Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 22,382 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 |
:: From Loops to Abelian Multiplicative Groups with Zero
:: by Micha{\l} Muzalewski and Wojciech Skaba
environ
vocabularies XBOOLE_0, ALGSTR_0, SUBSET_1, ARYTM_3, SUPINF_2, RLVECT_1,
STRUCT_0, ARYTM_1, VECTSP_1, RELAT_1, MESFUNC1, GROUP_1, BINOP_1,
NUMBERS, BINOP_2, CARD_1, REAL_1, ALGSTR_1, ZFMISC_1, FUNCT_7;
notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, XCMPLX_0, XREAL_0,
REAL_1, BINOP_2, FUNCT_7, STRUCT_0, ALGSTR_0, GROUP_1, VECTSP_1,
RLVECT_1;
constructors BINOP_1, BINOP_2, VECTSP_1, RLVECT_1, FUNCT_5, XXREAL_0, REAL_1,
FUNCT_7, GROUP_1;
registrations NUMBERS, VECTSP_1, ALGSTR_0, XREAL_0, ORDINAL1, STRUCT_0;
requirements NUMERALS, SUBSET, BOOLE, ARITHM;
definitions ALGSTR_0, RLVECT_1, GROUP_1;
equalities STRUCT_0, ALGSTR_0, ORDINAL1;
expansions STRUCT_0, VECTSP_1, ALGSTR_0, RLVECT_1, GROUP_1;
theorems RLVECT_1, VECTSP_1, TARSKI, XCMPLX_1, BINOP_2, GROUP_1, ALGSTR_0,
STRUCT_0;
begin :: GROUPS
reserve L for non empty addLoopStr;
reserve a,b,c,x for Element of L;
theorem Th1:
(for a holds a + 0.L = a) & (for a ex x st a+x = 0.L) & (for a,b,
c holds (a+b)+c = a+(b+c)) implies (a+b = 0.L implies b+a = 0.L)
proof
assume that
A1: for a holds a + 0.L = a and
A2: for a ex x st a+x = 0.L and
A3: for a,b,c holds (a+b)+c = a+(b+c);
consider x such that
A4: b + x = 0.L by A2;
assume
A5: a+b = 0.L;
thus b+a = (b+a) + (b+x) by A1,A4
.= ((b+a) + b) + x by A3
.= (b + 0.L) + x by A3,A5
.= 0.L by A1,A4;
end;
theorem
(for a holds a + 0.L = a) & (for a ex x st a+x = 0.L) & (for a,b,c
holds (a+b)+c = a+(b+c)) implies 0.L+a = a+0.L
proof
assume that
A1: for a holds a + 0.L = a and
A2: for a ex x st a+x = 0.L and
A3: for a,b,c holds (a+b)+c = a+(b+c);
consider x such that
A4: a + x = 0.L by A2;
thus 0.L+a = a + (x+a) by A3,A4
.= a+0.L by A1,A2,A3,A4,Th1;
end;
theorem
(for a holds a + 0.L = a) & (for a ex x st a+x = 0.L) & (for a,b,c
holds (a+b)+c = a+(b+c)) implies for a ex x st x+a = 0.L
proof
assume that
A1: for a holds a + 0.L = a and
A2: for a ex x st a+x = 0.L and
A3: for a,b,c holds (a+b)+c = a+(b+c);
let a;
consider x such that
A4: a + x = 0.L by A2;
x+a=0.L by A1,A2,A3,A4,Th1;
hence thesis;
end;
definition
let x be set;
func Extract x -> Element of {x} equals
x;
coherence by TARSKI:def 1;
end;
theorem Th4:
for a,b being Element of Trivial-addLoopStr holds a = b
proof
let a,b be Element of Trivial-addLoopStr;
thus a = {} by TARSKI:def 1
.= b by TARSKI:def 1;
end;
theorem
for a,b be Element of Trivial-addLoopStr holds a+b = 0.
Trivial-addLoopStr by Th4;
Lm1: ( for a be Element of Trivial-addLoopStr holds a + 0.Trivial-addLoopStr =
a)& for a be Element of Trivial-addLoopStr holds 0.Trivial-addLoopStr + a = a
by Th4;
Lm2: for a,b be Element of Trivial-addLoopStr ex x be Element of
Trivial-addLoopStr st a+x=b
proof
let a,b be Element of Trivial-addLoopStr;
take 0.Trivial-addLoopStr;
thus thesis by Th4;
end;
Lm3: for a,b be Element of Trivial-addLoopStr ex x be Element of
Trivial-addLoopStr st x+a=b
proof
let a,b be Element of Trivial-addLoopStr;
take 0.Trivial-addLoopStr;
thus thesis by Th4;
end;
Lm4: ( for a,x,y be Element of Trivial-addLoopStr holds a+x=a+y implies x=y)&
for a,x,y be Element of Trivial-addLoopStr holds x+a=y+a implies x=y by Th4;
definition
let IT be non empty addLoopStr;
attr IT is left_zeroed means
for a being Element of IT holds 0.IT + a = a;
end;
definition
let L be non empty addLoopStr;
attr L is add-left-invertible means
:Def3:
for a,b be Element of L ex x being Element of L st x + a = b;
attr L is add-right-invertible means
:Def4:
for a,b be Element of L ex x being Element of L st a + x = b;
end;
definition
let IT be non empty addLoopStr;
attr IT is Loop-like means
IT is left_add-cancelable
right_add-cancelable add-left-invertible add-right-invertible;
end;
registration
cluster Loop-like -> left_add-cancelable right_add-cancelable
add-left-invertible add-right-invertible for non empty addLoopStr;
coherence;
cluster left_add-cancelable right_add-cancelable add-left-invertible
add-right-invertible -> Loop-like for non empty addLoopStr;
coherence;
end;
theorem Th6:
for L being non empty addLoopStr holds L is Loop-like iff (for a,
b be Element of L ex x being Element of L st a+x=b) & (for a,b be Element of L
ex x being Element of L st x+a=b) & (for a,x,y be Element of L holds a+x=a+y
implies x=y) & for a,x,y be Element of L holds x+a=y+a implies x=y
proof
let L be non empty addLoopStr;
thus L is Loop-like implies (for a,b be Element of L ex x being Element of L
st a+x=b) & (for a,b be Element of L ex x being Element of L st x+a=b) & (for a
,x,y be Element of L holds a+x=a+y implies x=y) & for a,x,y being Element of L
st x+a=y+a holds x=y by Def3,Def4,ALGSTR_0:def 3,def 4;
assume that
A1: ( for a,b be Element of L ex x being Element of L st a+x=b)& for a,b
be Element of L ex x being Element of L st x+a=b and
A2: for a,x,y be Element of L holds a+x=a+y implies x=y and
A3: for a,x,y be Element of L holds x+a=y+a implies x=y;
thus L is left_add-cancelable
proof
let x,x,x be Element of L;
thus thesis by A2;
end;
thus L is right_add-cancelable
proof
let x,x,x be Element of L;
thus thesis by A3;
end;
thus thesis by A1;
end;
Lm5: for a,b,c be Element of Trivial-addLoopStr holds (a+b)+c = a+(b+c) by Th4;
Lm6: for a,b be Element of Trivial-addLoopStr holds a+b = b+a by Th4;
registration
cluster Trivial-addLoopStr -> add-associative Loop-like right_zeroed
left_zeroed;
coherence by Lm1,Lm2,Lm3,Lm4,Lm5,Th6;
end;
registration
cluster strict left_zeroed right_zeroed Loop-like for non empty addLoopStr;
existence
proof
take Trivial-addLoopStr;
thus thesis;
end;
end;
definition
mode Loop is left_zeroed right_zeroed Loop-like non empty addLoopStr;
end;
registration
cluster strict add-associative for Loop;
existence
proof
take Trivial-addLoopStr;
thus thesis;
end;
end;
registration
cluster Loop-like -> add-left-invertible for non empty addLoopStr;
coherence;
cluster add-associative right_zeroed right_complementable -> left_zeroed
Loop-like for non empty addLoopStr;
coherence
proof
let L;
assume
A1: L is add-associative right_zeroed right_complementable;
then reconsider
G = L as add-associative right_zeroed right_complementable non
empty addLoopStr;
A2: for a,x,y be Element of L holds x+a=y +a implies x=y by A1,RLVECT_1:8;
thus for a holds 0.L + a = a by A1,RLVECT_1:4;
A3: for a,b ex x st x+a=b
proof
let a,b;
reconsider a9 = a, b9 = b as Element of G;
reconsider x = b9 + -a9 as Element of L;
take x;
(b9+-a9)+a9 = b9+(-a9+a9) by RLVECT_1:def 3
.= b9+0.G by RLVECT_1:5
.= b by RLVECT_1:4;
hence thesis;
end;
( for a,b ex x st a+x=b)& for a,x,y be Element of L holds a+x=a+y
implies x=y by A1,RLVECT_1:7,8;
hence thesis by A3,A2,Th6;
end;
end;
theorem Th7:
L is AddGroup iff (for a holds a + 0.L = a) & (for a ex x st a+x
= 0.L) & for a,b,c holds (a+b)+c = a+(b+c)
proof
thus L is AddGroup implies (for a holds a + 0.L = a) & (for a ex x st a+x =
0.L) & for a,b,c holds (a+b)+c = a+(b+c) by Th6,RLVECT_1:def 3,def 4;
assume that
A1: for a holds a + 0.L = a and
A2: for a ex x st a+x = 0.L and
A3: for a,b,c holds (a+b)+c = a+(b+c);
L is right_complementable
proof
let a be Element of L;
thus ex x st a+x = 0.L by A2;
end;
hence thesis by A1,A3,RLVECT_1:def 3,def 4;
end;
registration
cluster Trivial-addLoopStr -> Abelian;
coherence by Lm6;
end;
registration
cluster strict Abelian for AddGroup;
existence
proof
take Trivial-addLoopStr;
thus thesis;
end;
end;
theorem
L is Abelian AddGroup iff (for a holds a + 0.L = a) & (for a ex x st a
+x = 0.L) & (for a,b,c holds (a+b)+c = a+(b+c)) & for a,b holds a+b = b+a by
Th7,RLVECT_1:def 2;
registration
cluster Trivial-multLoopStr -> non empty;
coherence;
end;
theorem Th9:
for a,b being Element of Trivial-multLoopStr holds a = b
proof
let a,b be Element of Trivial-multLoopStr;
thus a = {} by TARSKI:def 1
.= b by TARSKI:def 1;
end;
theorem
for a,b be Element of Trivial-multLoopStr holds a*b = 1.
Trivial-multLoopStr by Th9;
Lm7: ( for a be Element of Trivial-multLoopStr holds a * 1.
Trivial-multLoopStr = a)& for a be Element of Trivial-multLoopStr holds 1.
Trivial-multLoopStr * a = a by Th9;
Lm8: for a,b be Element of Trivial-multLoopStr ex x be Element of
Trivial-multLoopStr st a*x=b
proof
let a,b be Element of Trivial-multLoopStr;
take 1_Trivial-multLoopStr;
thus thesis by Th9;
end;
Lm9: for a,b be Element of Trivial-multLoopStr ex x be Element of
Trivial-multLoopStr st x*a=b
proof
let a,b be Element of Trivial-multLoopStr;
take 1_Trivial-multLoopStr;
thus thesis by Th9;
end;
definition
let IT be non empty multLoopStr;
attr IT is invertible means
:Def6:
(for a,b be Element of IT ex x being
Element of IT st a*x=b) & for a,b be Element of IT ex x being Element of IT st
x*a=b;
end;
notation
let L be non empty multLoopStr;
synonym L is cancelable for L is mult-cancelable;
end;
registration
cluster strict well-unital invertible cancelable for non empty multLoopStr;
existence
proof
Trivial-multLoopStr is well-unital invertible cancelable by Lm7,Lm8
,Lm9;
hence thesis;
end;
end;
definition
mode multLoop is well-unital invertible cancelable non empty multLoopStr;
end;
registration
cluster Trivial-multLoopStr -> well-unital invertible cancelable;
coherence by Lm7,Lm8,Lm9;
end;
Lm10: for a,b,c be Element of Trivial-multLoopStr holds (a*b)*c = a*(b*c) by
Th9;
registration
cluster strict associative for multLoop;
existence
proof
Trivial-multLoopStr is associative by Lm10;
hence thesis;
end;
end;
definition
mode multGroup is associative multLoop;
end;
reserve L for non empty multLoopStr;
reserve a,b,c,x,y,z for Element of L;
Lm11: (for a holds a * 1.L = a) & (for a ex x st a*x = 1.L) & (for a,b,c holds
(a*b)*c = a*(b*c)) implies (a*b = 1.L implies b*a = 1.L)
proof
assume that
A1: for a holds a * 1.L = a and
A2: for a ex x st a*x = 1.L and
A3: for a,b,c holds (a*b)*c = a*(b*c);
consider x such that
A4: b * x = 1.L by A2;
assume
A5: a*b = 1.L;
thus b*a = (b*a) * (b*x) by A1,A4
.= ((b*a) * b) * x by A3
.= (b * 1.L) * x by A3,A5
.= 1.L by A1,A4;
end;
Lm12: (for a holds a * 1.L = a) & (for a ex x st a*x = 1.L) & (for a,b,c holds
(a*b)*c = a*(b*c)) implies 1.L*a = a*1.L
proof
assume that
A1: for a holds a * 1.L = a and
A2: for a ex x st a*x = 1.L and
A3: for a,b,c holds (a*b)*c = a*(b*c);
consider x such that
A4: a * x = 1.L by A2;
thus 1.L*a = a * (x*a) by A3,A4
.= a*1.L by A1,A2,A3,A4,Lm11;
end;
Lm13: (for a holds a * 1.L = a) & (for a ex x st a*x = 1.L) & (for a,b,c holds
(a*b)*c = a*(b*c)) implies for a ex x st x*a = 1.L
proof
assume that
A1: for a holds a * 1.L = a and
A2: for a ex x st a*x = 1.L and
A3: for a,b,c holds (a*b)*c = a*(b*c);
let a;
consider x such that
A4: a * x = 1.L by A2;
x*a=1.L by A1,A2,A3,A4,Lm11;
hence thesis;
end;
theorem Th11:
L is multGroup iff (for a holds a * 1.L = a) & (for a ex x st a*
x = 1.L) & for a,b,c holds (a*b)*c = a*(b*c)
proof
thus L is multGroup implies (for a holds a * 1.L = a) & (for a ex x st a*x =
1.L) & for a,b,c holds (a*b)*c = a*(b*c) by Def6,GROUP_1:def 3;
assume that
A1: for a holds a * 1.L = a and
A2: for a ex x st a*x = 1.L and
A3: for a,b,c holds (a*b)*c = a*(b*c);
A4: for a,b be Element of L ex x being Element of L st x*a=b
proof
let a,b;
consider y such that
A5: y*a = 1.L by A1,A2,A3,Lm13;
take x = b*y;
thus x*a = b * 1.L by A3,A5
.= b by A1;
end;
A6: for a be Element of L holds 1.L * a = a
proof
let a;
thus 1.L*a = a*1.L by A1,A2,A3,Lm12
.= a by A1;
end;
A7: L is left_mult-cancelable
proof
let a,x,y;
consider z such that
A8: z*a = 1.L by A1,A2,A3,Lm13;
assume a*x = a*y;
then (z*a)*x = z*(a*y) by A3
.= (z*a)*y by A3;
hence x = 1.L * y by A6,A8
.= y by A6;
end;
A9: L is right_mult-cancelable
proof
let a,x,y;
consider z such that
A10: a*z = 1.L by A2;
assume x*a = y*a;
then x*(a*z) = (y*a)*z by A3
.= y*(a*z) by A3;
hence x = y * 1.L by A1,A10
.= y by A1;
end;
for a,b be Element of L ex x being Element of L st a*x=b
proof
let a,b;
consider y such that
A11: a*y = 1.L by A2;
take x = y*b;
thus a*x = 1.L * b by A3,A11
.= b by A6;
end;
hence thesis by A1,A3,A6,A4,A7,A9,Def6,GROUP_1:def 3,VECTSP_1:def 6;
end;
registration
cluster Trivial-multLoopStr -> associative;
coherence by Lm10;
end;
Lm14: for a,b be Element of Trivial-multLoopStr holds a*b = b*a by Th9;
registration
cluster strict commutative for multGroup;
existence
proof
Trivial-multLoopStr is commutative by Lm14;
hence thesis;
end;
end;
theorem
L is commutative multGroup iff (for a holds a * 1.L = a) & (for a ex x
st a*x = 1.L) & (for a,b,c holds (a*b)*c = a*(b*c)) & for a,b holds a*b = b*a
by Th11,GROUP_1:def 12;
notation
let L be invertible cancelable non empty multLoopStr;
let x be Element of L;
synonym x" for /x;
end;
registration
let L be invertible cancelable non empty multLoopStr;
cluster -> left_invertible for Element of L;
coherence
by Def6;
end;
reserve G for multGroup;
reserve a,b,c,x for Element of G;
theorem
a"*a=1.G & a*(a") = 1.G
proof
thus
A1: a"*a = 1.G by ALGSTR_0:def 30;
A2: for a,b,c holds (a*b)*c = a*(b*c) by Th11;
( for a holds a * 1.G = a)& for a ex x st a*x = 1.G by Th11;
hence thesis by A1,A2,Lm11;
end;
:: definition
:: let L be invertible cancelable non empty multLoopStr;
:: let a, b be Element of L;
:: func a/b -> Element of L equals
:: a*(b");
:: correctness;
:: end;
::$CD
definition
func multEX_0 -> strict multLoopStr_0 equals
multLoopStr_0 (# REAL, multreal,In(0,REAL),In(1,REAL) #);
correctness;
end;
registration
cluster multEX_0 -> non empty;
coherence;
end;
Lm15: now
let x, e be Element of multEX_0;
reconsider a = x as Real;
assume
A1: e = 1;
hence x*e = a*1 by BINOP_2:def 11
.= x;
thus e*x = 1*a by A1,BINOP_2:def 11
.= x;
end;
registration
cluster multEX_0 -> well-unital;
coherence
by Lm15;
end;
Lm16: for a,b be Element of multEX_0 st a<>0.multEX_0 ex x be Element of
multEX_0 st a*x=b
proof
let a,b be Element of multEX_0 such that
A1: a<>0.multEX_0;
reconsider p=a, q=b as Element of REAL;
reconsider x=q/p as Element of multEX_0;
p*(q/p) = q by A1,XCMPLX_1:87;
then a*x = b by BINOP_2:def 11;
hence thesis;
end;
Lm17: for a,b be Element of multEX_0 st a<>0.multEX_0 ex x be Element of
multEX_0 st x*a=b
proof
let a,b be Element of multEX_0 such that
A1: a<>0.multEX_0;
reconsider p=a, q=b as Element of REAL;
reconsider x=q/p as Element of multEX_0;
p*(q/p) = q by A1,XCMPLX_1:87;
then x*a = b by BINOP_2:def 11;
hence thesis;
end;
Lm18: for a,x,y be Element of multEX_0 st a<>0.multEX_0 holds a*x=a*y implies
x=y
proof
let a,x,y be Element of multEX_0 such that
A1: a<>0.multEX_0;
reconsider aa=a, p=x, q=y as Real;
assume a*x=a*y;
then aa*p = a*y by BINOP_2:def 11
.= aa*q by BINOP_2:def 11;
hence thesis by A1,XCMPLX_1:5;
end;
Lm19: for a,x,y be Element of multEX_0 st a<>0.multEX_0 holds x*a=y*a implies
x=y
proof
let a,x,y be Element of multEX_0 such that
A1: a<>0.multEX_0;
reconsider aa=a, p=x, q=y as Real;
assume x*a=y*a;
then p*aa = y*a by BINOP_2:def 11
.= q*aa by BINOP_2:def 11;
hence thesis by A1,XCMPLX_1:5;
end;
Lm20: for a be Element of multEX_0 holds a*0.multEX_0 = 0.multEX_0
proof
let a be Element of multEX_0;
reconsider aa=a as Real;
thus a*0.multEX_0 = aa*0 by BINOP_2:def 11
.= 0.multEX_0;
end;
Lm21: for a be Element of multEX_0 holds 0.multEX_0*a = 0.multEX_0
proof
let a be Element of multEX_0;
reconsider aa=a as Real;
thus 0.multEX_0*a = 0*aa by BINOP_2:def 11
.= 0.multEX_0;
end;
definition
let IT be non empty multLoopStr_0;
attr IT is almost_invertible means
:Def8:
(for a,b be Element of IT st a<>
0.IT ex x be Element of IT st a*x=b) & for a,b be Element of IT st a<>0.IT ex x
be Element of IT st x*a=b;
end;
definition
let IT be non empty multLoopStr_0;
attr IT is multLoop_0-like means
IT is almost_invertible
almost_cancelable & (for a be Element of IT holds a*0.IT = 0.IT) & for a be
Element of IT holds 0.IT*a = 0.IT;
end;
::$CT 2
theorem Th14:
for L being non empty multLoopStr_0 holds L is multLoop_0-like
iff (for a,b be Element of L st a<>0.L ex x be Element of L st a*x=b) & (for a,
b be Element of L st a<>0.L ex x be Element of L st x*a=b) & (for a,x,y be
Element of L st a<>0.L holds a*x=a*y implies x=y) & (for a,x,y be Element of L
st a<>0.L holds x*a=y*a implies x=y) & (for a be Element of L holds a*0.L = 0.L
) & for a be Element of L holds 0.L*a = 0.L
proof
let L be non empty multLoopStr_0;
hereby
assume
A1: L is multLoop_0-like;
then
A2: L is almost_invertible almost_cancelable;
hence (for a,b be Element of L st a<>0.L ex x be Element of L st a*x=b) &
for a,b be Element of L st a<>0.L ex x be Element of L st x*a=b;
thus for a,x,y be Element of L st a<>0.L holds a*x=a*y implies x=y
by A2,ALGSTR_0:def 20,def 36;
thus for a,x,y be Element of L st a<>0.L holds x*a=y*a implies x=y
by A2,ALGSTR_0:def 21,def 37;
thus (for a be Element of L holds a*0.L = 0.L) & for a be Element of L
holds 0.L*a = 0.L by A1;
end;
assume that
A3: ( for a,b be Element of L st a<>0.L ex x be Element of L st a*x=b)&
for a,b be Element of L st a<>0.L ex x be Element of L st x*a=b and
A4: for a,x,y be Element of L st a<>0.L holds a*x=a*y implies x=y and
A5: for a,x,y be Element of L st a<>0.L holds x*a=y*a implies x=y and
A6: ( for a be Element of L holds a*0.L = 0.L)& for a be Element of L
holds 0.L*a = 0.L;
A7: L is almost_right_cancelable
proof
let x being Element of L;
assume
A8: x <> 0.L;
let y,z be Element of L;
assume y*x = z*x;
hence thesis by A5,A8;
end;
L is almost_left_cancelable
proof
let x being Element of L;
assume
A9: x <> 0.L;
let y,z be Element of L;
assume x*y = x*z;
hence thesis by A4,A9;
end;
then L is almost_invertible almost_cancelable by A3,A7;
hence thesis by A6;
end;
registration
cluster multLoop_0-like -> almost_invertible almost_cancelable for non empty
multLoopStr_0;
coherence;
end;
registration
cluster strict well-unital multLoop_0-like non degenerated for non empty
multLoopStr_0;
existence
proof
multEX_0 is well-unital multLoop_0-like non degenerated
by Lm16,Lm17
,Lm18,Lm19,Lm20,Lm21,Th14;
hence thesis;
end;
end;
definition
mode multLoop_0 is well-unital non degenerated multLoop_0-like non empty
multLoopStr_0;
end;
registration
cluster multEX_0 -> well-unital multLoop_0-like;
coherence by Lm16,Lm17,Lm18,Lm19,Lm20,Lm21,Th14;
end;
Lm22: for a,b,c be Element of multEX_0 holds (a*b)*c = a*(b*c)
proof
let a,b,c be Element of multEX_0;
reconsider p=a, q=b, r=c as Real;
A1: b*c = q*r by BINOP_2:def 11;
a*b = p*q by BINOP_2:def 11;
hence (a*b)*c = (p*q)*r by BINOP_2:def 11
.= p*(q*r)
.= a*(b*c) by A1,BINOP_2:def 11;
end;
registration
cluster strict associative non degenerated for multLoop_0;
existence
proof
multEX_0 is associative non degenerated by Lm22;
hence thesis;
end;
end;
definition
mode multGroup_0 is associative non degenerated multLoop_0;
end;
registration
cluster multEX_0 -> associative;
coherence by Lm22;
end;
Lm23: for a,b be Element of multEX_0 holds a*b = b*a
proof
let a,b be Element of multEX_0;
reconsider p=a, q=b as Real;
thus a*b = q*p by BINOP_2:def 11
.= b*a by BINOP_2:def 11;
end;
registration
cluster strict commutative for multGroup_0;
existence
proof
multEX_0 is commutative non degenerated by Lm23;
hence thesis;
end;
end;
notation
let L be almost_invertible almost_cancelable non empty multLoopStr_0;
let x be Element of L;
synonym x" for /x;
end;
definition
let L be almost_invertible almost_cancelable non empty multLoopStr_0;
let x be Element of L;
assume
A1: x<>0.L;
redefine func x" means
:Def10:
it*x = 1.L;
compatibility
proof
let IT be Element of L;
ex x1 being Element of L st x1*x = 1.L by A1,Def8;
then
A2: x is left_invertible;
x is right_mult-cancelable by A1,ALGSTR_0:def 37;
hence thesis by A2,ALGSTR_0:def 30;
end;
end;
reserve G for associative almost_invertible almost_cancelable well-unital non
empty multLoopStr_0;
reserve a,x for Element of G;
theorem
a<>0.G implies a"*a=1.G & a*(a") = 1.G
proof
assume
A1: a<>0.G;
hence
A2: a"*a = 1.G by Def10;
consider x such that
A3: a*x = 1.G by A1,Def8;
a"*a*x = a" * 1.G by A3,GROUP_1:def 3;
then x = a" * 1.G by A2;
hence thesis by A3;
end;
definition
let L be almost_invertible almost_cancelable non empty multLoopStr_0;
let a, b be Element of L;
func a/b -> Element of L equals
a*(b");
correctness;
end;
:: from SCMRING1, 2010,02.06, A.T.
registration
cluster -> Abelian add-associative right_zeroed right_complementable
for 1-element addLoopStr;
coherence
proof
let S be 1-element addLoopStr;
thus (for v, w being Element of S holds v + w = w + v) & (for u, v, w
being Element of S holds u + v + w = u + (v + w)) & for v being Element of S
holds v + 0.S = v by STRUCT_0:def 10;
let v be Element of S;
take v;
thus thesis by STRUCT_0:def 10;
end;
cluster trivial -> well-unital right-distributive for
non empty doubleLoopStr;
coherence;
end;
registration
cluster -> Group-like associative commutative for 1-element multMagma;
coherence
proof
let H be 1-element multMagma;
hereby
set e = the Element of H;
take e;
let h be Element of H;
thus h * e = h & e * h = h by STRUCT_0:def 10;
take g = e;
thus h * g = e & g * h = e by STRUCT_0:def 10;
end;
thus for x, y, z being Element of H holds x*y*z = x*(y*z) by
STRUCT_0:def 10;
let x, y be Element of H;
thus thesis by STRUCT_0:def 10;
end;
end;
|