c = a*(b*c)) & for a,b holds a*b = b*a
  by Th11,GROUP_1:def 12;

notation
  let L be invertible cancelable non empty multLoopStr;
  let x be Element of L;
  synonym x" for /x;
end;

registration
  let L be invertible cancelable non empty multLoopStr;
  cluster -> left_invertible for Element of L;
  coherence
  by Def6;
end;

reserve G for multGroup;
reserve a,b,c,x for Element of G;

theorem
  a"*a=1.G & a*(a") = 1.G
proof
  thus
A1: a"*a = 1.G by ALGSTR_0:def 30;
A2: for a,b,c holds (a*b)*c = a*(b*c) by Th11;
  ( for a holds a * 1.G = a)& for a ex x st a*x = 1.G by Th11;
  hence thesis by A1,A2,Lm11;
end;

:: definition

::   let L be invertible cancelable non empty multLoopStr;
::   let a, b be Element of L;
::   func a/b -> Element of L equals
::   a*(b");
::   correctness;
:: end;

::$CD

definition

  func multEX_0 -> strict multLoopStr_0 equals
  multLoopStr_0 (# REAL, multreal,In(0,REAL),In(1,REAL) #);
  correctness;
end;

registration
  cluster multEX_0 -> non empty;
  coherence;
end;

Lm15: now
  let x, e be Element of multEX_0;
  reconsider a = x as Real;
  assume
A1: e = 1;
  hence x*e = a*1 by BINOP_2:def 11
    .= x;
  thus e*x = 1*a by A1,BINOP_2:def 11
    .= x;
end;

registration
  cluster multEX_0 -> well-unital;
  coherence
  by Lm15;
end;

Lm16: for a,b be Element of multEX_0 st a<>0.multEX_0 ex x be Element of
multEX_0 st a*x=b
proof
  let a,b be Element of multEX_0 such that
A1: a<>0.multEX_0;
  reconsider p=a, q=b as Element of REAL;
  reconsider x=q/p as Element of multEX_0;
  p*(q/p) = q by A1,XCMPLX_1:87;
  then a*x = b by BINOP_2:def 11;
  hence thesis;
end;

Lm17: for a,b be Element of multEX_0 st a<>0.multEX_0 ex x be Element of
multEX_0 st x*a=b
proof
  let a,b be Element of multEX_0 such that
A1: a<>0.multEX_0;
  reconsider p=a, q=b as Element of REAL;
  reconsider x=q/p as Element of multEX_0;
  p*(q/p) = q by A1,XCMPLX_1:87;
  then x*a = b by BINOP_2:def 11;
  hence thesis;
end;

Lm18: for a,x,y be Element of multEX_0 st a<>0.multEX_0 holds a*x=a*y implies
x=y
proof
  let a,x,y be Element of multEX_0 such that
A1: a<>0.multEX_0;
  reconsider aa=a, p=x, q=y as Real;
  assume a*x=a*y;
  then aa*p = a*y by BINOP_2:def 11
    .= aa*q by BINOP_2:def 11;
  hence thesis by A1,XCMPLX_1:5;
end;

Lm19: for a,x,y be Element of multEX_0 st a<>0.multEX_0 holds x*a=y*a implies
x=y
proof
  let a,x,y be Element of multEX_0 such that
A1: a<>0.multEX_0;
  reconsider aa=a, p=x, q=y as Real;
  assume x*a=y*a;
  then p*aa = y*a by BINOP_2:def 11
    .= q*aa by BINOP_2:def 11;
  hence thesis by A1,XCMPLX_1:5;
end;

Lm20: for a be Element of multEX_0 holds a*0.multEX_0 = 0.multEX_0
proof
  let a be Element of multEX_0;
  reconsider aa=a as Real;
  thus a*0.multEX_0 = aa*0 by BINOP_2:def 11
    .= 0.multEX_0;
end;

Lm21: for a be Element of multEX_0 holds 0.multEX_0*a = 0.multEX_0
proof
  let a be Element of multEX_0;
  reconsider aa=a as Real;
  thus 0.multEX_0*a = 0*aa by BINOP_2:def 11
    .= 0.multEX_0;
end;

definition
  let IT be non empty multLoopStr_0;
  attr IT is almost_invertible means
  :Def8:
  (for a,b be Element of IT st a<>
0.IT ex x be Element of IT st a*x=b) & for a,b be Element of IT st a<>0.IT ex x
  be Element of IT st x*a=b;
end;

definition
  let IT be non empty multLoopStr_0;

  attr IT is multLoop_0-like means

  IT is almost_invertible
  almost_cancelable & (for a be Element of IT holds a*0.IT = 0.IT) & for a be
  Element of IT holds 0.IT*a = 0.IT;
end;

::$CT 2

theorem Th14:
  for L being non empty multLoopStr_0 holds L is multLoop_0-like
iff (for a,b be Element of L st a<>0.L ex x be Element of L st a*x=b) & (for a,
  b be Element of L st a<>0.L ex x be Element of L st x*a=b) & (for a,x,y be
Element of L st a<>0.L holds a*x=a*y implies x=y) & (for a,x,y be Element of L
st a<>0.L holds x*a=y*a implies x=y) & (for a be Element of L holds a*0.L = 0.L
  ) & for a be Element of L holds 0.L*a = 0.L
proof
  let L be non empty multLoopStr_0;
  hereby
    assume
A1: L is multLoop_0-like;
    then
A2: L is almost_invertible almost_cancelable;
    hence (for a,b be Element of L st a<>0.L ex x be Element of L st a*x=b) &
    for a,b be Element of L st a<>0.L ex x be Element of L st x*a=b;
    thus for a,x,y be Element of L st a<>0.L holds a*x=a*y implies x=y
         by A2,ALGSTR_0:def 20,def 36;
    thus for a,x,y be Element of L st a<>0.L holds x*a=y*a implies x=y
         by A2,ALGSTR_0:def 21,def 37;
    thus (for a be Element of L holds a*0.L = 0.L) & for a be Element of L
    holds 0.L*a = 0.L by A1;
  end;
  assume that
A3: ( for a,b be Element of L st a<>0.L ex x be Element of L st a*x=b)&
  for a,b be Element of L st a<>0.L ex x be Element of L st x*a=b and
A4: for a,x,y be Element of L st a<>0.L holds a*x=a*y implies x=y and
A5: for a,x,y be Element of L st a<>0.L holds x*a=y*a implies x=y and
A6: ( for a be Element of L holds a*0.L = 0.L)& for a be Element of L
  holds 0.L*a = 0.L;
A7: L is almost_right_cancelable
  proof
    let x being Element of L;
    assume
A8: x <> 0.L;
    let y,z be Element of L;
    assume y*x = z*x;
    hence thesis by A5,A8;
  end;
  L is almost_left_cancelable
  proof
    let x being Element of L;
    assume
A9: x <> 0.L;
    let y,z be Element of L;
    assume x*y = x*z;
    hence thesis by A4,A9;
  end;
  then L is almost_invertible almost_cancelable by A3,A7;
  hence thesis by A6;
end;

registration
  cluster multLoop_0-like -> almost_invertible almost_cancelable for non empty
    multLoopStr_0;
  coherence;
end;

registration
  cluster strict well-unital multLoop_0-like non degenerated for non empty
    multLoopStr_0;
  existence
  proof
    multEX_0 is well-unital multLoop_0-like non degenerated
    by Lm16,Lm17
,Lm18,Lm19,Lm20,Lm21,Th14;
    hence thesis;
  end;
end;

definition
  mode multLoop_0 is well-unital non degenerated multLoop_0-like non empty
    multLoopStr_0;
end;

registration
  cluster multEX_0 -> well-unital multLoop_0-like;
  coherence by Lm16,Lm17,Lm18,Lm19,Lm20,Lm21,Th14;
end;

Lm22: for a,b,c be Element of multEX_0 holds (a*b)*c = a*(b*c)
proof
  let a,b,c be Element of multEX_0;
  reconsider p=a, q=b, r=c as Real;
A1: b*c = q*r by BINOP_2:def 11;
  a*b = p*q by BINOP_2:def 11;
  hence (a*b)*c = (p*q)*r by BINOP_2:def 11
    .= p*(q*r)
    .= a*(b*c) by A1,BINOP_2:def 11;
end;

registration
  cluster strict associative non degenerated for multLoop_0;
  existence
  proof
    multEX_0 is associative non degenerated by Lm22;
    hence thesis;
  end;
end;

definition
  mode multGroup_0 is associative non degenerated multLoop_0;
end;

registration
  cluster multEX_0 -> associative;
  coherence by Lm22;
end;

Lm23: for a,b be Element of multEX_0 holds a*b = b*a
proof
  let a,b be Element of multEX_0;
  reconsider p=a, q=b as Real;
  thus a*b = q*p by BINOP_2:def 11
    .= b*a by BINOP_2:def 11;
end;

registration
  cluster strict commutative for multGroup_0;
  existence
  proof
    multEX_0 is commutative non degenerated by Lm23;
    hence thesis;
  end;
end;

notation
  let L be almost_invertible almost_cancelable non empty multLoopStr_0;
  let x be Element of L;
  synonym x" for /x;
end;

definition
  let L be almost_invertible almost_cancelable non empty multLoopStr_0;
  let x be Element of L;
  assume
A1: x<>0.L;
  redefine func x" means
  :Def10:
  it*x = 1.L;
  compatibility
  proof
    let IT be Element of L;
    ex x1 being Element of L st x1*x = 1.L by A1,Def8;
    then
A2: x is left_invertible;
    x is right_mult-cancelable by A1,ALGSTR_0:def 37;
    hence thesis by A2,ALGSTR_0:def 30;
  end;
end;

reserve G for associative almost_invertible almost_cancelable well-unital non
  empty multLoopStr_0;
reserve a,x for Element of G;

theorem
  a<>0.G implies a"*a=1.G & a*(a") = 1.G
proof
  assume
A1: a<>0.G;
  hence
A2: a"*a = 1.G by Def10;
  consider x such that
A3: a*x = 1.G by A1,Def8;
  a"*a*x = a" * 1.G by A3,GROUP_1:def 3;
  then x = a" * 1.G by A2;
  hence thesis by A3;
end;

definition
  let L be almost_invertible almost_cancelable non empty multLoopStr_0;
  let a, b be Element of L;
  func a/b -> Element of L equals
  a*(b");
  correctness;
end;

:: from SCMRING1, 2010,02.06, A.T.

registration
  cluster  -> Abelian add-associative right_zeroed right_complementable
    for 1-element addLoopStr;
  coherence
  proof
    let S be 1-element addLoopStr;
    thus (for v, w being Element of S holds v + w = w + v) & (for u, v, w
being Element of S holds u + v + w = u + (v + w)) & for v being Element of S
    holds v + 0.S = v by STRUCT_0:def 10;
    let v be Element of S;
    take v;
    thus thesis by STRUCT_0:def 10;
  end;
  cluster trivial -> well-unital right-distributive for
non empty doubleLoopStr;
  coherence;
end;

registration
  cluster -> Group-like associative commutative for 1-element multMagma;
  coherence
  proof
    let H be 1-element multMagma;
    hereby
      set e = the Element of H;
      take e;
      let h be Element of H;
      thus h * e = h & e * h = h by STRUCT_0:def 10;
      take g = e;
      thus h * g = e & g * h = e by STRUCT_0:def 10;
    end;
    thus for x, y, z being Element of H holds x*y*z = x*(y*z) by
STRUCT_0:def 10;
    let x, y be Element of H;
    thus thesis by STRUCT_0:def 10;
  end;
end;