Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 79,188 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 |
:: Algebraic Numbers
:: by Yasushige Watase
environ
vocabularies NUMBERS, FINSEQ_1, SUBSET_1, FUNCT_1, ARYTM_3, TARSKI, NAT_1,
XBOOLE_0, SUPINF_2, ZFMISC_1, GROUP_1, STRUCT_0, POLYNOM1, POLYNOM2,
C0SP1, REALSET1, ARYTM_1, RELAT_1, CARD_1, XXREAL_0, VECTSP_1, ALGSTR_0,
FUNCT_7, AFINSQ_1, CARD_3, MESFUNC1, POLYNOM3, FUNCSDOM, ORDINAL4, INT_2,
GAUSSINT, BINOP_2, COMPLFLD, EC_PF_1, XCMPLX_0, FINSEQ_2, INT_3,
ALGSEQ_1, POLYNOM4, PARTFUN1, IDEAL_1, CARD_FIL, VECTSP_2, POLYNOM5,
HURWITZ, RATFUNC1, MSSUBFAM, QUOFIELD, BINOP_1, RING_1, RING_2, LATTICES,
GCD_1, RLVECT_1, ALGNUM_1, RAT_1, INT_1, WAYBEL_8;
notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, XTUPLE_0, MCART_1, DOMAIN_1,
ORDINAL1, RELAT_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, NUMBERS, INT_1,
FUNCOP_1, BINOP_1, FUNCT_4, FUNCT_7, SETWISEO, FINSEQ_1, FINSEQ_2,
XCMPLX_0, XXREAL_0, CARD_1, XREAL_0, PBOOLE, VALUED_0, NAT_1, NAT_D,
RAT_1, NEWTON, BINOP_2, MEMBERED, STRUCT_0, ALGSTR_0, C0SP1, NORMSP_1,
VFUNCT_1, VECTSP_2, ALGSEQ_1, ALGSTR_1, RLVECT_1, GROUP_1, VECTSP_1,
RINGCAT1, RING_3, GROUP_6, RING_2, POLYNOM1, UPROOTS, HURWITZ, RATFUNC1,
BINOM, INT_3, GCD_1, RVSUM_1, COMPLFLD, POLYNOM3, POLYNOM4, POLYNOM5,
FVSUM_1, PRE_POLY, REALSET1, COMPLEX1, EC_PF_1, GAUSSINT, IDEAL_1,
RING_1, MSSUBFAM, QUOFIELD, RING_4;
constructors TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, FUNCT_1, RELSET_1, NUMBERS,
ORDINAL1, FUNCT_2, FINSEQ_1, FINSEQOP, STRUCT_0, ALGSTR_0, C0SP1,
VECTSP_1, NORMSP_1, VFUNCT_1, POLYNOM3, SETWISEO, BINOP_1, REAL_1,
RFINSEQ, FINSOP_1, BINARITH, VECTSP_2, GRCAT_1, REALSET2, QUOFIELD,
ALGSTR_1, POLYNOM4, POLYNOM5, NAT_D, FVSUM_1, ALGSEQ_1, FUNCT_7, BINOP_2,
INT_1, RLVECT_1, GROUP_1, RINGCAT1, MOD_4, GROUP_6, RING_3, RING_2,
GROUP_4, FINSEQ_4, MATRIX_1, POLYNOM1, UPROOTS, HURWITZ, POLYNOM2,
RING_4, XXREAL_2, XTUPLE_0, PARTFUN1, RVSUM_1, XCMPLX_0, RAT_1, NEWTON,
VALUED_0, MEMBERED, NAT_1, FINSEQ_2, RATFUNC1, BINOM, GCD_1, IDEAL_1,
EC_PF_1, GAUSSINT, AFINSQ_2, FUNCT_4, REALSET1, MSSUBFAM;
registrations ALGSTR_0, GAUSSINT, CARD_1, INT_3, FINSEQ_2, FUNCT_2, INT_1,
MEMBERED, NAT_1, NUMBERS, ORDINAL1, POLYNOM3, POLYNOM5, REALSET1,
RELAT_1, RING_2, STRUCT_0, VECTSP_1, XREAL_0, RATFUNC1, RAT_1, XXREAL_0,
COMPLFLD, XCMPLX_0, VALUED_0, POLYNOM4, ALGSTR_1, RLVECT_1, RING_1,
RING_4, XBOOLE_0, RINGCAT1, RELSET_1;
requirements NUMERALS, BOOLE, SUBSET, ARITHM, REAL;
definitions VECTSP_1, GROUP_1, GROUP_6, ALGSTR_0;
equalities BINOP_1, ALGSTR_0, REALSET1, FINSEQ_1, FINSEQ_2, XCMPLX_0,
POLYNOM3, POLYNOM5, RATFUNC1, HURWITZ, STRUCT_0, GAUSSINT, INT_3;
expansions STRUCT_0, SUBSET_1, FINSEQ_1, TARSKI, ALGSEQ_1, FUNCT_2, IDEAL_1,
FUNCT_1, RING_2, ALGSTR_0, UPROOTS;
theorems TARSKI, ZFMISC_1, FUNCT_1, XREAL_0, VECTSP_1, NORMSP_1, FINSEQ_1,
FINSEQ_2, FINSEQ_3, NAT_1, XREAL_1, ORDINAL1, C0SP1, CARD_1, RELAT_1,
XXREAL_0, SUBSET_1, GROUP_1, MATRIX_3, FVSUM_1, FUNCOP_1, POLYNOM3,
POLYNOM5, RLVECT_1, IDEAL_1, BINOP_2, RING_3, GAUSSINT, INT_1, ALGSEQ_1,
POLYNOM4, POLYNOM2, PARTFUN1, RING_2, RING_1, VECTSP_2, RING_4, XCMPLX_0,
FUNCT_2, COMPLFLD, ALGSTR_0, STRUCT_0, GCD_1, EC_PF_1, RAT_1;
schemes NAT_1, FINSEQ_2, FUNCT_2;
begin :: Preliminaries
reserve i,j for Nat;
reserve A,B for Ring;
theorem Th1:
for L1,L2,L3 be Ring st L1 is Subring of L2 & L2 is Subring of L3 holds
L1 is Subring of L3
proof
let L1,L2,L3 be Ring;
assume that
A1: L1 is Subring of L2 and
A2: L2 is Subring of L3;
A3: the carrier of L1 c= the carrier of L2
& the addF of L1 = (the addF of L2) || the carrier of L1
& the multF of L1 = (the multF of L2) || the carrier of L1
& 1.L1 = 1.L2& 0.L1 = 0.L2 by A1,C0SP1:def 3;
A4: the carrier of L2 c= the carrier of L3
& the addF of L2= (the addF of L3) || the carrier of L2
& the multF of L2= (the multF of L3) || the carrier of L2
& 1.L2= 1.L3 & 0.L2= 0.L3 by A2,C0SP1:def 3;
set A1 = [:the carrier of L1, the carrier of L1:];
set A2 = [:the carrier of L2, the carrier of L2:];
set A3 = [:the carrier of L3, the carrier of L3:];
A8: the carrier of L1 c= the carrier of L3 by A3,A4;
A9: the addF of L1 = (the addF of L2) || the carrier of L1
by A1,C0SP1:def 3
.= ((the addF of L3) || the carrier of L2) || the carrier of L1
by A2,C0SP1:def 3
.= (the addF of L3) || the carrier of L1 by A3,ZFMISC_1:96,RELAT_1:74;
A10: the multF of L1 = (the multF of L2) || the carrier of L1
by A1,C0SP1:def 3
.= ((the multF of L3) || the carrier of L2) || the carrier of L1
by A2,C0SP1:def 3
.= (the multF of L3) || the carrier of L1 by A3,ZFMISC_1:96,RELAT_1:74;
A11: 1.L1 = 1.L2 by A1,C0SP1:def 3 .=1.L3 by A2,C0SP1:def 3;
0.L1 = 0.L2 by A1,C0SP1:def 3 .=0.L3 by A2,C0SP1:def 3;
hence thesis by A8,A9,A10,A11,C0SP1:def 3;
end;
theorem Lm1:
F_Rat is Subfield of F_Complex by EC_PF_1:5,GAUSSINT:14,RING_3:48;
theorem Th3:
F_Rat is Subring of F_Complex by RING_3:43,Lm1;
theorem Th4:
INT.Ring is Subring of F_Complex by RING_3:47,Th3,Th1;
Lm5:
A is Subring of B implies In(0.A, B) = 0.B & In(1.A,B) = 1.B
proof
assume
A1: A is Subring of B; then
A2: In(0.A,B) = In(0.B,B) by C0SP1:def 3
.= 0.B by SUBSET_1:def 8;
In(1.A,B) = In(1.B,B) by A1,C0SP1:def 3
.= 1.B by SUBSET_1:def 8;
hence thesis by A2;
end;
Lm6:
for a be Element of A st A is Subring of B holds a is Element of B
proof
let a be Element of A;
assume A is Subring of B; then
the carrier of A c= the carrier of B by C0SP1:def 3;
hence thesis;
end;
Lm7:
In(0.F_Rat,F_Complex) = 0.F_Complex &
In(1.F_Rat,F_Complex) = 1.F_Complex &
In(0.INT.Ring,F_Complex) = 0.F_Complex &
In(1.INT.Ring,F_Complex) = 1.F_Complex by Lm5,Th3,Th4;
theorem Th8:
for x, y be Element of B, x1, y1 be Element of A st A is Subring of B &
x = x1 & y = y1 holds x + y = x1 + y1
proof
let x, y be Element of B,
x1, y1 be Element of A;
assume A is Subring of B; then
the addF of A = (the addF of B) || the carrier of A by C0SP1:def 3;
hence thesis by FUNCT_1:49,ZFMISC_1:87;
end;
theorem Th9:
for x, y be Element of B, x1, y1 be Element of A st
A is Subring of B & x = x1 & y = y1 holds x * y = x1 * y1
proof
let x, y be Element of B, x1, y1 be Element of A;
assume A is Subring of B; then
the multF of A = (the multF of B) || the carrier of A by C0SP1:def 3;
hence thesis by FUNCT_1:49,ZFMISC_1:87;
end;
registration
let c be Complex;
reduce In(c,F_Complex) to c;
reducibility
proof
c in COMPLEX by XCMPLX_0:def 2;
then c is Element of F_Complex by COMPLFLD:def 1;
hence thesis by SUBSET_1:def 8;
end;
end;
begin
:: Define Extended eval Function for commutative rings A c= B
:: based upon POLYNOM4
definition
let A,B be Ring;
let p be Polynomial of A;
let x be Element of B;
func Ext_eval(p,x) -> Element of B means
:Def1:
ex F be FinSequence of B st it = Sum F & len F = len p
& for n be Element of NAT st n in dom F holds
F.n = In(p.(n-'1),B) * (power B).(x,n-'1);
existence
proof
deffunc G(Nat) = In(p.($1-'1),B)*(power B).(x,$1-'1);
consider F be FinSequence of B such that
A1: len F = len p and
A2: for n be Nat st n in dom F holds F.n = G(n) from FINSEQ_2:sch 1;
take y = Sum F;
take F;
thus y = Sum F & len F = len p by A1;
let n be Element of NAT;
assume n in dom F;
hence thesis by A2;
end;
uniqueness
proof
let y1,y2 be Element of B;
given F1 be FinSequence of B such that
A3: y1 = Sum F1 and
A4: len F1 = len p and
A5: for n be Element of NAT st n in dom F1 holds
F1.n = In(p.(n-'1),B)*(power B).(x,n-'1);
given F2 be FinSequence of B such that
A6: y2 = Sum F2 and
A7: len F2 = len p and
A8: for n be Element of NAT st n in dom F2 holds
F2.n = In(p.(n-'1),B)*(power B).(x,n-'1);
A9: dom F1 = Seg len p by A4,FINSEQ_1:def 3;
now
let n be Nat;
assume
A10: n in dom F1; then
A11: n in dom F2 by A7,A9,FINSEQ_1:def 3;
thus F1.n = In(p.(n-'1),B) *(power B).(x,n-'1) by A5,A10
.= F2.n by A8,A11;
end;
hence thesis by A3,A4,A6,A7,FINSEQ_2:9;
end;
end;
theorem Th11:
for n being Element of NAT, A,B be Ring, z be Element of A st
A is Subring of B holds
(power B).(In(z,B),n) = In((power A).(z,n),B)
proof
let n be Element of NAT, A,B be Ring, z be Element of A;
assume
A0: A is Subring of B; then
z is Element of B by Lm6; then
A2: In(z,B) = z by SUBSET_1:def 8;
A3: 1_A = 1_B by A0,C0SP1:def 3;
reconsider x = z as Element of B by A0,Lm6;
(power B).(In(z,B),n) = In((power A).(z,n),B)
proof
defpred P[Nat] means (power B).(In(z,B),$1) = In((power A).(z,$1),B);
A5: P[0]
proof
A6: In(1.A,B) = 1.B by A0,Lm5;
In((power A).(z,0),B) = 1.B by A3,GROUP_1:def 7,A6;
hence thesis by A3,GROUP_1:def 7;
end;
A7: for m be Nat st P[m] holds P[m+1]
proof
let m be Nat;
assume
A9: P[m];
A10: (power A).(z,m) is Element of B by A0,Lm6;
A11: In((power A).(z,m),B) = (power A).(z,m)
by A10,SUBSET_1:def 8;
A12: (power A).(z,m+1) is Element of B by A0,Lm6;
(power B).(In(z,B),m+1)
= (power B).(In(z,B),m)* In(z,B) by GROUP_1:def 7
.= (power A).(z,m)*z by A0,A11,A2,Th9,A9
.= (power A).(z,m+1) by GROUP_1:def 7
.= In((power A).(z,m+1),B) by A12,SUBSET_1:def 8;
hence thesis;
end;
for m be Nat holds P[m] from NAT_1:sch 2(A5,A7);
hence thesis;
end;
hence thesis;
end;
theorem Th12:
for x1,x2 be Element of A st A is Subring of B holds
In(x1,B) + In(x2,B) = In(x1+x2,B)
proof
let x1,x2 be Element of A;
assume
A0: A is Subring of B; then
x1 is Element of B by Lm6; then
A2: In(x1,B) = x1 by SUBSET_1:def 8;
x2 is Element of B by A0,Lm6; then
A4: In(x2,B) = x2 by SUBSET_1:def 8;
x1 + x2 is Element of B by A0,Lm6; then
In(x1+x2,B) = x1+x2 by SUBSET_1:def 8
.= In(x1,B)+In(x2,B) by A0,A2,A4,Th8;
hence thesis;
end;
theorem Th13:
for x1,x2 be Element of A st A is Subring of B holds
In(x1,B) * In(x2,B) = In(x1*x2,B)
proof
let x1,x2 be Element of A;
assume
A0: A is Subring of B; then
x1 is Element of B by Lm6; then
A2: In(x1,B) = x1 by SUBSET_1:def 8;
x2 is Element of B by A0,Lm6; then
A4: In(x2,B) = x2 by SUBSET_1:def 8;
x1*x2 is Element of B by A0,Lm6; then
In(x1*x2,B) = x1*x2 by SUBSET_1:def 8
.= In(x1,B)*In(x2,B) by A0,A2,A4,Th9;
hence thesis;
end;
theorem Th14:
for F be FinSequence of A,
G be FinSequence of B
st A is Subring of B & F = G holds In(Sum F,B) = Sum G
proof
let F be FinSequence of A, G be FinSequence of B;
assume
A0: A is Subring of B;
defpred P[Nat] means
for F being FinSequence of A, G being FinSequence of B
st len F = $1 & F = G holds In(Sum F,B) = Sum G;
P1: P[0]
proof
let F be FinSequence of A,
G be FinSequence of B;
assume
A1: len F = 0 & F = G; then
A2: F = <*>the carrier of A;
A3: G = <*>the carrier of B by A1;
In(Sum F,B) = In(0.A,B) by A2,RLVECT_1:43
.= In(0.B,B) by A0,C0SP1:def 3 .= 0.B by SUBSET_1:def 8
.= Sum G by A3,RLVECT_1:43;
hence thesis;
end;
P2: for n being Nat st P[n] holds P[n+1]
proof
let n be Nat;
assume
A4: P[n];
let F be FinSequence of A,
G be FinSequence of B;
assume
A5: len F = n+1 & F = G;
reconsider F0 = F| n as FinSequence of A;
n+1 in Seg (n+1) by FINSEQ_1:4; then
A6: n+1 in dom F by A5,FINSEQ_1:def 3;
rng F c= the carrier of A; then
reconsider af = F.(n+1) as Element of A by A6,FUNCT_1:3;
A7: len F0 = n by FINSEQ_1:59,A5,NAT_1:11;
A8: len F = (len F0) + 1 by A5,FINSEQ_1:59,NAT_1:11;
A9: F0 = F | dom F0 by A7,FINSEQ_1:def 3;
reconsider G0 = G| n as FinSequence of B;
n+1 in Seg (n+1) by FINSEQ_1:4; then
A10: n+1 in dom G by A5,FINSEQ_1:def 3;
rng G c= the carrier of B; then
reconsider bf = G.(n+1) as Element of B by A10,FUNCT_1:3;
A11: len F0 = n & F0 = G0 by FINSEQ_1:59,A5,NAT_1:11;
G = G0^<*bf*> by A5,FINSEQ_3:55; then
Sum G = Sum G0 + bf by FVSUM_1:71
.= In(Sum F0,B)+ bf by A4,A11
.= In(Sum F0,B) + In(af,B) by A5,SUBSET_1:def 8
.= In(Sum F0 + af,B) by A0,Th12
.= In(Sum F,B) by A5,A8,A9,RLVECT_1:38;
hence thesis;
end;
for n being Nat holds P[n] from NAT_1:sch 2(P1,P2);
hence thesis;
end;
theorem Th15:
for n be Nat, x be Element of A, p be Polynomial of A st A is Subring of B
holds In(p.(n-'1),B)*(power B).(In(x,B),n-'1)
= In(p.(n-'1) * (power A).(x,n-'1),B)
proof
let n be Nat,x be Element of A, p be Polynomial of A;
assume
A0: A is Subring of B; then
In(p.(n-'1) * (power A).(x,n-'1),B)
= In(p.(n-'1),B)*In((power A).(x,n-'1),B) by Th13
.= In(p.(n-'1),B)*(power B).(In(x,B),n -'1) by A0,Th11;
hence thesis;
end;
theorem Th16:
for x be Element of A, p be Polynomial of A st A is Subring of B holds
Ext_eval(p,In(x,B)) = In(eval(p,x),B)
proof
let x be Element of A, p be Polynomial of A;
assume
A0: A is Subring of B;
consider F1 be FinSequence of B such that
A1: Ext_eval(p,In(x,B)) = Sum F1 and
A2: len F1 = len p and
A3: for n be Element of NAT st n in dom F1 holds
F1.n = In(p.(n-'1),B) * (power B).(In(x,B),n-'1) by Def1;
consider F2 be FinSequence of A such that
A4: eval(p,x) = Sum F2 and
A5: len F2 = len p and
A6: for n be Element of NAT st n in dom F2 holds
F2.n = p.(n-'1) * (power A).(x,n-'1) by POLYNOM4:def 2;
F1 = F2
proof
A11: rng F2 c= the carrier of A;
A8: dom F1 = dom F2 by A2,A5,FINSEQ_3:29;
for k be Nat st k in dom F1 holds F1.k = F2.k
proof
let k be Nat;
assume
A10: k in dom F1; then
F2.k is Element of A by A8,FUNCT_1:3,A11; then
A13: F2.k is Element of B by A0,Lm6;
F1.k = In(p.(k-'1),B) * (power B).(In(x,B),k-'1) by A3,A10
.= In(p.(k-'1) * (power A).(x,k-'1),B) by A0,Th15
.= In(F2.k,B) by A6,A10,A8
.= F2.k by A13,SUBSET_1:def 8;
hence thesis;
end;
hence thesis by A2,A5,FINSEQ_3:29;
end;
hence thesis by A1,A4,A0,Th14;
end;
:: Modify POLYNOM4:17
theorem Th17:
for x be Element of B holds Ext_eval(0_.A,x) = 0.B
proof
let x be Element of B;
consider F be FinSequence of B such that
A1: Ext_eval(0_.A,x) = Sum F and
A2: len F = len 0_.A and
for n be Element of NAT st n in dom F holds
F.n = In((0_.A).(n-'1),B) * (power B).(x,n-'1) by Def1;
F = <*>the carrier of B by A2,POLYNOM4:3;
hence thesis by A1,RLVECT_1:43;
end;
:: Modify POLYNOM4:18
theorem Th18:
for A,B being non degenerated Ring
for x be Element of B st A is Subring of B holds
Ext_eval(1_.A,x) = 1.B
proof
let A,B be non degenerated Ring;
let x be Element of B;
assume
A0: A is Subring of B;
consider F be FinSequence of B such that
A1: Ext_eval(1_.A,x) = Sum F and
A2: len F = len 1_.A and
A3: for n be Element of NAT st n in dom F holds
F.n = In((1_.A).(n-'1),B)*(power B).(x,n-'1) by Def1;
len F = 1 by A2,POLYNOM4:4; then
A4: F.1 = In((1_.A).(1-'1),B) * (power B).(x,1-'1) by A3,FINSEQ_3:25
.= In((1_.A).(0),B) * (power B).(x,1-'1) by XREAL_1:232
.= In(1.A,B) * (power B).(x,1-'1) by POLYNOM3:30
.= 1.B * (power B).(x,1-'1) by A0,Lm5
.= (power B).(x,0) by XREAL_1:232 .= 1_B by GROUP_1:def 7 .= 1.B;
Sum F = Sum <*1.B*> by A2,POLYNOM4:4,FINSEQ_1:40,A4 .= 1.B by RLVECT_1:44;
hence thesis by A1;
end;
:: Modify POLYNOM4:19
theorem Th19:
for x be Element of B, p,q be Polynomial of A st A is Subring of B holds
Ext_eval(p+q,x) = Ext_eval(p,x) + Ext_eval(q,x)
proof
let x be Element of B, p,q be Polynomial of A;
assume
A0: A is Subring of B;
reconsider k = max(len p,len q) as Element of NAT;
A1: k - len p >= 0 by XREAL_1:48,XXREAL_0:25;
consider F1 be FinSequence of B such that
A2: Ext_eval(p,x) = Sum F1 and
A3: len F1 = len p and
A4: for n be Element of NAT st n in dom F1 holds
F1.n = In(p.(n-'1),B) * (power B).(x,n-'1) by Def1;
A5: len (F1 ^ ((k-'(len F1)) |-> 0.B))
= len p + len ((k-'(len p)) |-> 0.B) by A3,FINSEQ_1:22
.= len p + (k-'(len p)) by CARD_1:def 7
.= len p + (k-(len p)) by A1,XREAL_0:def 2 .= k;
A6: k - len q >= 0 by XREAL_1:48,XXREAL_0:25;
k >= len p & k >= len q by XXREAL_0:25; then
A7: k - len (p+q) >= 0 by POLYNOM4:6,XREAL_1:48;
consider F3 be FinSequence of B such that
A8: Ext_eval(p+q,x) = Sum F3 and
A9: len F3 = len (p+q) and
A10: for n be Element of NAT st n in dom F3 holds
F3.n = In((p+q).(n-'1),B) * (power B).(x,n-'1) by Def1;
A11: len (F3 ^ ((k-'(len F3)) |-> 0.B))
= len F3 + len((k-'(len F3)) |-> 0.B) by FINSEQ_1:22
.= len (p+q) + (k-'(len (p+q))) by CARD_1:def 7,A9
.= len (p+q) + (k-(len (p+q))) by A7,XREAL_0:def 2
.= k;
consider F2 be FinSequence of B such that
A12: Ext_eval(q,x) = Sum F2 and
A13: len F2 = len q and
A14: for n be Element of NAT st n in dom F2 holds
F2.n = In(q.(n-'1),B) * (power B).(x,n-'1) by Def1;
len (F2 ^ ((k-'(len F2)) |-> 0.B))
= len q + len ((k-'(len q)) |-> 0.B) by A13,FINSEQ_1:22
.= len q + (k-'(len q)) by CARD_1:def 7
.= len q + (k-(len q)) by A6,XREAL_0:def 2 .= k;
then reconsider
G1 = F1 ^ ((k-'(len F1)) |-> 0.B), G2 = F2 ^ ((k-'(len F2)) |->
0.B), G3 = F3 ^ ((k-'(len F3)) |-> 0.B)
as Element of k-tuples_on the carrier of B by A5,A11,FINSEQ_2:92;
now
let n be Nat;
assume
A15: n in Seg k; then
A16: 0+1 <= n by FINSEQ_1:1;
A17: n <= k by A15,FINSEQ_1:1;
per cases by XXREAL_0:1;
suppose
A18: len p > len q; then
k = len p by XXREAL_0:def 10; then
len(p+q) = len p by A18,POLYNOM4:7; then
A20: n in dom F3 by A9,A15,A18,XXREAL_0:def 10,FINSEQ_1:def 3;
A21: len G2 = k by CARD_1:def 7; then
A22: n in dom G2 by A15,FINSEQ_1:def 3; then
A23: G2/.n = G2.n by PARTFUN1:def 6;
len G1 = k by CARD_1:def 7; then
A24: n in dom G1 by A15,FINSEQ_1:def 3; then
A25: G1/.n = G1.n by PARTFUN1:def 6;
A26: n in dom F1 by A3,A15,A18,XXREAL_0:def 10,FINSEQ_1:def 3;
A27: G1/.n = G1.n by A24,PARTFUN1:def 6 .= F1.n by A26,FINSEQ_1:def 7
.= F1/.n by A26,PARTFUN1:def 6;
A28: F1.n = In(p.(n-'1),B)*(power B).(x,n-'1) by A4,A26;
now
per cases;
suppose
n <= len q; then
A29: n in dom F2 by A16,A13,FINSEQ_3:25; then
A30: F2.n = In(q.(n-'1),B)*(power B).(x,n-'1) by A14;
A31: G2/.n = G2.n by A22,PARTFUN1:def 6 .= F2.n by A29,FINSEQ_1:def 7
.= F2/.n by A29,PARTFUN1:def 6;
thus G3.n = F3.n by A20,FINSEQ_1:def 7
.= In((p+q).(n-'1),B)*(power B).(x,n-'1) by A10,A20
.= In((p.(n-'1) + q.(n-'1)),B)
* (power B).(x,n-'1) by NORMSP_1:def 2
.= ( In (p.(n-'1),B) + In( q.(n-'1),B))
* (power B).(x,n-'1) by A0,Th12
.= In(p.(n-'1),B)*(power B).(x,n-'1)
+ In(q.(n-'1),B)*(power B).(x,n-'1) by VECTSP_1:def 3
.= In(p.(n-'1),B)*(power B).(x,n-'1)
+ F2/.n by A29,A30,PARTFUN1:def 6
.= F1/.n + F2/.n by A26,A28,PARTFUN1:def 6
.= (G1 + G2).n by A15,A25,A23,A27,A31,FVSUM_1:18;
end;
suppose
A32: n > len q; then
A33: n >= len q+1 by NAT_1:13; then
n-1 >= len q by XREAL_1:19; then
A34: n-'1 >= len q by XREAL_0:def 2;
n-len F2 <= k-len F2 by A17,XREAL_1:9; then
A35: n-len F2 <= k-'len F2 by XREAL_0:def 2;
A36: n-len F2 >= 1 by A13,A33,XREAL_1:19; then
n-len F2 = n-'len F2 by XREAL_0:def 2; then
A37: n-len F2 in Seg (k-'len F2) by A36,A35;
n <= len G2 by A15,A21,FINSEQ_1:1; then
A38: G2/.n = ((k-'(len F2)) |-> 0.B).(n - len F2)
by A13,A23,A32,FINSEQ_1:24 .= 0.B by A37,FUNCOP_1:7;
thus G3.n = F3.n by A20,FINSEQ_1:def 7
.= In((p+q).(n-'1),B) * (power B).(x,n-'1) by A10,A20
.= In(p.(n-'1) + q.(n-'1),B) * (power B).(x,n-'1)
by NORMSP_1:def 2
.= In(p.(n-'1) + 0.A,B) * (power B).(x,n-'1) by A34,ALGSEQ_1:8
.= F1.n by A4,A26 .= G1/.n + 0.B by A26,A27,PARTFUN1:def 6
.= (G1 + G2).n by A15,A25,A23,A38,FVSUM_1:18;
end;
end;
hence G3.n = (G1 + G2).n;
end;
suppose
A39: len p < len q; then
k = len q by XXREAL_0:def 10; then
len(p+q) = len q by A39,POLYNOM4:7; then
A41: n in dom F3 by A9,A15,A39,XXREAL_0:def 10,FINSEQ_1:def 3;
A42: len G1 = k by CARD_1:def 7; then
A43: n in dom G1 by A15,FINSEQ_1:def 3; then
A44: G1/.n = G1.n by PARTFUN1:def 6;
len G2 = k by CARD_1:def 7; then
A45: n in dom G2 by A15,FINSEQ_1:def 3; then
A46: G2/.n = G2.n by PARTFUN1:def 6;
A47: n in dom F2 by A13,A15,A39,XXREAL_0:def 10,FINSEQ_1:def 3;
A48: G2/.n = G2.n by A45,PARTFUN1:def 6 .= F2.n by A47,FINSEQ_1:def 7
.= F2/.n by A47,PARTFUN1:def 6;
A49: F2.n = In(q.(n-'1),B)*(power B).(x,n-'1) by A14,A47;
now
per cases;
suppose n <= len p; then
A50: n in dom F1 by A16,A3,FINSEQ_3:25; then
A51: F1.n = In(p.(n-'1),B)*(power B).(x,n-'1) by A4;
A52: G1/.n = G1.n by A43,PARTFUN1:def 6 .= F1.n by A50,FINSEQ_1:def 7
.= F1/.n by A50,PARTFUN1:def 6;
thus G3.n = F3.n by A41,FINSEQ_1:def 7
.= In((p+q).(n-'1),B) * (power B).(x,n-'1) by A10,A41
.= In(p.(n-'1) + q.(n-'1),B) * (power B).(x,n-'1)
by NORMSP_1:def 2
.= ( In (p.(n-'1),B) + In( q.(n-'1),B))
* (power B).(x,n-'1) by A0,Th12
.= In(p.(n-'1),B)*(power B).(x,n-'1)
+ In(q.(n-'1),B)*(power B).(x,n-'1) by VECTSP_1:def 3
.= F1/.n + In(q.(n-'1),B)*(power B).(x,n-'1)
by A50,A51,PARTFUN1:def 6
.= F1/.n + F2/.n by A47,A49,PARTFUN1:def 6
.= (G1 + G2).n by A15,A44,A46,A48,A52,FVSUM_1:18;
end;
suppose
A53: n > len p; then
A54: n >= len p+1 by NAT_1:13;then
n-1 >= len p by XREAL_1:19; then
A55: n-'1 >= len p by XREAL_0:def 2;
n-len F1 <= k-len F1 by A17,XREAL_1:9; then
A56: n-len F1 <= k-'len F1 by XREAL_0:def 2;
A57: n-len F1 >= 1 by A3,A54,XREAL_1:19; then
n-len F1 = n-'len F1 by XREAL_0:def 2; then
A58: n-len F1 in Seg (k-'len F1) by A57,A56;
n <= len G1 by A15,A42,FINSEQ_1:1; then
A59: G1/.n = ((k-'(len F1)) |-> 0.B).(n-len F1) by A3,A44,A53,FINSEQ_1:24
.= 0.B by A58,FUNCOP_1:7;
thus G3.n = F3.n by A41,FINSEQ_1:def 7
.= In((p+q).(n-'1),B)*(power B).(x,n-'1) by A10,A41
.= In(p.(n-'1) + q.(n-'1),B) * (power B).(x,n-'1) by NORMSP_1:def 2
.= In(0.A + q.(n-'1),B) * (power B).(x,n-'1) by A55,ALGSEQ_1:8
.= F2.n by A14,A47
.= 0.B + G2/.n by A47,A48,PARTFUN1:def 6
.= (G1 + G2).n by A15,A44,A46,A59,FVSUM_1:18;
end;
end;
hence G3.n = (G1 + G2).n;
end;
suppose
A60: len p = len q;
len G2 = k by CARD_1:def 7; then
A61: n in dom G2 by A15,FINSEQ_1:def 3; then
A62: G2/.n = G2.n by PARTFUN1:def 6;
len G1 = k by CARD_1:def 7; then
A63: n in dom G1 by A15,FINSEQ_1:def 3; then
A64: G1/.n = G1.n by PARTFUN1:def 6;
A65: len G3 = k by CARD_1:def 7;
A66: n in dom F2 by A13,A15,A60,FINSEQ_1:def 3;
A67: n in dom F1 by A3,A15,A60,FINSEQ_1:def 3; then
A68: F1.n = In(p.(n-'1),B)*(power B).(x,n-'1) by A4;
A69: G1/.n = G1.n by A63,PARTFUN1:def 6 .= F1.n by A67,FINSEQ_1:def 7
.= F1/.n by A67,PARTFUN1:def 6;
now
per cases;
suppose
A70: n <= len (p+q);
A71: n in dom F2 by A13,A15,A60,FINSEQ_1:def 3; then
A72: F2.n = In(q.(n-'1),B)*(power B).(x,n-'1) by A14;
A73: G2/.n = G2.n by A61,PARTFUN1:def 6 .= F2.n by A71,FINSEQ_1:def 7
.= F2/.n by A71,PARTFUN1:def 6;
n in Seg len (p+q) by A16,A70; then
A74: n in dom F3 by A9,FINSEQ_1:def 3;
hence G3.n = F3.n by FINSEQ_1:def 7
.= In((p+q).(n-'1),B) * (power B).(x,n-'1) by A10,A74
.= In(p.(n-'1) + q.(n-'1),B)*(power B).(x,n-'1) by NORMSP_1:def 2
.= ( In (p.(n-'1),B) + In( q.(n-'1),B))
* (power B).(x,n-'1) by A0,Th12
.= In(p.(n-'1),B)*(power B).(x,n-'1)
+ In(q.(n-'1),B)*(power B).(x,n-'1) by VECTSP_1:def 3
.= In(p.(n-'1),B)*(power B).(x,n-'1) + F2/.n
by A71,A72,PARTFUN1:def 6
.= F1/.n + F2/.n by A67,A68,PARTFUN1:def 6
.= (G1 + G2).n by A15,A64,A62,A69,A73,FVSUM_1:18;
end;
suppose
A75: n > len (p+q); then
A76: n >= len (p+q)+1 by NAT_1:13; then
n-1 >= len (p+q)+1-1 by XREAL_1:9; then
A77: n-'1 >= len (p+q) by XREAL_0:def 2;
n-len F3 <= k-len F3 by A17,XREAL_1:9; then
A78: n-len F3 <= k-'len F3 by XREAL_0:def 2;
A79: G2.n = F2.n by A66,FINSEQ_1:def 7
.= In(q.(n-'1),B)*(power B).(x,n-'1) by A14,A66;
A80: G1.n = F1.n by A67,FINSEQ_1:def 7
.= In(p.(n-'1),B)*(power B).(x,n-'1) by A4,A67;
A81: n-len F3 >= 1 by A9,A76,XREAL_1:19; then
n-len F3 = n-'len F3 by XREAL_0:def 2; then
A82: n-len F3 in Seg (k-'len F3) by A81,A78;
n <= len G3 by A15,A65,FINSEQ_1:1;
hence
G3.n=((k-'(len F3)) |-> 0.B).(n-len F3) by A9,A75,FINSEQ_1:24
.= 0.B * (power B).(x,n-'1) by A82,FUNCOP_1:7
.= In(0.A,B)*(power B).(x,n-'1) by A0,Lm5
.= In((p+q).(n-'1),B) * (power B).(x,n-'1) by A77,ALGSEQ_1:8
.= In(p.(n-'1) + q.(n-'1),B) * (power B).(x,n-'1) by NORMSP_1:def 2
.= ( In (p.(n-'1),B) + In( q.(n-'1),B))
* (power B).(x,n-'1) by A0,Th12
.= In(p.(n-'1),B)*(power B).(x,n-'1)
+ In(q.(n-'1),B)*(power B).(x,n-'1) by VECTSP_1:def 3
.= (G1 + G2).n by A15,A80,A79,FVSUM_1:18;
end;
end;
hence G3.n = (G1 + G2).n;
end;
end;
then
A83: G3 = G1 + G2 by FINSEQ_2:119;
A84: Sum G3 = Sum F3 + Sum ((k-'(len F3)) |-> 0.B) by RLVECT_1:41
.= Sum F3 + 0.B by MATRIX_3:11 .= Sum F3;
A85: Sum G2 = Sum F2 + Sum ((k-'(len F2)) |-> 0.B) by RLVECT_1:41
.= Sum F2 + 0.B by MATRIX_3:11 .= Sum F2;
Sum G1 = Sum F1 + Sum ((k-'(len F1)) |-> 0.B) by RLVECT_1:41
.= Sum F1 + 0.B by MATRIX_3:11 .= Sum F1;
hence thesis by A2,A12,A8,A85,A84,A83,FVSUM_1:76;
end;
theorem Th20:
for p,q be Polynomial of A st A is Subring of B & len p > 0 & len q > 0
for x be Element of B holds
Ext_eval((Leading-Monomial(p))*'(Leading-Monomial(q)),x)
= In(p.(len p-'1)*q.(len q-'1),B)*(power B).(x,len p+len q-'2)
proof
let p,q be Polynomial of A;
assume that
A0: A is Subring of B and
A1: len p > 0 and
A2: len q > 0;
A3: len q >= 0+1 by A2,NAT_1:13;
A5: len p >= 0+1 by A1,NAT_1:13;
A6: len p-1 = len p-'1 by A1,XREAL_0:def 2;
A7: len p + len q >= 0+(1+1) by A5,A3,XREAL_1:7;
reconsider i1=len p + len q - 1 as Element of NAT by A1,INT_1:3;
A9: i1-'1+1 = i1 by A7,XREAL_1:19,XREAL_1:235;
set LMp=Leading-Monomial(p), LMq=Leading-Monomial(q);
let x be Element of B;
consider F be FinSequence of B such that
A10: Ext_eval(LMp*'LMq,x) = Sum F and
A11: len F = len (LMp*'LMq) and
A12: for n be Element of NAT st n in dom F holds
F.n=In((LMp*'LMq).(n-'1),B)*(power B).(x,n-'1) by Def1;
consider r be FinSequence of A such that
A13: len r = i1-'1+1 and
A14: (LMp*'LMq).(i1-'1) = Sum r and
A15: for k be Element of NAT st k in dom r holds
r.k = LMp.(k-'1)*LMq.(i1-'1+1-'k) by POLYNOM3:def 9;
len p+0 <= len p+(len q-1) by A2,XREAL_1:7; then
len p in Seg len r by A5,A9,A13; then
A16: len p in dom r by FINSEQ_1:def 3;
i1-'len p = len p+(len q-1)-len p by A2,XREAL_0:def 2
.= len q-'1 by A2,XREAL_0:def 2; then
A17: r.(len p) = LMp.(len p-'1) * LMq.(len q-'1) by A9,A15,A16;
now
let i be Element of NAT;
assume that
A18: i in dom r and
A19: i <> len p;
i >= 0+1 by A18,FINSEQ_3:25; then
i-'1 = i-1 by XREAL_0:def 2; then
A20: i-'1 <> len p-'1 by A6,A19;
thus r/.i = r.i by A18,PARTFUN1:def 6
.= LMp.(i-'1) * LMq.(i1-'1+1-'i) by A15,A18
.= 0.A*LMq.(i1-'1+1-'i) by A20,POLYNOM4:def 1 .= 0.A;
end;
then
A21: Sum r = r/.(len p) by A16,POLYNOM2:3
.= LMp.(len p-'1) * LMq.(len q-'1) by A16,A17,PARTFUN1:def 6
.= p.(len p-'1) * LMq.(len q-'1) by POLYNOM4:def 1
.= p.(len p-'1) * q.(len q-'1) by POLYNOM4:def 1;
A22: len q-1 = len q-'1 by A2,XREAL_0:def 2;
A23: now
let i be Element of NAT;
assume that
A24: i in dom F and
A25: i <> i1;
consider r1 be FinSequence of A such that
A26: len r1 = i-'1+1 and
A27: (LMp*'LMq).(i-'1) = Sum r1 and
A28: for k be Element of NAT st k in dom r1 holds r1.k=LMp.(k-'1)*LMq.
(i-'1+1-'k) by POLYNOM3:def 9;
A29: i-'1+1 = i by A24,FINSEQ_3:25,XREAL_1:235;
A30: now
let j be Element of NAT;
assume
A31: j in dom r1; then
j >= 0+1 by FINSEQ_3:25; then
A32: j-'1 = j-1 by XREAL_0:def 2;
per cases;
suppose
j<>len p; then
A33: j-'1 <> len p-'1 by A6,A32;
thus r1.j = LMp.(j-'1)*LMq.(i-'1+1-'j) by A28,A31
.= 0.A*LMq.(i-'1+1-'j) by A33,POLYNOM4:def 1
.= 0.A;
end;
suppose
A34: j=len p;
j in Seg len r1 by A31,FINSEQ_1:def 3; then
i >= 0+j by A26,A29,FINSEQ_1:1; then
i-'len p = i-len p by A34,XREAL_1:19,XREAL_0:def 2; then
A35: i-'len p <> len q-'1 by A22,A25;
thus r1.j = LMp.(j-'1)*LMq.(i-'len p) by A28,A29,A31,A34
.= LMp.(j-'1)*0.A by A35,POLYNOM4:def 1 .= 0.A;
end;
end;
thus F/.i = F.i by A24,PARTFUN1:def 6
.= In(Sum r1,B)*(power B).(x,i-'1) by A12,A24,A27
.= In(0.A,B)*(power B).(x,i-'1) by A30,POLYNOM3:1
.= 0.B*(power B).(x,i-'1) by A0,Lm5
.= 0.B;
end;
A36: len p+len q-2 >= 0 by A7,XREAL_1:19;
len p+len q-(1+1) >= 0 by A7,XREAL_1:19; then
A37: i1-'1 = len p+len q-1-1 by XREAL_0:def 2
.= len p+len q-'2 by A36,XREAL_0:def 2;
per cases;
suppose (LMp*'LMq).(i1-'1) <> 0.A; then
len F >= i1 by A11,ALGSEQ_1:8,A9,NAT_1:13; then
A38: i1 in dom F by A7,XREAL_1:19,FINSEQ_3:25;
hence Ext_eval((Leading-Monomial(p))*'(Leading-Monomial(q)),x)
= F/.i1 by A10,A23,POLYNOM2:3
.= F.i1 by A38,PARTFUN1:def 6
.= In(p.(len p-'1)*q.(len q-'1),B)
*(power B).(x,len p+len q-'2) by A12,A14,A37,A21,A38;
end;
suppose
A39: (LMp*'LMq).(i1-'1) = 0.A;
now
let j be Nat;
assume j >= 0;
j in NAT by ORDINAL1:def 12;
then consider r1 be FinSequence of A such that
A40: len r1 = j+1 and
A41: (LMp*'LMq).j = Sum r1 and
A42: for k be Element of NAT st k in dom r1 holds r1.k = LMp.(k-'1)*
LMq.(j+1-'k) by POLYNOM3:def 9;
now
per cases;
suppose
j = i1-'1;
hence (LMp*'LMq).j = 0.A by A39;
end;
suppose
A43: j <> i1-'1;
now
let k be Element of NAT;
assume
A44: k in dom r1;
per cases;
suppose
A45: k-'1 <> len p-'1;
thus r1.k = LMp.(k-'1)*LMq.(j+1-'k) by A42,A44
.= 0.A*LMq.(j+1-'k) by A45,POLYNOM4:def 1 .= 0.A;
end;
suppose
A46: k-'1 = len p-'1;
A47: k in Seg len r1 by A44,FINSEQ_1:def 3;
0+1 <= k by A44,FINSEQ_3:25; then
A48: k-'1 = k-1 by XREAL_0:def 2;
0+k <= j+1 by A40,A47,FINSEQ_1:1; then
j+1-k >= 0 by XREAL_1:19; then
A49: j+1-'k = j-len p+1 by A6,A46,A48,XREAL_0:def 2;
A50: j-len p+1 <> i1-'1-len p+1 by A43;
thus r1.k = LMp.(k-'1)*LMq.(j+1-'k) by A42,A44
.= LMp.(k-'1)*0.A by A22,A9,A49,A50,POLYNOM4:def 1
.= 0.A;
end;
end;
hence (LMp*'LMq).j = 0.A by A41,POLYNOM3:1;
end;
end;
hence (LMp*'LMq).j = 0.A;
end; then
0 is_at_least_length_of (LMp*'LMq); then
len (LMp*'LMq) = 0 by ALGSEQ_1:def 3; then
A52: LMp*'LMq = 0_.A by POLYNOM4:5;
0.B = In(p.(len p-'1) * q.(len q-'1),B)
by A0,Lm5,A21,A14,A39;
hence thesis by Th17,A52;
end;
end;
theorem Th21:
for p be Polynomial of A for x be Element of B st A is Subring of B holds
Ext_eval(Leading-Monomial(p),x)
= In(p.(len p-'1),B) * (power B).(x,len p-'1)
proof
let p be Polynomial of A;
let x be Element of B;
assume
A0: A is Subring of B;
set LMp=Leading-Monomial(p);
consider F be FinSequence of B such that
A1: Ext_eval(LMp,x) = Sum F and
A2: len F = len LMp and
A3: for n be Element of NAT st n in dom F holds
F.n = In(LMp.(n-'1),B)*(power B).(x,n-'1) by Def1;
A4: len F = len p by A2,POLYNOM4:15;
per cases;
suppose
A5: len p > 0; then
A7: len p >= 0+1 by NAT_1:13; then
A6: len p in dom F by A4,FINSEQ_3:25;
now
A8: len p-'1 = len p-1 by A5,XREAL_0:def 2;
let i be Element of NAT;
assume that
A9: i in dom F and
A10: i <> len p;
i >= 0+1 by A9,FINSEQ_3:25; then
i-'1 = i-1 by XREAL_0:def 2; then
A11: i-'1 <> len p-'1 by A10,A8;
thus F/.i = F.i by A9,PARTFUN1:def 6
.= In(LMp.(i-'1),B)*(power B).(x,i-'1) by A3,A9
.= In(0.A,B)*(power B).(x,i-'1) by A11,POLYNOM4:def 1
.= 0.B *(power B).(x,i-'1) by A0,Lm5
.= 0.B;
end;
then Sum F = F/.(len p) by A4,A7,FINSEQ_3:25,POLYNOM2:3
.= F.(len p) by A6,PARTFUN1:def 6
.= In(LMp.(len p-'1),B)*(power B).(x,len p-'1) by A3,A7,A4,FINSEQ_3:25;
hence thesis by A1,POLYNOM4:def 1;
end;
suppose
A12: len p = 0; then
A13: p = 0_.A by POLYNOM4:5;
LMp = 0_.A by A12,POLYNOM4:12;
hence Ext_eval(Leading-Monomial(p),x) =
0.B*(power B).(x,len p-'1) by Th17
.= In(0.A,B) *(power B).(x,len p-'1) by A0,Lm5
.= In(p.(len p-'1),B)*(power B).(x,len p-'1) by A13,FUNCOP_1:7;
end;
end;
::Modify POLYNOM_4:Lm3:
theorem Th22:
for B be comRing
for p,q be Polynomial of A for x be Element of B st A is Subring of B holds
Ext_eval( (Leading-Monomial p)*'(Leading-Monomial q),x) =
Ext_eval(Leading-Monomial(p),x)*Ext_eval(Leading-Monomial(q),x)
proof
let B be comRing;
let p,q be Polynomial of A;
let x be Element of B;
assume
A0: A is Subring of B;
per cases;
suppose
A1: len p <> 0 & len q <> 0; then
A2: len q >= 0+1 & len p >= 0+1 by NAT_1:13;
A3: len q-1 = len q-'1 & len p-1 = len p-'1 by A1,XREAL_0:def 2;
len p+len q >= 0+(1+1) by A2,XREAL_1:7; then
A4: len p+len q-'2 = len p+len q-2 by XREAL_1:19,XREAL_0:def 2;
A5: len p+len q-(1+1) = len p-1+(len q-1);
thus
Ext_eval((Leading-Monomial(p))*'(Leading-Monomial(q)),x) =
In(p.(len p-'1)*q.(len q-'1),B)
*(power B).(x,len p+len q-'2) by A0,A1,Th20
.= In(p.(len p-'1)*q.(len q-'1),B)
*((power B).(x,len p-'1)*(power B).(x,len q-'1)) by A3,A4,A5,POLYNOM2:1
.= In(p.(len p-'1),B)*In(q.(len q-'1),B)*
((power B).(x,len p-'1)*(power B).(x,len q-'1)) by A0,Th13
.= In(p.(len p-'1),B)*(In(q.(len q-'1),B)*
((power B).(x,len p-'1)*(power B).(x,len q-'1))) by GROUP_1:def 3
.= In(p.(len p-'1),B)*((power B).(x,len p-'1)*
(In(q.(len q-'1),B)*(power B).(x,len q-'1)))
by GROUP_1:def 3
.= In(p.(len p-'1),B)*(power B).(x,len p-'1)*
(In(q.(len q-'1),B)*(power B).(x,len q-'1)) by GROUP_1:def 3
.= In(p.(len p-'1),B)*(power B).(x,len p-'1) *
Ext_eval(Leading-Monomial(q),x) by A0,Th21
.= Ext_eval(Leading-Monomial(p),x)*Ext_eval(Leading-Monomial(q),x)
by A0,Th21;
end;
suppose
len p = 0; then
A6: Leading-Monomial(p) = 0_.A by POLYNOM4:12;
hence Ext_eval((Leading-Monomial(p))*'(Leading-Monomial(q)),x) =
Ext_eval(0_.A,x) by POLYNOM4:2
.= 0.B * Ext_eval(Leading-Monomial(q),x) by Th17
.= Ext_eval(Leading-Monomial(p),x)* Ext_eval(Leading-Monomial(q),x)
by A6,Th17;
end;
suppose
len q = 0;
then len Leading-Monomial(q) = 0 by POLYNOM4:15; then
A7: Leading-Monomial(q) = 0_.A by POLYNOM4:5;
hence Ext_eval((Leading-Monomial(p))*'(Leading-Monomial(q)),x)
= Ext_eval(0_.A,x) by POLYNOM3:34
.= Ext_eval(Leading-Monomial(p),x)*0.B by Th17
.= Ext_eval(Leading-Monomial(p),x)* Ext_eval(Leading-Monomial(q),x)
by A7,Th17;
end;
end;
:: Modify POLYNOM4:23
theorem Th15:
for B be comRing
for p,q be Polynomial of A for x be Element of B st A is Subring of B holds
Ext_eval((Leading-Monomial p)*'q,x)
= Ext_eval(Leading-Monomial(p),x) * Ext_eval(q,x)
proof
let B be comRing;
let p1,q be Polynomial of A;
let x be Element of B;
assume
A0: A is Subring of B;
set p=Leading-Monomial(p1);
defpred P[Nat] means for q be Polynomial of A holds len q = $1 implies
Ext_eval(p*'q,x) = Ext_eval(p,x)*Ext_eval(q,x);
A1: for k be Nat st for n be Nat st n < k holds P[n] holds P[k]
proof
let k be Nat;
assume
A2: for n be Nat st n < k holds for q be Polynomial of A holds len q = n
implies Ext_eval(p*'q,x) = Ext_eval(p,x) * Ext_eval(q,x);
let q be Polynomial of A;
assume
A3: len q = k;
per cases;
suppose
A4: len q <> 0;
set LMq = Leading-Monomial(q);
consider r be Polynomial of A such that
A5: len r < len q and
A6: q = r+Leading-Monomial(q) and
for n be Element of NAT st n < len q-1 holds r.n = q.n
by A4,POLYNOM4:16;
thus Ext_eval(p*'q,x)=Ext_eval(p*'r+p*'LMq,x) by A6,POLYNOM3:31
.= Ext_eval(p*'r,x) + Ext_eval(p*'LMq,x) by A0,Th19
.= Ext_eval(p,x)*Ext_eval(r,x)+Ext_eval(p*'LMq,x) by A2,A3,A5
.= Ext_eval(p,x)*Ext_eval(r,x) + Ext_eval(p,x)*Ext_eval(LMq,x)
by A0,Th22
.= Ext_eval(p,x)*(Ext_eval(r,x) + Ext_eval(LMq,x))
by VECTSP_1:def 7
.= Ext_eval(p,x) * Ext_eval(q,x) by A0,A6,Th19;
end;
suppose
len q = 0; then
A7: q = 0_.A by POLYNOM4:5;
hence Ext_eval(p*'q,x) = Ext_eval(0_.A,x) by POLYNOM3:34
.= Ext_eval(p,x) * 0.B by Th17
.= Ext_eval(p,x) * Ext_eval(q,x) by A7,Th17;
end;
end;
A8: for n be Nat holds P[n] from NAT_1:sch 4(A1);
len q = len q;
hence thesis by A8;
end;
:: Modify POLYNOM4:24
theorem Th24:
for B be comRing
for p,q be Polynomial of A for x be Element of B st A is Subring of B
holds Ext_eval(p*'q,x) = Ext_eval(p,x) * Ext_eval(q,x)
proof
let B be comRing;
let p,q be Polynomial of A;
let x be Element of B;
assume
A0: A is Subring of B;
defpred P[Nat] means for p be Polynomial of A holds len p = $1
implies Ext_eval(p*'q,x) = Ext_eval(p,x)* Ext_eval(q,x);
A1: for k be Nat st for n be Nat st n < k holds P[n] holds P[k]
proof
let k be Nat;
assume
A2: for n be Nat st n < k holds for p be Polynomial of A holds len p =
n implies Ext_eval(p*'q,x) = Ext_eval(p,x) * Ext_eval(q,x);
let p be Polynomial of A;
assume
A3: len p = k;
per cases;
suppose
A4: len p <> 0;
set LMp = Leading-Monomial(p);
consider r be Polynomial of A such that
A5: len r < len p and
A6: p = r+Leading-Monomial(p) and
for n be Element of NAT st n < len p-1 holds r.n = p.n by A4,POLYNOM4:16;
thus Ext_eval(p*'q,x) = Ext_eval(r*'q+LMp*'q,x) by A6,POLYNOM3:32
.= Ext_eval(r*'q,x) + Ext_eval(LMp*'q,x) by A0,Th19
.= Ext_eval(r,x)*Ext_eval(q,x) + Ext_eval(LMp*'q,x) by A2,A3,A5
.= Ext_eval(r,x)*Ext_eval(q,x) + Ext_eval(LMp,x)*Ext_eval(q,x)
by A0,Th15
.= (Ext_eval(r,x)+Ext_eval(LMp,x))*Ext_eval(q,x) by VECTSP_1:def 7
.= Ext_eval(p,x) * Ext_eval(q,x) by A0,A6,Th19;
end;
suppose
len p = 0; then
A7: p = 0_.A by POLYNOM4:5;
hence Ext_eval(p*'q,x) = Ext_eval(0_.A,x) by POLYNOM4:2
.= 0.B * Ext_eval(q,x) by Th17
.= Ext_eval(p,x) * Ext_eval(q,x) by A7,Th17;
end;
end;
A8: for n be Nat holds P[n] from NAT_1:sch 4(A1);
len p = len p;
hence thesis by A8;
end;
:: modified POLYNOM5:37
theorem Th25:
for x be Element of B, z0 be Element of A
st A is Subring of B holds Ext_eval(<%z0%>,x) = In(z0,B)
proof
let x be Element of B, z0 be Element of A;
assume
A0: A is Subring of B;
consider F be FinSequence of B such that
A1: Ext_eval(<%z0%>,x) = Sum F and
A2: len F = len <%z0%> and
A3: for n be Element of NAT st n in dom F holds
F.n = In(<%z0%>.(n-'1),B)*(power B).(x,n-'1) by Def1;
per cases by A2,ALGSEQ_1:def 5,NAT_1:25;
suppose
A4: len F = 0;
A5: z0 = <%z0%>.0 by POLYNOM5:32 .= (0_.A).0 by A4,A2,POLYNOM4:5
.=0.A by FUNCOP_1:7;
Ext_eval(<%z0%>,x) = Ext_eval(0_.A,x) by A4,A2,POLYNOM4:5
.= 0.B by Th17
.= In(z0,B) by A5,A0,Lm5;
hence thesis;
end;
suppose
A6: len F = 1; then
A7: F.1 = In(<%z0%>.(1-'1),B)*(power B).(x,1-'1) by A3,FINSEQ_3:25
.=In( <%z0%>.0,B)*(power B).(x,1-'1) by XREAL_1:232
.= In( <%z0%>.0,B)*(power B).(x,0) by XREAL_1:232
.= In( z0,B) * (power B).(x,0) by POLYNOM5:32
.= In(z0,B) * 1_B by GROUP_1:def 7
.= In(z0,B);
Ext_eval(<%z0%>,x) = Sum <*In(z0,B)*> by A6,A7,FINSEQ_1:40,A1
.= In(z0,B) by RLVECT_1:44;
hence thesis;
end;
end;
:: modified POLYNOM5:44
theorem
for x be Element of B, z0,z1 be Element of A st A is Subring of B
holds Ext_eval(<%z0,z1%>,x) = In(z0,B)+In(z1,B)*x
proof
let x be Element of B, z0,z1 be Element of A;
assume
A0: A is Subring of B;
consider F be FinSequence of B such that
A1: Ext_eval(<%z0,z1%>,x) = Sum F and
A2: len F = len <%z0,z1%> and
A3: for n be Element of NAT st n in dom F holds
F.n = In(<%z0,z1%>.(n-'1),B)*(power B).(x,n-'1) by Def1;
len F = 0 or ... or len F = 2 by A2,POLYNOM5:39;
then per cases;
suppose
len F = 0; then
A4: <%z0,z1%> = 0_.A by A2,POLYNOM4:5;
hence Ext_eval(<%z0,z1%>,x)=0.B by Th17.=In(0.A,B) by A0,Lm5
.= In((0_.A).0,B) by FUNCOP_1:7
.= In(z0,B)+ 0.B * x by A4,POLYNOM5:38
.= In(z0,B) + In(0.A,B) *x by A0,Lm5
.= In(z0,B) + In((0_.A).1,B)*x by FUNCOP_1:7
.= In(z0,B)+ In(z1,B)*x by A4,POLYNOM5:38;
end;
suppose
A5: len F = 1;
then F.1 = In(<%z0,z1%>.(1-'1),B)*(power B).(x,1-'1) by A3,FINSEQ_3:25
.= In(<%z0,z1%>.0,B)* (power B).(x,1-'1) by XREAL_1:232
.= In(<%z0,z1%>.0,B)* (power B).(x,0) by XREAL_1:232
.= In(z0,B) * (power B).(x,0) by POLYNOM5:38
.= In(z0,B) * 1_B by GROUP_1:def 7
.= In(z0,B);
then F = <*In(z0,B)*> by A5,FINSEQ_1:40;
hence Ext_eval(<%z0,z1%>,x) = In(z0,B) + 0.B*x by A1,RLVECT_1:44
.= In(z0,B) + In(0.A,B) *x by A0,Lm5
.= In(z0,B) + In(<%z0,z1%>.1,B)*x by A2,A5,ALGSEQ_1:8
.= In(z0,B) + In(z1,B)*x by POLYNOM5:38;
end;
suppose
A6: len F = 2; then
A7: F.1 = In(<%z0,z1%>.(1-'1),B)*(power B).(x,1-'1) by A3,FINSEQ_3:25
.= In(<%z0,z1%>.0,B)* (power B).(x,1-'1) by XREAL_1:232
.= In(<%z0,z1%>.0,B)* (power B).(x,0) by XREAL_1:232
.= In(z0,B) * (power B).(x,0) by POLYNOM5:38
.= In(z0,B) * 1_B by GROUP_1:def 7
.= In(z0,B);
A8: 2-'1 = 2-1 by XREAL_0:def 2;
F.2 = In(<%z0,z1%>.(2-'1),B)*(power B).(x,2-'1) by A3,A6,FINSEQ_3:25
.= In(z1,B) * (power B).(x,1) by A8,POLYNOM5:38
.= In(z1,B) * x by GROUP_1:50;
then F = <* In(z0,B),In(z1,B)*x *> by A6,A7,FINSEQ_1:44;
hence thesis by A1,RLVECT_1:45;
end;
end;
begin
:: Definition of Integral Element over A in B
definition
let A,B be Ring;
let x be Element of B;
pred x is_integral_over A means
ex f be Polynomial of A st LC f = 1.A & Ext_eval(f,x) = 0.B;
end;
theorem Th27:
for A being non degenerated Ring
for a be Element of A st A is Subring of B holds
In(a,B) is_integral_over A
proof
let A be non degenerated Ring;
let a be Element of A;
assume
A0: A is Subring of B;
set p = <% -a, 1.A %>;
p.(len p -' 1) = p.(2-'1) by POLYNOM5:40 .= p.(2-1) by XREAL_1:233
.= p.1; then
A2: LC p = 1.A by POLYNOM5:38;
A3: eval(p,a) = -a + a by POLYNOM5:47
.= a - a .= 0.A by RLVECT_1:15;
Ext_eval(p,In(a,B)) = In(eval(p,a),B) by A0,Th16
.= 0.B by A0,Lm5,A3;
hence thesis by A2;
end;
definition
let A be non degenerated Ring, B be Ring;
assume
A0: A is Subring of B;
func integral_closure(A,B) -> non empty Subset of B equals
{z where z is Element of B: z is_integral_over A};
coherence
proof
set M ={z where z is Element of B: z is_integral_over A};
A1: now
let u be object;
assume u in M;
then ex z being Element of B st u = z & z is_integral_over A;
hence u in the carrier of B;
end;
In(0.A,B) is_integral_over A by A0,Th27; then
0.B is_integral_over A by A0,Lm5; then
0.B in M;
hence thesis by A1,TARSKI:def 3;
end;
end;
definition
let c be Complex;
attr c is algebraic means
ex x being Element of F_Complex st x = c & x is_integral_over F_Rat;
end;
definition
let x be Element of F_Complex;
redefine attr x is algebraic means
x is_integral_over F_Rat;
compatibility;
end;
definition
let c be Complex;
attr c is algebraic_integer means
ex x being Element of F_Complex st x = c & x is_integral_over INT.Ring;
end;
definition
let x be Element of F_Complex;
redefine attr x is algebraic_integer means
x is_integral_over INT.Ring;
compatibility;
end;
notation
let x be Complex;
antonym x is transcendental for x is algebraic;
end;
registration
cluster rational -> algebraic for Complex;
coherence
proof
let c be Complex;
assume c is rational;
then reconsider c as Element of F_Rat by RAT_1:def 2;
take In(c,F_Complex);
thus thesis by Th3,Th27;
end;
end;
registration
cluster algebraic for Complex;
existence by GAUSSINT:14;
cluster algebraic for Element of F_Complex;
existence by Lm7;
end;
registration
cluster integer -> algebraic_integer for Complex;
coherence
proof
let c be Complex;
assume c is integer;
then reconsider c as Element of INT.Ring by INT_1:def 2;
take In(c,F_Complex);
thus thesis by Th4,Th27;
end;
end;
registration
cluster algebraic_integer for Complex;
existence by GAUSSINT:14;
cluster algebraic_integer for Element of F_Complex;
existence by Lm7;
end;
definition
let A,B be Ring;
let x be Element of B;
func Ann_Poly(x,A) -> non empty Subset of Polynom-Ring A equals
{p where p is Polynomial of A: Ext_eval(p,x) = 0.B};
coherence
proof
set M ={p where p is Polynomial of A:Ext_eval(p,x) = 0.B};
A1: now
let u be object;
assume u in M; then
ex p1 being Polynomial of A st u = p1 & Ext_eval(p1,x)=0.B;
hence u in the carrier of Polynom-Ring A by POLYNOM3:def 10;
end;
Ext_eval(0_.A,x) = 0.B by Th17; then
0_.A in M;
hence thesis by A1,TARSKI:def 3;
end;
end;
theorem Lm30:
for A,B be Ring, w be Element of B, x, y being Element of Polynom-Ring A
st A is Subring of B & x in Ann_Poly(w,A) & y in Ann_Poly(w,A)
holds x + y in Ann_Poly(w,A)
proof
let A,B;
let w be Element of B;
let x,y be Element of Polynom-Ring A;
assume that
A0: A is Subring of B and
A1: x in Ann_Poly(w,A) and
A2: y in Ann_Poly(w,A);
reconsider x1=x, y1=y as Polynomial of A by POLYNOM3:def 10;
set M ={p where p is Polynomial of A:Ext_eval(p,w)=0.B};
consider x2 be Polynomial of A such that
A3: x2 = x1 and
A4: Ext_eval(x2,w)=0.B by A1;
consider y2 be Polynomial of A such that
A5: y2 = y1 and
A6: Ext_eval(y2,w)=0.B by A2;
A7: Ext_eval(x2 + y2,w) = Ext_eval(x1,w) + 0.B by A0,Th19,A6,A3
.= 0.B by A3,A4;
consider t be Polynomial of A such that
A8: t = x1+y1 and
A9: Ext_eval(t,w) = 0.B by A3,A5,A7;
x1+ y1 in M by A8,A9;
hence thesis by POLYNOM3:def 10;
end;
theorem Th31:
for B be comRing, z be Element of B, p, x being Element of Polynom-Ring A
st A is Subring of B & x in Ann_Poly(z,A) holds p * x in Ann_Poly(z,A)
proof
let B be comRing;
let w be Element of B;
let p,x be Element of Polynom-Ring A;
assume that
A0: A is Subring of B and
A1: x in Ann_Poly(w,A);
set M ={p where p is Polynomial of A:Ext_eval(p,w)=0.B};
reconsider p1=p, x1=x as Polynomial of A by POLYNOM3:def 10;
consider x2 be Polynomial of A such that
A2: x2 = x1 and
A3: Ext_eval(x2,w)=0.B by A1;
Ext_eval(p1 *'x1,w) = Ext_eval(p1,w) * 0.B by A0,A2,A3,Th24.= 0.B;
then
consider t be Polynomial of A such that
A4: t = p1 *'x1 and
A5: Ext_eval(t,w) = 0.B;
p1 *'x1 in M by A4,A5;
hence thesis by POLYNOM3:def 10;
end;
theorem Lm32:
for B be comRing
for w be Element of B, p, x being Element of Polynom-Ring A
st A is Subring of B & x in Ann_Poly(w,A) holds x * p in Ann_Poly(w,A)
proof
let B be comRing;
let w be Element of B;
let p,x be Element of Polynom-Ring A;
set M ={p where p is Polynomial of A:Ext_eval(p,w)=0.B};
reconsider p1=p, x1=x as Polynomial of A by POLYNOM3:def 10;
assume that
A0: A is Subring of B and
A1: x in Ann_Poly(w,A);
consider x2 be Polynomial of A such that
A2: x2 = x1 and
A3: Ext_eval(x2,w)=0.B by A1;
Ext_eval(x1*'p1,w) = Ext_eval(p1,w) * 0.B by A0,A2,A3,Th24
.= 0.B; then
consider t be Polynomial of A such that
A4: t = x1 *'p1 and
A5: Ext_eval(t,w) = 0.B;
x1 *'p1 in M by A4,A5;
hence thesis by POLYNOM3:def 10;
end;
theorem Th33:
for A be non degenerated Ring
for B be non degenerated comRing
for w be Element of B st A is Subring of B
holds Ann_Poly(w,A) is proper Ideal of Polynom-Ring A
proof
let A be non degenerated Ring;
let B be non degenerated comRing;
let w be Element of B;
assume
A0: A is Subring of B;
A1: Ann_Poly(w,A) is add-closed by A0,Lm30;
A2: Ann_Poly(w,A) is left-ideal by A0,Th31;
A3: Ann_Poly(w,A) is right-ideal by A0,Lm32;
Ann_Poly(w,A) is proper
proof
assume not Ann_Poly(w,A) is proper; then
A5: 1.Polynom-RingA in Ann_Poly(w,A);
A6: 1_.A in Ann_Poly(w,A) by A5,POLYNOM3:37;
A7: Ext_eval(1_.A,w)= 1.B by A0,Th18;
ex p be Polynomial of A st p = 1_.A & Ext_eval(p,w)= 0.B by A6;
hence contradiction by A7;
end;
hence thesis by A1,A2,A3;
end;
begin :: Properties of Polynomial Ring over PID.
reserve K, L for Field;
theorem Th34:
for K,L be Field, w be Element of L st K is Subring of L holds
ex g be Element of Polynom-Ring K st {g}-Ideal = Ann_Poly(w,K)
proof
let K,L;
let w be Element of L;
assume
A0: K is Subring of L;
A1: Polynom-Ring K is PID;
Ann_Poly(w,K) is Ideal of Polynom-Ring K by A0,Th33;
hence thesis by A1,IDEAL_1:def 27;
end;
theorem Th35:
for K,L be Field, z be Element of L st z is_integral_over K
holds Ann_Poly(z,K) <> {0.Polynom-Ring K}
proof
let K,L;
let z be Element of L;
assume
A1: z is_integral_over K;
set M = {p where p is Polynomial of K:Ext_eval(p,z)=0.L};
consider f be Polynomial of K such that
A2: LC f = 1.K and
A3: Ext_eval(f,z) = 0.L by A1;
not f in {0.Polynom-Ring K}
proof
assume
A5: f in {0.Polynom-Ring K};
reconsider f as Element of Polynom-Ring K by POLYNOM3:def 10;
f in {0.Polynom-Ring K}-Ideal by A5,IDEAL_1:47; then
f in the set of all 0.Polynom-Ring K*g
where g is Element of Polynom-Ring K by IDEAL_1:64; then
consider g1 being Element of Polynom-Ring K such that
A6: f = 0.Polynom-Ring K * g1;
reconsider g2 = g1 as Polynomial of K by POLYNOM3:def 10;
reconsider h2 = 0.Polynom-Ring K as Polynomial of K by POLYNOM3:def 10;
f = 0_.K by POLYNOM3:def 10,A6;
hence contradiction by FUNCOP_1:7,A2;
end;
hence thesis by A3;
end;
theorem Lm37:
for K be Field, p be Element of Polynom-Ring K st p <> 0_.K holds
p is non zero Element of the carrier of Polynom-Ring K
proof
let K;
let p be Element of Polynom-Ring K;
assume
A0: p <> 0_.K;
assume
A1: not(p is non zero Element of the carrier of Polynom-Ring K);
reconsider p as Element of the carrier of Polynom-Ring K;
p is zero by A1;
hence contradiction by A0;
end;
theorem Th38:
for K,L be Field, w be Element of L st K is Subring of L
holds Ann_Poly(w,K) is quasi-prime
proof
let K,L;
let w be Element of L;
assume
A0: K is Subring of L;
set M = {p where p is Polynomial of K:Ext_eval(p,w)=0.L};
for p, q being Element of Polynom-Ring K st p*q in Ann_Poly(w,K) holds
p in Ann_Poly(w,K) or q in Ann_Poly(w,K)
proof
let p, q be Element of Polynom-Ring K;
assume
A1: p*q in Ann_Poly(w,K);
reconsider p1=p, q1=q as Polynomial of K by POLYNOM3:def 10;
p1*'q1 in Ann_Poly(w,K) by A1,POLYNOM3:def 10; then
consider t be Polynomial of K such that
A5: t = p1*'q1 and
A6: Ext_eval(t,w)=0.L;
Ext_eval(p1,w) * Ext_eval(q1,w) = 0.L by A0,Th24,A6,A5;
then per cases by VECTSP_2:def 1;
suppose Ext_eval(p1,w)=0.L;
hence thesis;
end;
suppose Ext_eval(q1,w)=0.L;
hence thesis;
end;
end;
hence thesis by RING_1:def 1;
end;
theorem Th39:
for K,L be Field, w be Element of L st K is Subring of L &
w is_integral_over K holds Ann_Poly(w,K) is prime
proof
let K,L;
let w be Element of L;
assume K is Subring of L & w is_integral_over K;
then Ann_Poly(w,K) is proper quasi-prime by Th38,Th33;
hence thesis;
end;
theorem Th40:
for K,L be Field, z be Element of L st K is Subring of L &
z is_integral_over K
ex f be Element of Polynom-Ring K
st f <> 0_.K & {f}-Ideal = Ann_Poly(z,K) & f = NormPolynomial(f)
proof
let K,L be Field;
let z be Element of L;
assume that
A0: K is Subring of L and
A1: z is_integral_over K;
consider f be Element of Polynom-Ring K such that
A2: {f}-Ideal = Ann_Poly(z,K) by A0,Th34;
A3: f <> 0.Polynom-Ring K by A1,A2,Th35,IDEAL_1:47;
reconsider f as Element of Polynom-Ring K;
A4: f <> 0_.K by A3,POLYNOM3:def 10;
set g = NormPolynomial(f);
A7: {g}-Ideal = Ann_Poly(z,K) by A2,RING_4:27,RING_2:21;
g <> 0.Polynom-Ring K by A1,A7,Th35,IDEAL_1:47; then
A8: g <> 0_.K by POLYNOM3:def 10; then
A9: g is non zero Element of the carrier of Polynom-Ring K by Lm37;
A10:f is non zero Element of the carrier of Polynom-Ring K by A4,Lm37;
g = NormPolynomial(g) by A9,A10,RING_4:24;
hence thesis by A7,A8;
end;
theorem Th41:
for K,L be Field, z be Element of L,f,g be Element of Polynom-Ring K st
z is_integral_over K &
{f}-Ideal = Ann_Poly(z,K) & f = NormPolynomial(f) &
{g}-Ideal = Ann_Poly(z,K) & g = NormPolynomial(g)
holds f = g
proof
let K,L be Field;
let z be Element of L;
let f,g be Element of Polynom-Ring K;
assume that
A1: z is_integral_over K and
A2: {f}-Ideal = Ann_Poly(z,K) and
A3: f = NormPolynomial(f) and
A4: {g}-Ideal = Ann_Poly(z,K) and
A5: g = NormPolynomial(g);
reconsider f as Element of the carrier of Polynom-Ring K;
NormPolynomial(f) <> 0.(Polynom-Ring K) by A3,A2,A1,Th35,IDEAL_1:47; then
f <> 0_.K by A3,POLYNOM3:def 10; then
A6: f is non zero Element of the carrier of Polynom-Ring K by Lm37;
reconsider g as Element of the carrier of Polynom-Ring K;
NormPolynomial(g) <> 0.(Polynom-Ring K) by A5,A4,A1,Th35,IDEAL_1:47; then
g <> 0_.K by A5,POLYNOM3:def 10; then
g is non zero Element of the carrier of Polynom-Ring K by Lm37;
hence thesis by A3,A6,A5,RING_2:21,RING_4:30,A4,A2;
end;
definition
let K,L be Field;
let z be Element of L;
assume that
A1: K is Subring of L and
A2: z is_integral_over K;
func minimal_polynom(z,K) -> Element of the carrier of Polynom-Ring K
means
:Def7:
it <> 0_.K & {it}-Ideal = Ann_Poly(z,K) & it = NormPolynomial(it);
existence by A1,A2,Th40;
uniqueness by Th41,A2;
end;
definition
let K,L be Field;
let z be Element of L;
assume that
A1: K is Subring of L and
A2: z is_integral_over K;
func deg_of_integral_element(z,K) -> Element of NAT equals
deg (minimal_polynom(z,K));
coherence
proof
set f = minimal_polynom(z,K);
A7: f is non zero by A1,A2,Def7;
reconsider f as Polynomial of K;
deg f <> -1 by A7; then
A8: len f <> 0;
len f + 1 > 0 + 1 by A8,XREAL_1:8; then
len f >= 1 by NAT_1:13;
hence thesis by INT_1:3;
end;
end;
definition
let A,B be Ring;
let x be Element of B;
func hom_Ext_eval(x,A) -> Function of Polynom-Ring A,B means :Def9:
for p be Polynomial of A holds it.p = Ext_eval(p,x);
existence
proof
defpred P[set,set] means ex p be Polynomial of A st p = $1 &
$2 = Ext_eval(p,x);
A1: for y be Element of the carrier of Polynom-Ring A
ex z be Element of B st P[y,z]
proof
let y be Element of the carrier of Polynom-Ring A;
reconsider p=y as Polynomial of A;
take Ext_eval(p,x);
take p;
thus thesis;
end;
consider f be Function of Polynom-Ring A, B such that
A2: for y be Element of Polynom-Ring A holds P[y,f.y]
from FUNCT_2:sch 3 (A1);
reconsider f as Function of Polynom-Ring A, B;
take f;
let p be Polynomial of A;
p in Polynom-Ring A by POLYNOM3:def 10; then
ex q be Polynomial of A st q = p & f.p = Ext_eval(q,x) by A2;
hence thesis;
end;
uniqueness
proof
let f1,f2 be Function of Polynom-Ring A, B such that
A3: for p be Polynomial of A holds f1.p = Ext_eval(p,x) and
A4: for p be Polynomial of A holds f2.p = Ext_eval(p,x);
now
let y be Element of Polynom-Ring A;
reconsider p=y as Polynomial of A by POLYNOM3:def 10;
thus f1.y = Ext_eval(p,x) by A3 .= f2.y by A4;
end;
hence f1 = f2;
end;
end;
registration
let x be Element of F_Complex;
cluster hom_Ext_eval(x,F_Rat) -> unity-preserving additive multiplicative;
coherence
proof
thus (hom_Ext_eval(x,F_Rat)).(1_Polynom-Ring F_Rat)
= (hom_Ext_eval(x,F_Rat)).(1_.(F_Rat)) by POLYNOM3:37
.= Ext_eval(1_.(F_Rat),x) by Def9
.= 1_F_Complex by Th3,Th18;
hereby let a,b be Element of Polynom-Ring F_Rat;
reconsider p=a,q=b as Polynomial of F_Rat by POLYNOM3:def 10;
thus hom_Ext_eval(x,F_Rat).(a+b) = hom_Ext_eval(x,F_Rat).(p+q) by
POLYNOM3:def 10
.= Ext_eval(p+q,x) by Def9
.= Ext_eval(p,x) + Ext_eval(q,x) by Th3,Th19
.= hom_Ext_eval(x,F_Rat).a + Ext_eval(q,x) by Def9
.= hom_Ext_eval(x,F_Rat).a + hom_Ext_eval(x,F_Rat).b by Def9;
end;
hereby let a,b be Element of Polynom-Ring F_Rat;
reconsider p=a,q=b as Polynomial of F_Rat by POLYNOM3:def 10;
thus (hom_Ext_eval(x,F_Rat)).(a*b) = (hom_Ext_eval(x,F_Rat)).(p*'q)
by POLYNOM3:def 10
.= Ext_eval(p*'q,x) by Def9
.= Ext_eval(p,x)* Ext_eval(q,x) by Th3,Th24
.= (hom_Ext_eval(x,F_Rat)).a*Ext_eval(q,x) by Def9
.= (hom_Ext_eval(x,F_Rat)).a*(hom_Ext_eval(x,F_Rat)).b by Def9;
end;
end;
end;
theorem
for x be Element of F_Complex holds
F_Complex is (Polynom-Ring F_Rat)-homomorphic
proof
let x be Element of F_Complex;
hom_Ext_eval(x,F_Rat) is RingHomomorphism;
hence thesis;
end;
theorem Lm45:
for x be Element of B, z be object st z in rng hom_Ext_eval(x,A)
holds z in B;
definition
let x be Element of F_Complex;
func FQ(x) -> Subset of F_Complex equals
rng hom_Ext_eval(x,F_Rat);
coherence;
end;
registration
let x be Element of F_Complex;
cluster FQ(x) -> non empty;
coherence;
end;
theorem Lm46:
for x,z1,z2 be Element of F_Complex st
z1 in FQ(x) & z2 in FQ(x) holds z1 + z2 in FQ(x)
proof
let x,z1,z2 be Element of F_Complex;
assume that
A1: z1 in FQ(x) and
A2: z2 in FQ(x);
consider f1 be object such that
A3: f1 in dom hom_Ext_eval(x,F_Rat) and
A4: z1 = hom_Ext_eval(x,F_Rat).f1 by A1,FUNCT_1:def 3;
consider f2 be object such that
A5: f2 in dom hom_Ext_eval(x,F_Rat) and
A6: z2 = hom_Ext_eval(x,F_Rat).f2 by A2,FUNCT_1:def 3;
A7: dom hom_Ext_eval(x,F_Rat) =
the carrier of Polynom-Ring F_Rat by FUNCT_2:def 1;
reconsider g1 = f1, g2 = f2 as Polynomial of F_Rat
by A3,A5,POLYNOM3:def 10;
A8: z1 + z2 = Ext_eval(g1,x) + hom_Ext_eval(x,F_Rat).f2 by Def9,A6,A4
.= Ext_eval(g1,x) + Ext_eval(g2,x) by Def9
.= Ext_eval(g1+g2,x) by Th3,Th19
.= hom_Ext_eval(x,F_Rat).(g1+g2) by Def9;
set g = g1+g2;
g in dom hom_Ext_eval(x,F_Rat) by A7,POLYNOM3:def 10;
hence thesis by A8,FUNCT_1:def 3;
end;
theorem Lm47:
for x,z1,z2 be Element of F_Complex st
z1 in FQ(x) & z2 in FQ(x) holds z1 * z2 in FQ(x)
proof
let x,z1,z2 be Element of F_Complex;
assume that
A1: z1 in FQ(x) and
A2: z2 in FQ(x);
consider f1 be object such that
A3: f1 in dom hom_Ext_eval(x,F_Rat) and
A4: z1 = hom_Ext_eval(x,F_Rat).f1 by A1,FUNCT_1:def 3;
consider f2 be object such that
A5: f2 in dom hom_Ext_eval(x,F_Rat) and
A6: z2 = hom_Ext_eval(x,F_Rat).f2 by A2,FUNCT_1:def 3;
A7: dom hom_Ext_eval(x,F_Rat) =
the carrier of Polynom-Ring F_Rat by FUNCT_2:def 1;
reconsider g1 = f1, g2 = f2 as Polynomial of F_Rat by A3,A5,POLYNOM3:def 10;
A8: z1 * z2 = Ext_eval(g1,x) * hom_Ext_eval(x,F_Rat).f2 by Def9,A6,A4
.= Ext_eval(g1,x) * Ext_eval(g2,x) by Def9
.= Ext_eval(g1*'g2,x) by Th3,Th24
.= hom_Ext_eval(x,F_Rat).(g1*'g2) by Def9;
set g = g1*'g2;
g in dom hom_Ext_eval(x,F_Rat) by A7,POLYNOM3:def 10;
hence thesis by A8,FUNCT_1:def 3;
end;
theorem Lm48:
for x be Element of F_Complex, a be Element of F_Rat holds
a in FQ(x)
proof
let x be Element of F_Complex;
let a be Element of F_Rat;
reconsider f = <% a %> as Polynomial of F_Rat;
A2: dom hom_Ext_eval(x,F_Rat) =
the carrier of Polynom-Ring F_Rat by FUNCT_2:def 1;
A3: Ext_eval(f,x) = In(a,F_Complex) by Th3,Th25;
reconsider f as Element of Polynom-Ring F_Rat by POLYNOM3:def 10;
In(a,F_Complex) = hom_Ext_eval(x,F_Rat).f by A3,Def9;
hence thesis by A2,FUNCT_1:def 3;
end;
definition
let x be Element of F_Complex;
func FQ_add(x) -> BinOp of FQ(x) equals
addcomplex || FQ(x);
correctness
proof
set ad = addcomplex||FQ(x);
set theCFComplex = the carrier of F_Complex;
A0: [:FQ(x),FQ(x):] c= [:theCFComplex,theCFComplex:];
theCFComplex = COMPLEX by COMPLFLD:def 1; then
[:FQ(x),FQ(x):] c= dom (addcomplex) by A0,FUNCT_2:def 1; then
A1: dom ad = [:FQ(x),FQ(x):] by RELAT_1:62;
for z be object st z in [:FQ(x),FQ(x):] holds ad. z in FQ(x)
proof
let z be object such that
A2: z in [:FQ(x),FQ(x):];
consider a, b be object such that
A3: a in FQ(x) and
A4: b in FQ(x) and
A5: z = [a,b] by A2,ZFMISC_1:def 2;
reconsider x1 = a, y1 = b as Element of theCFComplex by A3,A4;
ad.z = addcomplex.(a,b) by A2,A5,FUNCT_1:49
.= x1+y1 by BINOP_2:def 3;
hence ad.z in FQ(x) by A3,A4,Lm46;
end;
hence thesis by A1,FUNCT_2:3;
end;
end;
definition
let x be Element of F_Complex;
func FQ_mult(x) -> BinOp of FQ(x) equals
multcomplex || FQ(x);
correctness
proof
set mult = multcomplex||FQ(x);
set theCFComplex = the carrier of F_Complex;
A0: theCFComplex = COMPLEX by COMPLFLD:def 1;
[:FQ(x),FQ(x):] c= [:COMPLEX,COMPLEX:] by A0; then
[:FQ(x),FQ(x):] c= dom(multcomplex) by FUNCT_2:def 1; then
A1: dom mult = [:FQ(x),FQ(x):] by RELAT_1:62;
for z be object st z in [:FQ(x),FQ(x):] holds mult.z in FQ(x)
proof
let z be object such that
A2: z in [:FQ(x),FQ(x):];
consider x1,y1 be object such that
A3: x1 in FQ(x) & y1 in FQ(x) & z = [x1,y1] by A2,ZFMISC_1:def 2;
reconsider x2 = x1, y2 = y1 as Element of theCFComplex by A3;
mult.z = multcomplex.(x2,y2) by A2,A3,FUNCT_1:49
.= x2*y2 by BINOP_2:def 5;
hence mult.z in FQ(x) by A3,Lm47;
end;
hence thesis by A1,FUNCT_2:3;
end;
end;
theorem Th49:
for x be Element of F_Complex, z, w be Element of FQ(x) holds
(FQ_add(x)).(z,w) = z+w
proof
let x be Element of F_Complex;
let z, w be Element of FQ(x);
thus (FQ_add(x)).(z,w) = addcomplex.(z,w) by FUNCT_1:49,ZFMISC_1:87
.= z+w by BINOP_2:def 3;
end;
theorem Th50:
for x be Element of F_Complex, z, w be Element of FQ(x) holds
(FQ_mult(x)).(z,w) = z*w
proof
let x be Element of F_Complex;
let z, w be Element of FQ(x);
thus (FQ_mult(x)).(z,w) = multcomplex.(z,w) by FUNCT_1:49,ZFMISC_1:87
.= z*w by BINOP_2:def 5;
end;
theorem Lm52: :::?????
for x be Element of F_Complex holds
In(1.F_Complex, FQ(x)) = 1.F_Complex
proof
let x be Element of F_Complex;
1.F_Complex = 1.F_Rat by C0SP1:def 3,Th3;
hence thesis by Lm48,SUBSET_1:def 8;
end;
theorem Lm53:
In(-1.F_Rat,F_Complex) = -1.F_Complex
proof
1.F_Complex + In(-1.F_Rat,F_Complex)
= In(1.F_Rat,F_Complex) + In(-1.F_Rat,F_Complex) by Lm5,Th3
.= In(0.F_Rat,F_Complex)
.= 0.F_Complex by Lm5,Th3;
hence thesis by RLVECT_1:def 10;
end;
definition
let x be Element of F_Complex;
func FQ_Ring(x) -> strict non empty doubleLoopStr equals
doubleLoopStr(# FQ(x), FQ_add(x), FQ_mult(x),In(1.F_Complex,FQ(x)),
In(0.F_Complex,FQ(x)) #);
coherence;
end;
theorem Th54:
for x be Element of F_Complex holds FQ_Ring(x) is Ring
proof
let x be Element of F_Complex;
reconsider ZS = doubleLoopStr(# FQ(x),FQ_add(x),FQ_mult(x),
In(1.F_Complex,FQ(x)),In(0.F_Complex,FQ(x)) #) as non empty doubleLoopStr;
A1:for v, w being Element of ZS holds v + w = w + v
proof
let v, w be Element of ZS;
v in F_Complex & w in F_Complex by Lm45; then
reconsider v1 = v, w1 = w as Element of F_Complex;
thus v + w = w1 + v1 by Th49
.= w + v by Th49;
end;
A2: for u, v, w being Element of ZS holds (u + v) + w = u + (v + w)
proof
let u, v, w be Element of ZS;
u in F_Complex & v in F_Complex & w in F_Complex by Lm45; then
reconsider u1 = u, v1 = v, w1 = w as Element of F_Complex;
A3: u + v = u1+v1 by Th49;
A4: v + w = v1+w1 by Th49;
thus (u + v) + w = u1+v1+w1 by Th49,A3
.= u1+(v1+w1)
.= u+(v+w) by Th49,A4;
end;
A5: for v being Element of ZS holds v + 0.ZS = v
proof
let v be Element of ZS;
A6: 0.ZS = 0.F_Complex by Lm48,Lm7,SUBSET_1:def 8;
0.ZS in F_Complex & v in F_Complex by Lm45; then
reconsider v1 = v as Element of F_Complex;
thus v + 0.ZS = v1 + 0.F_Complex by Th49,A6 .= v;
end;
A7: for v being Element of ZS holds v is right_complementable
proof
let v be Element of ZS;
v in F_Complex by Lm45; then
reconsider v1 = v as Element of F_Complex;
A8: (-1.F_Complex) * v1 = -(1.F_Complex * v1) by VECTSP_1:9
.= -v1;
reconsider w1 = -1.F_Complex as Element of ZS by Lm48,Lm53;
A10: w1 * v = (-1.F_Complex ) * v1 by Th50;
take w1*v;
thus v + (w1*v) = v1 + ((-1.F_Complex ) * v1) by A10,Th49
.= 0.F_Complex by RLVECT_1:5,A8 .= 0.ZS by Lm48,Lm7,SUBSET_1:def 8;
end;
A11: for a, b, v being Element of ZS holds (a + b) * v = a * v + b * v
proof
let a, b, v be Element of ZS;
a in F_Complex & b in F_Complex & v in F_Complex by Lm45; then
reconsider a1 = a, b1 = b, v1 = v as Element of F_Complex;
A12: a+b in FQ(x);
reconsider ab = a+b as Element of F_Complex by A12;
A13: a1*v1 = a*v & (b1*v1 = b*v) by Th50;
thus (a + b) * v = ab * v1 by Th50
.= (a1 + b1) * v1 by Th49
.= a1*v1 + b1*v1
.= a*v + b*v by A13,Th49;
end;
A14: for a, v, w being Element of ZS
holds a * (v + w) = a * v + a * w & (v + w)*a = v*a + w*a
proof
let a, v, w be Element of ZS;
a in F_Complex & v in F_Complex & w in F_Complex by Lm45; then
reconsider a1 = a, v1 = v, w1 = w as Element of F_Complex;
A15: v+w in FQ(x);
reconsider vw = (v+w) as Element of F_Complex by A15;
A16: (a1*v1 = a*v) & (a1*w1 = a*w) by Th50;
thus a * (v + w) = a1 * vw by Th50
.= a1 * (v1 + w1) by Th49
.= a1*v1 + a1*w1
.= a*v + a*w by A16,Th49;
thus (v + w) * a = v*a + w*a by A11;
end;
A17: for a, b, v being Element of ZS holds (a * b) * v = a * (b * v)
proof
let a, b, v be Element of ZS;
a in F_Complex & b in F_Complex & v in F_Complex by Lm45; then
reconsider a1 = a, b1 = b, v1 = v as Element of F_Complex;
A18: a*b in FQ(x) & b*v in FQ(x);
reconsider ab = (a*b), bv = (b*v) as Element of F_Complex by A18;
thus (a * b) * v = ab * v1 by Th50
.= (a1 * b1) * v1 by Th50
.= a1 * (b1 * v1)
.= a1 * bv by Th50
.= a * (b * v) by Th50;
end;
for v being Element of ZS holds v *1.ZS = v & 1.ZS * v = v
proof
let v be Element of ZS;
A19: 1.ZS = 1.F_Complex by Lm52;
v in F_Complex by Lm45; then
reconsider v1 = v as Element of F_Complex;
thus v * 1.ZS = v1 * 1.F_Complex by A19,Th50
.= v;
thus 1.ZS * v = 1.F_Complex * v1 by A19,Th50
.= v;
end;
hence thesis by A1,A2,A5,A7,A14,A17,VECTSP_1:def 6,def 7,
GROUP_1:def 3,RLVECT_1:def 2,def 3,def 4,ALGSTR_0:def 16;
end;
registration
let x be Element of F_Complex;
cluster FQ_Ring(x) -> Abelian add-associative right_zeroed
right_complementable associative well-unital distributive;
coherence by Th54;
end;
registration
let z be Element of F_Complex;
cluster FQ_Ring(z) -> domRing-like commutative non degenerated;
coherence
proof
set X = FQ_Ring(z);
thus X is domRing-like
proof
for x, y being Element of X holds
x*y = 0.X implies x = 0.X or y = 0.X
proof
let x, y be Element of X;
x in F_Complex & y in F_Complex by Lm45; then
reconsider x1 = x, y1 = y as Element of F_Complex;
assume
A1: x*y = 0.X;
A2: 0.X = 0.F_Complex by Lm48,Lm7,SUBSET_1:def 8; then
x1*y1 = 0.F_Complex by A1,Th50;
hence thesis by A2,VECTSP_1:12;
end;
hence thesis by VECTSP_2:def 1;
end;
A3: 0.FQ_Ring(z) = 0.F_Complex by Lm48,Lm7,SUBSET_1:def 8;
thus X is commutative
proof
let v, w be Element of FQ_Ring(z);
v in F_Complex & w in F_Complex by Lm45; then
reconsider v1=v, w1=w as Element of F_Complex;
thus v * w = v1 * w1 by Th50
.= w * v by Th50;
end;
thus thesis by Lm52,A3;
end;
end;
Lm55:
for x be Element of F_Complex holds
the carrier of F_Rat c= the carrier of FQ_Ring(x) by Lm48;
theorem Lm56:
for x be Element of F_Complex holds
[:RAT,RAT:] c= [:FQ(x),FQ(x):] & [:FQ(x),FQ(x):] c= [:COMPLEX,COMPLEX:]
proof
let x be Element of F_Complex;
A1: the carrier of F_Rat c= the carrier of FQ_Ring(x) by Lm48;
A2: FQ(x) c= the carrier of F_Complex;
FQ(x) c= COMPLEX by A2,COMPLFLD:def 1;
hence thesis by A1,ZFMISC_1:96;
end;
theorem Lm57:
for x be Element of F_Complex holds
the addF of F_Rat = (the addF of FQ_Ring(x))||RAT
proof
let x be Element of F_Complex;
thus the addF of F_Rat =
addcomplex|[:RAT,RAT:] by ZFMISC_1:96,RELAT_1:74,
VECTSP_1:def 5,RING_3:2,GAUSSINT:13
.= (the addF of FQ_Ring(x))||RAT by Lm56,RELAT_1:74;
end;
theorem Lm58:
for x be Element of F_Complex holds
the multF of F_Rat = (the multF of FQ_Ring(x))||RAT
proof
let x be Element of F_Complex;
thus the multF of F_Rat
= multcomplex|[:RAT,RAT:] by ZFMISC_1:96,RELAT_1:74,
VECTSP_1:def 5,RING_3:3,GAUSSINT:13
.= (the multF of FQ_Ring(x))||RAT by Lm56,RELAT_1:74;
end;
theorem
for x be Element of F_Complex holds F_Rat is Subring of FQ_Ring(x)
proof
let x be Element of F_Complex;
A1: the addF of F_Rat = (the addF of FQ_Ring(x))||the carrier of F_Rat
by Lm57;
A2: the multF of F_Rat = (the multF of FQ_Ring(x))||the carrier of F_Rat
by Lm58;
A3: 1.FQ_Ring(x) = 1.F_Complex by Lm52 .= 1.F_Rat by C0SP1:def 3,Th3;
0.FQ_Ring(x) = 0.F_Rat by Lm48,Lm7,SUBSET_1:def 8;
hence thesis by Lm55,A1,A2,A3,C0SP1:def 3;
end;
theorem Th80:
for f,g be Element of Polynom-Ring K st
f <> 0.Polynom-Ring K & {f}-Ideal is prime &
not (g in {f}-Ideal) holds {f,g}-Ideal = the carrier of Polynom-Ring K
proof
let f,g be Element of Polynom-Ring K;
assume that
A1: f <> 0.Polynom-Ring K and
A2: {f}-Ideal is prime and
A4: not g in {f}-Ideal;
assume
A5: {f,g}-Ideal <> the carrier of Polynom-Ring K;
Polynom-Ring K is PID; then
consider h be Element of Polynom-Ring K such that
A7: {f,g}-Ideal = {h}-Ideal by IDEAL_1:def 27;
A8: {f}-Ideal c= {h}-Ideal & {g}-Ideal c= {h}-Ideal by A7,IDEAL_1:69;
consider s be Element of Polynom-Ring K such that
A9: f = h*s by RING_2:19,A8,GCD_1:def 1;
consider t be Element of Polynom-Ring K such that
A11:g = h*t by RING_2:19,A8,GCD_1:def 1;
f is non zero Element of Polynom-Ring K by A1,STRUCT_0:def 12; then
A13:f is prime by A2,RING_2:24;
per cases by A9,A13;
suppose f divides s; then
consider u be Element of Polynom-Ring K such that
A16: s = f*u by GCD_1:def 1;
A17: f = f*(u*h) by GROUP_1:def 3,A9,A16;
reconsider v = u*h as Element of Polynom-Ring K;
f * 1.Polynom-Ring K - f*v = 0.Polynom-Ring K by RLVECT_1:5,A17;
then
f * (1.Polynom-Ring K -v) = 0.Polynom-Ring K by VECTSP_1:11; then
1.Polynom-Ring K + (-v)=0.Polynom-Ring K by A1,VECTSP_2:def 1; then
h divides 1.Polynom-Ring K by VECTSP_1:19,GCD_1:def 1; then
A27: h is Unit of Polynom-Ring K by GCD_1:def 2;
[#] Polynom-Ring K = the carrier of Polynom-Ring K;
hence contradiction by A5,A7,A27,RING_2:20;
end;
suppose f divides h; then
consider v be Element of Polynom-Ring K such that
A31: h = f*v by GCD_1:def 1;
g = f*(v*t) by A11,A31,GROUP_1:def 3;
hence contradiction by A4,GCD_1:def 1,RING_2:18;
end;
end;
theorem Th81:
for f,g be Element of Polynom-Ring K holds
f <> 0.Polynom-Ring K & {f}-Ideal is prime &
not g in {f}-Ideal implies {f}-Ideal,{g}-Ideal are_co-prime
proof
let f,g be Element of Polynom-Ring K;
{f,g}-Ideal = {f}-Ideal + {g}-Ideal by IDEAL_1:76;
hence thesis by Th80;
end;
theorem Lm62:
for x be Element of F_Complex,a be Element of FQ_Ring(x)
ex g be Element of Polynom-Ring F_Rat st a = hom_Ext_eval(x,F_Rat).g
proof
let x be Element of F_Complex;
let a be Element of FQ_Ring(x);
ex g1 be object st g1 in dom hom_Ext_eval(x,F_Rat) &
a = hom_Ext_eval(x,F_Rat).g1 by FUNCT_1:def 3;
hence thesis;
end;
theorem Th83:
for x,a be Element of F_Complex st a <> 0.F_Complex &
a in the carrier of FQ_Ring(x)
ex g be Element of Polynom-Ring F_Rat
st not g in Ann_Poly(x,F_Rat) & a = hom_Ext_eval(x,F_Rat).g
proof
let x,a be Element of F_Complex;
set M = {p where p is Polynomial of F_Rat:Ext_eval(p,x)=0.F_Complex};
assume that
A1: a <> 0.F_Complex and
A2: a in the carrier of FQ_Ring(x);
consider g be Element of Polynom-Ring F_Rat such that
A3: a = hom_Ext_eval(x,F_Rat).g by A2,Lm62;
take g;
thus not g in Ann_Poly(x,F_Rat)
proof
assume g in Ann_Poly(x,F_Rat);
then consider g1 be Polynomial of F_Rat such that
A5: g1 = g and
A6: Ext_eval(g1,x)=0.F_Complex;
thus contradiction by A1,A6,A3,A5,Def9;
end;
thus thesis by A3;
end;
theorem Th84:
for x,a be Element of F_Complex st x is algebraic & a <> 0.F_Complex &
a in the carrier of FQ_Ring(x)
ex f,g be Element of Polynom-Ring F_Rat
st {f}-Ideal = Ann_Poly(x,F_Rat) & not(g in Ann_Poly(x,F_Rat)) &
a = hom_Ext_eval(x,F_Rat).g &
{f}-Ideal,{g}-Ideal are_co-prime
proof
let x,a be Element of F_Complex;
assume that
A1: x is algebraic and
A2: a <> 0.F_Complex and
A3: a in the carrier of FQ_Ring(x);
consider f be Element of Polynom-Ring F_Rat such that
A4: {f}-Ideal = Ann_Poly(x,F_Rat) by Th34,Th3;
consider g be Element of Polynom-Ring F_Rat such that
A5: not(g in Ann_Poly(x,F_Rat)) and
A6: a = hom_Ext_eval(x,F_Rat).g by Th83,A2,A3;
A7: {f}-Ideal is prime by A4,A1,Th3,Th39;
A8: f <> 0.Polynom-Ring F_Rat by A1,A4,Th35,IDEAL_1:47;
{f}-Ideal,{g}-Ideal are_co-prime by A4,A5,A7,A8,Th81;
hence thesis by A4,A5,A6;
end;
theorem Th85:
for x,a be Element of F_Complex st x is algebraic & a <> 0.F_Complex &
a in the carrier of FQ_Ring(x) holds
ex b be Element of F_Complex st b in the carrier of FQ_Ring(x)
& a*b = 1.F_Complex
proof
let x,a be Element of F_Complex;
set COPolynomFRat = the carrier of Polynom-Ring F_Rat;
set M = {h where h is Polynomial of F_Rat:Ext_eval(h,x)=0.F_Complex};
assume that
A1: x is algebraic and
A2: a <> 0.F_Complex and
A3: a in the carrier of FQ_Ring(x);
consider f,g be Element of Polynom-Ring F_Rat such that
A4: {f}-Ideal = Ann_Poly(x,F_Rat) and
not(g in Ann_Poly(x,F_Rat)) and
A6: a = hom_Ext_eval(x,F_Rat).g and
A7: {f}-Ideal,{g}-Ideal are_co-prime by A1,A2,A3,Th84;
1.Polynom-Ring F_Rat in {f}-Ideal+{g}-Ideal by A7; then
1.Polynom-Ring F_Rat in {p+q where p,q is Element of Polynom-Ring F_Rat:
p in {f}-Ideal & q in {g}-Ideal} by IDEAL_1:def 19; then
consider p,q be Element of Polynom-Ring F_Rat such that
A10: 1.Polynom-Ring F_Rat = p+q and
A11: p in {f}-Ideal and
A12: q in {g}-Ideal;
A14: {g}-Ideal = the set of all g*s where s is Element of Polynom-Ring F_Rat
by IDEAL_1:64;
consider s be Element of Polynom-Ring F_Rat such that
A15: q = g * s by A12,A14;
reconsider p1=p,q1=q, g1=g,s1=s as Polynomial of F_Rat
by POLYNOM3:def 10;
A16: p+q = p1+q1 by POLYNOM3:def 10;
consider p2 be Polynomial of F_Rat such that
A17: p2 = p and
A18: Ext_eval(p2,x)=0.F_Complex by A4,A11;
set b = Ext_eval(s1,x);
A20: b = hom_Ext_eval(x,F_Rat).s1 by Def9;
A21: dom hom_Ext_eval(x,F_Rat) = the carrier of Polynom-Ring F_Rat
by FUNCT_2:def 1;
A22: b in the carrier of FQ_Ring(x) by A20,A21,FUNCT_1:def 3;
1.F_Complex = Ext_eval(1_.(F_Rat),x) by Th3,Th18
.= Ext_eval(p1+q1,x) by A10,POLYNOM3:def 10,A16
.= 0.F_Complex + Ext_eval(q1,x) by A17,A18,Th3,Th19
.= Ext_eval(g1 *'s1,x) by A15,POLYNOM3:def 10
.= Ext_eval(g1,x) * Ext_eval(s1,x) by Th3,Th24
.= a*b by A6,Def9;
hence thesis by A22;
end;
theorem
for x be Element of F_Complex st x is algebraic holds FQ_Ring(x) is Field
proof
let x be Element of F_Complex;
assume
A1: x is algebraic;
for a be Element of FQ_Ring(x) st a <> 0.FQ_Ring(x) holds
a is left_invertible
proof
let a be Element of FQ_Ring(x);
assume a <> 0.FQ_Ring(x); then
A4: a <> 0.F_Complex by SUBSET_1:def 8;
a in FQ(x); then
reconsider y = a as Element of F_Complex;
consider b be Element of F_Complex such that
A5: b in the carrier of FQ_Ring(x) and
A6: y*b = 1.F_Complex by A1,A4,Th85;
reconsider a1=y,b1 = b as Element of FQ_Ring(x) by A5;
b1*a1 = 1.F_Complex by A6,Th50
.= 1.FQ_Ring(x) by Lm52;
hence thesis;
end;
then FQ_Ring(x) is almost_left_invertible;
hence FQ_Ring(x) is Field;
end;
|