Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 42,089 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
:: Homomorphisms of algebras. Quotient Universal Algebra
::  by Ma{\l}gorzata Korolkiewicz

environ

 vocabularies UNIALG_1, SUBSET_1, NUMBERS, UNIALG_2, XBOOLE_0, FINSEQ_1,
      FUNCT_1, RELAT_1, NAT_1, TARSKI, STRUCT_0, PARTFUN1, MSUALG_3, CQC_SIM1,
      WELLORD1, FINSEQ_2, GROUP_6, EQREL_1, FUNCT_2, CARD_3, RELAT_2, ALG_1;
 notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, NAT_1, RELAT_1,
      RELAT_2, FUNCT_1, RELSET_1, PARTFUN1, FINSEQ_1, EQREL_1, FINSEQ_2,
      FUNCT_2, STRUCT_0, MARGREL1, UNIALG_1, FINSEQOP, FINSEQ_3, UNIALG_2;
 constructors EQREL_1, FINSEQOP, UNIALG_2, RELSET_1, CARD_3, FINSEQ_3, CARD_1,
      NAT_1, NUMBERS;
 registrations RELAT_1, FUNCT_1, PARTFUN1, FUNCT_2, EQREL_1, FINSEQ_2,
      STRUCT_0, UNIALG_1, UNIALG_2, ORDINAL1, FINSEQ_1, CARD_1, RELSET_1,
      MARGREL1;
 requirements BOOLE, SUBSET;
 definitions UNIALG_2, RELAT_2, TARSKI, FUNCT_1, XBOOLE_0, FUNCT_2, MARGREL1;
 equalities UNIALG_2, XBOOLE_0;
 expansions UNIALG_2, FUNCT_1, FUNCT_2, MARGREL1;
 theorems FINSEQ_1, FINSEQ_2, FUNCT_1, FUNCT_2, PARTFUN1, UNIALG_1, UNIALG_2,
      RELAT_1, RELSET_1, EQREL_1, ZFMISC_1, FINSEQ_3, XBOOLE_0, RELAT_2,
      ORDERS_1, MARGREL1;
 schemes FINSEQ_1, RELSET_1, FUNCT_2, FUNCT_1;

begin

reserve U1,U2,U3 for Universal_Algebra,
  n,m for Nat,
  o1 for operation of U1,
  o2 for operation of U2,
  o3 for operation of U3,
  x,y for set;

theorem Th1:
  for B be non empty Subset of U1 st B = the carrier of U1 holds
  Opers(U1,B) = the charact of(U1)
proof
  let B be non empty Subset of U1;
A1: dom Opers(U1,B) = dom the charact of(U1) by UNIALG_2:def 6;
  assume
A2: B = the carrier of U1;
  now
    let n be Nat;
    assume
A3: n in dom the charact of(U1);
    then reconsider o = (the charact of U1).n as operation of U1 by
FUNCT_1:def 3;
    thus Opers(U1,B).n = o/.B by A1,A3,UNIALG_2:def 6
      .= (the charact of U1).n by A2,UNIALG_2:4;
  end;
  hence thesis by A1;
end;

reserve a for FinSequence of U1,
  f for Function of U1,U2;

theorem
  f*(<*>the carrier of U1) = <*>the carrier of U2;

theorem Th3:
  (id the carrier of U1)*a = a
proof
  set f = id the carrier of U1;
A1: dom (f*a) = dom a by FINSEQ_3:120;
A2: now
    let n be Nat;
    assume
A3: n in dom(f*a);
    then reconsider u = a.n as Element of U1 by A1,FINSEQ_2:11;
    f.u = u;
    hence (f*a).n = a.n by A3,FINSEQ_3:120;
  end;
  len (f*a) = len a by FINSEQ_3:120;
  hence thesis by A2,FINSEQ_2:9;
end;

theorem Th4:
  for h1 be Function of U1,U2, h2 be Function of U2,U3,a be
  FinSequence of U1 holds h2*(h1*a) = (h2 * h1)*a
proof
  let h1 be Function of U1,U2, h2 be Function of U2,U3,a be FinSequence of U1;
A1: dom a = Seg len a by FINSEQ_1:def 3;
A2: dom (h2*(h1*a)) = dom(h1*a) by FINSEQ_3:120;
  dom (h1*a) = dom a by FINSEQ_3:120;
  then
A3: dom (h2*(h1*a)) = Seg len a by A2,FINSEQ_1:def 3;
A4: len a = len((h2 * h1 qua Function of the carrier of U1, the carrier of
  U3) *(a qua FinSequence of the carrier of U1)) by FINSEQ_3:120;
  then
A5: dom ((h2 * h1)*a) = Seg len a by FINSEQ_1:def 3;
A6: now
    let n be Nat;
    assume
A7: n in dom(h2*(h1*a));
    hence (h2*(h1*a)).n = h2.((h1*a).n) by FINSEQ_3:120
      .= h2.(h1.(a.n)) by A2,A7,FINSEQ_3:120
      .= (h2*h1).(a.n) by A1,A3,A7,FINSEQ_2:11,FUNCT_2:15
      .= ((h2 * h1)*a).n by A3,A5,A7,FINSEQ_3:120;
  end;
  len(h2*(h1*a)) = len(h1*a) & len(h1*a) = len a by FINSEQ_3:120;
  hence thesis by A4,A6,FINSEQ_2:9;
end;

definition
  let U1,U2,f;
  pred f is_homomorphism means
  U1,U2 are_similar &
  for n st n in dom the charact of(U1)
  for o1,o2 st o1=(the charact of U1).n &
               o2=(the charact of U2).n
   for x be FinSequence of U1 st x in dom o1 holds f.(o1.x) = o2.(f*x);
end;

definition
  let U1,U2,f;
  pred f is_monomorphism means
  f is_homomorphism & f is one-to-one;
  pred f is_epimorphism means
  f is_homomorphism & rng f = the carrier of U2;
end;

definition
  let U1,U2,f;
  pred f is_isomorphism means
  f is_monomorphism & f is_epimorphism;
end;

definition
  let U1,U2;
  pred U1,U2 are_isomorphic means
  ex f st f is_isomorphism;
end;

theorem Th5:
  id the carrier of U1 is_homomorphism
proof
  thus U1,U1 are_similar;
  let n;
  assume n in dom the charact of(U1);
  let o1,o2 be operation of U1;
  assume
A1: o1=(the charact of U1).n & o2=(the charact of U1).n;
  set f = id the carrier of U1;
  let x be FinSequence of U1;
  assume x in dom o1;
  then o1.x in rng o1 by FUNCT_1:def 3;
  then reconsider u = o1.x as Element of U1;
  f.u = u;
  hence thesis by A1,Th3;
end;

theorem Th6:
  for h1 be Function of U1,U2, h2 be Function of U2,U3 st h1
is_homomorphism & h2 is_homomorphism holds h2 * h1 is_homomorphism
proof
  let h1 be Function of U1,U2, h2 be Function of U2,U3;
  set s1 = signature U1, s2 = signature U2, s3 = signature U3;
  assume that
A1: h1 is_homomorphism and
A2: h2 is_homomorphism;
  U1,U2 are_similar by A1;
  then
A3: s1 = s2;
  U2,U3 are_similar by A2;
  hence s1 = s3 by A3;
  let n;
  assume
A4: n in dom the charact of(U1);
  let o1,o3;
  assume that
A5: o1=(the charact of U1).n and
A6: o3=(the charact of U3).n;
  let a;
  reconsider b = h1*a as Element of (the carrier of U2)* by FINSEQ_1:def 11;
  assume
A7: a in dom o1;
  then
A8: o1.a in rng o1 by FUNCT_1:def 3;
  dom o1 = (arity o1)-tuples_on (the carrier of U1) by MARGREL1:22;
  then a in {w where w is Element of (the carrier of U1)*: len w = arity o1}
  by A7,FINSEQ_2:def 4;
  then
A9: ex w be Element of (the carrier of U1)* st w = a & len w = arity o1;
A10: len s1 = len the charact of(U1) & dom the charact of(U1) = Seg len the
  charact of(U1) by FINSEQ_1:def 3,UNIALG_1:def 4;
A11: len s2 = len the charact of(U2) & dom the charact of(U2) = Seg len the
  charact of(U2) by FINSEQ_1:def 3,UNIALG_1:def 4;
  then reconsider o2 = (the charact of U2).n as operation of U2 by A3,A10,A4,
FUNCT_1:def 3;
A12: dom s1 = Seg len s1 by FINSEQ_1:def 3;
  then
A13: s2.n = arity o2 by A3,A10,A4,UNIALG_1:def 4;
  s1.n = arity o1 by A10,A12,A4,A5,UNIALG_1:def 4;
  then len(h1*a) = arity o2 by A3,A13,A9,FINSEQ_3:120;
  then dom o2 = (arity o2)-tuples_on (the carrier of U2) & b in {s where s is
  Element of (the carrier of U2)*: len s = arity o2} by MARGREL1:22;
  then h1*a in dom o2 by FINSEQ_2:def 4;
  then
A14: h2.(o2.(h1*a)) = o3.(h2*(h1*a)) by A2,A3,A10,A11,A4,A6;
  h1.(o1.a) = o2.(h1*a) by A1,A4,A5,A7;
  hence (h2 * h1).(o1.a) = o3.(h2*(h1*a)) by A8,A14,FUNCT_2:15
    .= o3.((h2 * h1)*a) by Th4;
end;

theorem Th7:
  f is_isomorphism iff f is_homomorphism & rng f = the
  carrier of U2 & f is one-to-one
proof
  thus f is_isomorphism implies f is_homomorphism & rng f = the
  carrier of U2 & f is one-to-one
  proof
    assume f is_isomorphism;
    then f is_monomorphism & f is_epimorphism;
    hence thesis;
  end;
  assume f is_homomorphism & rng f = the carrier of U2 & f is one-to-one;
  then f is_monomorphism & f is_epimorphism;
  hence thesis;
end;

theorem Th8:
  f is_isomorphism implies dom f = the carrier of U1 & rng f
  = the carrier of U2
proof
  assume f is_isomorphism;
  then f is_epimorphism;
  hence thesis by FUNCT_2:def 1;
end;

theorem Th9:
  for h be Function of U1,U2, h1 be Function of U2,U1 st h
  is_isomorphism & h1=h" holds h1 is_homomorphism
proof
  let h be Function of U1,U2,h1 be Function of U2,U1;
  assume that
A1: h is_isomorphism and
A2: h1=h";
A3: h is one-to-one by A1,Th7;
A4: h is_homomorphism by A1,Th7;
  then
A5: U1,U2 are_similar;
  then
A6: signature U1 = signature U2;
A7: len (signature U1) = len the charact of(U1) & dom the charact of(U1) =
  Seg len the charact of(U1) by FINSEQ_1:def 3,UNIALG_1:def 4;
A8: dom (signature U2) = Seg len (signature U2) by FINSEQ_1:def 3;
A9: len (signature U2) = len the charact of(U2) & dom the charact of(U2) =
  Seg len the charact of(U2) by FINSEQ_1:def 3,UNIALG_1:def 4;
A10: rng h = the carrier of U2 by A1,Th7;
  now
    let n;
    assume
A11: n in dom the charact of(U2);
    let o2,o1;
    assume
A12: o2 = (the charact of U2).n & o1 = (the charact of U1).n;
    let x be FinSequence of U2;
    defpred P[set,set] means h.$2 = x.$1;
A13: dom x = Seg len x by FINSEQ_1:def 3;
A14: for m be Nat st m in Seg len x ex a being Element of U1 st P[m,a]
    proof
      let m be Nat;
      assume m in Seg len x;
      then m in dom x by FINSEQ_1:def 3;
      then x.m in the carrier of U2 by FINSEQ_2:11;
      then consider a be object such that
A15:  a in dom h and
A16:  h.a = x.m by A10,FUNCT_1:def 3;
      reconsider a as Element of U1 by A15;
      take a;
      thus thesis by A16;
    end;
    consider p being FinSequence of U1 such that
A17: dom p = Seg len x & for m be Nat st m in Seg len x holds P[m,p.m]
    from FINSEQ_1:sch 5(A14);
A18: dom (h*p) = dom p by FINSEQ_3:120;
    now
      let n be Nat;
      assume
A19:  n in dom x;
      hence x.n = h.(p.n) by A17,A13
        .= (h*p).n by A17,A13,A18,A19,FINSEQ_3:120;
    end;
    then
A20: x = h*p by A17,A13,A18;
A21: len p = len x by A17,FINSEQ_1:def 3;
    assume x in dom o2;
    then x in (arity o2)-tuples_on the carrier of U2 by MARGREL1:22;
    then x in {s where s is Element of (the carrier of U2)*: len s = arity o2
    } by FINSEQ_2:def 4;
    then
A22: ex s be Element of (the carrier of U2)* st x=s & len s = arity o2;
A23: (h1 * h) = (id dom h) by A2,A3,FUNCT_1:39
      .= id the carrier of U1 by FUNCT_2:def 1;
    then
A24: h1*x = (id the carrier of U1)*p by A20,Th4
      .=p by Th3;
    reconsider p as Element of (the carrier of U1)* by FINSEQ_1:def 11;
    (signature U1).n = arity o1 & (signature U2).n = arity o2 by A6,A8,A9,A11
,A12,UNIALG_1:def 4;
    then
    p in {w where w is Element of (the carrier of U1)*: len w = arity o1}
    by A6,A22,A21;
    then p in (arity o1)-tuples_on the carrier of U1 by FINSEQ_2:def 4;
    then
A25: p in dom o1 by MARGREL1:22;
    then
A26: h1.(o2.x) = h1.(h.(o1.p)) by A4,A6,A7,A9,A11,A12,A20;
A27: o1.p in the carrier of U1 by A25,PARTFUN1:4;
    then o1.p in dom h by FUNCT_2:def 1;
    hence h1.(o2.x) = (id the carrier of U1).(o1.p) by A23,A26,FUNCT_1:13
      .= o1.(h1*x) by A24,A27,FUNCT_1:17;
  end;
  hence thesis by A5;
end;

theorem Th10:
  for h be Function of U1,U2, h1 be Function of U2,U1 st h
  is_isomorphism & h1 = h" holds h1 is_isomorphism
proof
  let h be Function of U1,U2,h1 be Function of U2,U1;
  assume that
A1: h is_isomorphism and
A2: h1=h";
A3: h1 is_homomorphism by A1,A2,Th9;
A4: h is one-to-one by A1,Th7;
  then rng h1 = dom h by A2,FUNCT_1:33
    .= the carrier of U1 by FUNCT_2:def 1;
  hence thesis by A2,A4,A3,Th7;
end;

theorem Th11:
  for h be Function of U1,U2, h1 be Function of U2,U3 st h
is_isomorphism & h1 is_isomorphism holds h1 * h is_isomorphism
proof
  let h be Function of U1,U2, h1 be Function of U2,U3;
  assume that
A1: h is_isomorphism and
A2: h1 is_isomorphism;
  dom h1 = the carrier of U2 & rng h = the carrier of U2 by A1,Th8,
FUNCT_2:def 1;
  then
A3: rng (h1 * h) = rng h1 by RELAT_1:28
    .= the carrier of U3 by A2,Th8;
  h is_homomorphism & h1 is_homomorphism by A1,A2,Th7;
  then
A4: h1 * h is_homomorphism by Th6;
  h is one-to-one & h1 is one-to-one by A1,A2,Th7;
  hence thesis by A3,A4,Th7;
end;

theorem
  U1,U1 are_isomorphic
proof
  set i = id the carrier of U1;
  i is_homomorphism & rng i = the carrier of U1 by Th5;
  then i is_isomorphism by Th7;
  hence thesis;
end;

theorem
  U1,U2 are_isomorphic implies U2,U1 are_isomorphic
proof
  assume U1,U2 are_isomorphic;
  then consider f such that
A1: f is_isomorphism;
  f is_monomorphism by A1;
  then
A2: f is one-to-one;
  then
A3: rng(f") = dom f by FUNCT_1:33
    .= the carrier of U1 by FUNCT_2:def 1;
A4: f is_epimorphism by A1;
  dom(f") = rng f by A2,FUNCT_1:33
    .= the carrier of U2 by A4;
  then reconsider g = f" as Function of U2,U1 by A3,FUNCT_2:def 1,RELSET_1:4;
  take g;
  thus thesis by A1,Th10;
end;

theorem
  U1,U2 are_isomorphic & U2,U3 are_isomorphic implies U1,U3 are_isomorphic
proof
  assume U1,U2 are_isomorphic;
  then consider f such that
A1: f is_isomorphism;
  assume U2,U3 are_isomorphic;
  then consider g be Function of U2,U3 such that
A2: g is_isomorphism;
  g * f is_isomorphism by A1,A2,Th11;
  hence thesis;
end;

definition
  let U1,U2,f;
  assume
A1: f is_homomorphism;
  func Image f -> strict SubAlgebra of U2 means
  :Def6:
  the carrier of it = f .: (the carrier of U1);
  existence
  proof
A2: dom f = the carrier of U1 by FUNCT_2:def 1;
    then reconsider A = f .: (the carrier of U1) as non empty Subset of U2;
    take B = UniAlgSetClosed(A);
    A is opers_closed
    proof
      let o2 be operation of U2;
      consider n being Nat such that
A3:   n in dom the charact of(U2) and
A4:   (the charact of U2).n = o2 by FINSEQ_2:10;
      let s be FinSequence of A;
      assume
A5:   len s = arity o2;
      defpred P[object,object] means f.$2 = s.$1;
A6:   for x being object st x in dom s
       ex y being object st y in the carrier of U1 & P[x,y]
      proof
        let x be object;
        assume
A7:     x in dom s;
        then reconsider x0 = x as Element of NAT;
        s.x0 in A by A7,FINSEQ_2:11;
        then consider y being object such that
A8:     y in dom f and
        y in the carrier of U1 and
A9:     f.y = s.x0 by FUNCT_1:def 6;
        take y;
        thus thesis by A8,A9;
      end;
      consider s1 be Function such that
A10:  dom s1 = dom s & rng s1 c= the carrier of U1 &
      for x being object st x in
      dom s holds P[x,s1.x] from FUNCT_1:sch 6(A6);
      dom s1 = Seg len s by A10,FINSEQ_1:def 3;
      then reconsider s1 as FinSequence by FINSEQ_1:def 2;
      reconsider s1 as FinSequence of U1 by A10,FINSEQ_1:def 4;
      reconsider s1 as Element of (the carrier of U1)* by FINSEQ_1:def 11;
A11:  len s1 = len s by A10,FINSEQ_3:29;
A12:  dom (signature U2) = Seg len (signature U2) by FINSEQ_1:def 3;
A13:  U1,U2 are_similar by A1;
      then
A14:  signature U1 = signature U2;
A15:  dom (signature U1) = dom (signature U2) by A13;
A16:  len (signature U2) = len the charact of(U2) & dom the charact of(U2)
      = Seg len the charact of(U2) by FINSEQ_1:def 3,UNIALG_1:def 4;
      then
A17:  (signature U2).n = arity o2 by A3,A4,A12,UNIALG_1:def 4;
A18:  len (f*s1) = len s1 by FINSEQ_3:120;
A19:  dom (f*s1) = Seg len (f*s1) & dom s = Seg len s1 by A10,FINSEQ_1:def 3;
      now
        let m be Nat;
        assume
A20:    m in dom s;
        then f.(s1.m) = s.m by A10;
        hence (f*s1).m = s.m by A18,A19,A20,FINSEQ_3:120;
      end;
      then
A21:  s = f*s1 by A11,A18,FINSEQ_2:9;
A22:  dom (signature U1) = Seg len (signature U1) by FINSEQ_1:def 3;
A23:  len (signature U1) = len the charact of(U1) & dom the charact of(U1)
      = Seg len the charact of(U1) by FINSEQ_1:def 3,UNIALG_1:def 4;
      then reconsider o1 = (the charact of U1).n as operation of U1 by A3,A16
,A22,A15,A12,FUNCT_1:def 3;
      (signature U1).n = arity o1 by A3,A16,A15,A12,UNIALG_1:def 4;
      then
      s1 in {w where w is Element of (the carrier of U1)* : len w = arity
      o1 } by A14,A5,A17,A11;
      then s1 in (arity o1)-tuples_on the carrier of U1 by FINSEQ_2:def 4;
      then
A24:  s1 in dom o1 by MARGREL1:22;
      then
A25:  o1.s1 in rng o1 by FUNCT_1:def 3;
      f.(o1.s1) = o2.(f*s1) by A1,A3,A4,A23,A16,A22,A15,A12,A24;
      hence thesis by A2,A21,A25,FUNCT_1:def 6;
    end;
    then B = UAStr (# A,Opers(U2,A) #) by UNIALG_2:def 8;
    hence thesis;
  end;
  uniqueness
  proof
    let A,B be strict SubAlgebra of U2;
    reconsider A1 = the carrier of A as non empty Subset of U2
    by UNIALG_2:def 7;
    the charact of(A) = Opers(U2,A1) by UNIALG_2:def 7;
    hence thesis by UNIALG_2:def 7;
  end;
end;

theorem
  for h be Function of U1,U2 st h is_homomorphism holds rng h =
  the carrier of Image h
proof
  let h be Function of U1,U2;
  dom h = the carrier of U1 by FUNCT_2:def 1;
  then
A1: rng h = h.:(the carrier of U1) by RELAT_1:113;
  assume h is_homomorphism;
  hence thesis by A1,Def6;
end;

theorem
  for U2 being strict Universal_Algebra, f be Function of U1,U2 st f
  is_homomorphism holds f is_epimorphism iff Image f = U2
proof
  let U2 be strict Universal_Algebra;
  let f be Function of U1,U2;
  assume
A1: f is_homomorphism;
  thus f is_epimorphism implies Image f = U2
  proof
    reconsider B = the carrier of Image f as non empty Subset of U2 by
UNIALG_2:def 7;
    assume f is_epimorphism;
    then
A2: the carrier of U2 = rng f
      .= f.:(dom f) by RELAT_1:113
      .= f.:(the carrier of U1) by FUNCT_2:def 1
      .= the carrier of Image f by A1,Def6;
    the charact of(Image f) = Opers(U2,B) by UNIALG_2:def 7;
    hence thesis by A2,Th1;
  end;
  assume Image f = U2;
  then the carrier of U2 = f.:(the carrier of U1) by A1,Def6
    .= f.:(dom f) by FUNCT_2:def 1
    .= rng f by RELAT_1:113;
  hence thesis by A1;
end;

begin :: Quotient Universal Algebra

definition
  let U1 be 1-sorted;
  mode Relation of U1 is Relation of the carrier of U1;
  mode Equivalence_Relation of U1 is Equivalence_Relation of the carrier of U1;
end;

definition
  let U1;
  mode Congruence of U1 -> Equivalence_Relation of U1 means
    :Def7:
    for n,o1
    st n in dom the charact of(U1) & o1 = (the charact of U1).n for x,y be
FinSequence of U1 st x in dom o1 & y in dom o1 & [x,y] in ExtendRel(it) holds [
    o1.x,o1.y] in it;
  existence
  proof
    reconsider P = id the carrier of U1 as Equivalence_Relation of U1;
    take P;
    let n,o1;
    assume that
    n in dom the charact of(U1) and
    o1 = (the charact of U1).n;
    let x,y be FinSequence of U1;
    assume that
A1: x in dom o1 and
    y in dom o1 and
A2: [x,y] in ExtendRel(P);
    [x,y] in id ((the carrier of U1)*) by A2,FINSEQ_3:121;
    then
A3: x = y by RELAT_1:def 10;
    o1.x in rng o1 by A1,FUNCT_1:def 3;
    hence thesis by A3,RELAT_1:def 10;
  end;
end;

reserve E for Congruence of U1;

definition
  let U1 be Universal_Algebra, E be Congruence of U1, o be operation of U1;
  func QuotOp(o,E) -> homogeneous quasi_total non empty PartFunc of (Class E)*
  ,(Class E) means
  :Def8:
  dom it = (arity o)-tuples_on (Class E) & for y be
FinSequence of (Class E) st y in dom it for x be FinSequence of the carrier of
  U1 st x is_representatives_FS y holds it.y = Class(E,o.x);
  existence
  proof
    defpred P[object,object] means
   for y be FinSequence of (Class E) st y = $1 holds
for x be FinSequence of the carrier of U1 st x is_representatives_FS y holds $2
    = Class(E,o.x);
    set X = (arity o)-tuples_on (Class E);
A1: for e be object st e in X ex u be object st u in Class(E) & P[e,u]
    proof
      let e be object;
A2:   dom o = (arity o)-tuples_on the carrier of U1 by MARGREL1:22
        .={q where q is Element of (the carrier of U1)*: len q = arity o} by
FINSEQ_2:def 4;
      assume e in X;
      then e in {s where s is Element of (Class E)*: len s = arity o} by
FINSEQ_2:def 4;
      then consider s be Element of (Class E)* such that
A3:   s = e and
A4:   len s = arity o;
      consider x be FinSequence of the carrier of U1 such that
A5:   x is_representatives_FS s by FINSEQ_3:122;
      take y = Class(E,o.x);
A6:   len x = arity o by A4,A5,FINSEQ_3:def 4;
      x is Element of (the carrier of U1)* by FINSEQ_1:def 11;
      then
A7:   x in dom o by A2,A6;
      then
A8:   o.x in rng o by FUNCT_1:def 3;
      hence y in Class E by EQREL_1:def 3;
      let a be FinSequence of (Class E);
      assume
A9:   a = e;
      let b be FinSequence of the carrier of U1;
      assume
A10:  b is_representatives_FS a;
      then
A11:  len b = arity o by A3,A4,A9,FINSEQ_3:def 4;
      for m st m in dom x holds [x.m,b.m] in E
      proof
        let m;
        assume
A12:    m in dom x;
        then
A13:    Class(E,x.m) = s.m & x.m in rng x by A5,FINSEQ_3:def 4,FUNCT_1:def 3;
        dom x = Seg arity o by A6,FINSEQ_1:def 3
          .= dom b by A11,FINSEQ_1:def 3;
        then Class(E,b.m) = s.m by A3,A9,A10,A12,FINSEQ_3:def 4;
        hence thesis by A13,EQREL_1:35;
      end;
      then
A14:  [x,b] in ExtendRel(E) by A6,A11,FINSEQ_3:def 3;
      b is Element of (the carrier of U1)* by FINSEQ_1:def 11;
      then
      (ex n being Nat st n in dom the charact of(U1) & (the charact of U1
      ).n = o ) & b in dom o by A2,A11,FINSEQ_2:10;
      then [o.x,o.b] in E by A7,A14,Def7;
      hence thesis by A8,EQREL_1:35;
    end;
    consider F being Function such that
A15: dom F = X & rng F c= Class(E) & for e be object st e in X holds P[e,
    F.e] from FUNCT_1:sch 6(A1);
    X in the set of all m-tuples_on Class E;
    then X c= union the set of all m-tuples_on Class E by ZFMISC_1:74;
    then X c= (Class E)* by FINSEQ_2:108;
    then reconsider F as PartFunc of (Class E)*,Class E by A15,RELSET_1:4;
A16: dom F = {t where t is Element of (Class E)*: len t = arity o} by A15,
FINSEQ_2:def 4;
A17: for x,y be FinSequence of Class E st len x = len y & x in dom F holds
    y in dom F
    proof
      let x,y be FinSequence of Class E;
      assume that
A18:  len x = len y and
A19:  x in dom F;
A20:  y is Element of (Class E)* by FINSEQ_1:def 11;
      ex t1 be Element of (Class E)* st x = t1 & len t1 = arity o by A16,A19;
      hence thesis by A16,A18,A20;
    end;
A21:  ex x being FinSequence st x in dom F
     proof
      set a = the Element of X;
      a in X;
      hence ex x being FinSequence st x in dom F by A15;
     end;
    dom F is with_common_domain
    proof
      let x,y be FinSequence;
      assume x in dom F & y in dom F;
      then (ex t1 be Element of (Class E)* st x = t1 & len t1 = arity o )& ex
      t2 be Element of (Class E)* st y = t2 & len t2 = arity o by A16;
      hence thesis;
    end;
    then reconsider
    F as homogeneous quasi_total non empty PartFunc of (Class E)*,
    Class E by A17,A21,MARGREL1:def 21,def 22;
    take F;
    thus dom F = (arity o)-tuples_on (Class E) by A15;
    let y be FinSequence of (Class E);
    assume
A22: y in dom F;
    let x be FinSequence of the carrier of U1;
    assume x is_representatives_FS y;
    hence thesis by A15,A22;
  end;
  uniqueness
  proof
    let F,G be homogeneous quasi_total non empty PartFunc of (Class(E))*,Class
    (E);
    assume that
A23: dom F = (arity o)-tuples_on (Class E) and
A24: for y be FinSequence of Class(E) st y in dom F for x be
FinSequence of the carrier of U1 st x is_representatives_FS y holds F.y = Class
    (E,o.x) and
A25: dom G = (arity(o))-tuples_on (Class(E)) and
A26: for y be FinSequence of Class(E) st y in dom G for x be
FinSequence of the carrier of U1 st x is_representatives_FS y holds G.y = Class
    (E,o.x);
    for a be object st a in dom F holds F.a = G.a
    proof
      let a be object;
      assume
A27:  a in dom F;
      then reconsider b = a as FinSequence of Class(E) by FINSEQ_1:def 11;
      consider x be FinSequence of the carrier of U1 such that
A28:  x is_representatives_FS b by FINSEQ_3:122;
      F.b = Class(E,o.x) by A24,A27,A28;
      hence thesis by A23,A25,A26,A27,A28;
    end;
    hence thesis by A23,A25;
  end;
end;

definition
  let U1,E;
  func QuotOpSeq(U1,E) -> PFuncFinSequence of Class E means
  :Def9:
  len it =
len the charact of(U1) & for n st n in dom it for o1 st (the charact of(U1)).n
  = o1 holds it.n = QuotOp(o1,E);
  existence
  proof
    defpred P[set,set] means for o be Element of Operations(U1) st o = (the
    charact of(U1)).$1 holds $2 = QuotOp(o,E);
A1: for n be Nat st n in Seg len the charact of(U1) ex x be Element of
    PFuncs((Class E)*,(Class E)) st P[n,x]
    proof
      let n be Nat;
      assume n in Seg len the charact of(U1);
      then n in dom the charact of(U1) by FINSEQ_1:def 3;
      then reconsider o = (the charact of(U1)).n as operation of U1 by
FUNCT_1:def 3;
      reconsider x = QuotOp(o,E) as Element of PFuncs((Class E)*,(Class E)) by
PARTFUN1:45;
      take x;
      thus thesis;
    end;
    consider p be FinSequence of PFuncs((Class E)*,(Class E)) such that
A2: dom p = Seg len the charact of(U1) & for n be Nat st n in Seg len
    the charact of(U1) holds P[n,p.n] from FINSEQ_1:sch 5(A1);
    reconsider p as PFuncFinSequence of Class E;
    take p;
    thus len p = len the charact of(U1) by A2,FINSEQ_1:def 3;
    let n;
    assume n in dom p;
    hence thesis by A2;
  end;
  uniqueness
  proof
    let F,G be PFuncFinSequence of Class E;
    assume that
A3: len F = len the charact of(U1) and
A4: for n st n in dom F for o1 st (the charact of(U1)).n = o1 holds F.
    n = QuotOp(o1,E) and
A5: len G = len the charact of(U1) and
A6: for n st n in dom G for o1 st (the charact of(U1)).n = o1 holds G.
    n = QuotOp(o1,E);
    now
      let n be Nat;
      assume
A7:   n in dom F;
      dom F = Seg len the charact of(U1) by A3,FINSEQ_1:def 3;
      then n in dom the charact of(U1) by A7,FINSEQ_1:def 3;
      then reconsider o1 = (the charact of U1).n as operation of U1 by
FUNCT_1:def 3;
A8:   dom F = dom the charact of(U1) & dom G = dom the charact of(U1) by A3,A5,
FINSEQ_3:29;
      F.n = QuotOp(o1,E) by A4,A7;
      hence F.n = G.n by A6,A8,A7;
    end;
    hence thesis by A3,A5,FINSEQ_2:9;
  end;
end;

definition
  let U1,E;
  func QuotUnivAlg(U1,E) -> strict Universal_Algebra equals
  UAStr (# Class(E),QuotOpSeq(U1,E) #);
  coherence
proof
  set UU = UAStr (# Class(E),QuotOpSeq(U1,E) #);
  for n be Nat,h be PartFunc of (Class E)*,(Class E) st n in dom QuotOpSeq
  (U1,E) & h = QuotOpSeq(U1,E).n holds h is homogeneous
  proof
    let n be Nat,h be PartFunc of (Class E)*,(Class E);
    assume that
A1: n in dom QuotOpSeq(U1,E) and
A2: h = QuotOpSeq(U1,E).n;
    n in Seg len QuotOpSeq(U1,E) by A1,FINSEQ_1:def 3;
    then n in Seg len the charact of U1 by Def9;
    then n in dom the charact of U1 by FINSEQ_1:def 3;
    then reconsider o = (the charact of U1).n as operation of U1 by
FUNCT_1:def 3;
    QuotOpSeq(U1,E).n = QuotOp(o,E) by A1,Def9;
    hence thesis by A2;
  end;
  then
A3: the charact of UU is homogeneous;
  for n be Nat ,h be PartFunc of (Class E)*,(Class E) st n in dom
  QuotOpSeq(U1,E) & h = QuotOpSeq(U1,E).n holds h is quasi_total
  proof
    let n be Nat,h be PartFunc of (Class E)*,(Class E);
    assume that
A4: n in dom QuotOpSeq(U1,E) and
A5: h = QuotOpSeq(U1,E).n;
    n in Seg len QuotOpSeq(U1,E) by A4,FINSEQ_1:def 3;
    then n in Seg len the charact of(U1) by Def9;
    then n in dom the charact of U1 by FINSEQ_1:def 3;
    then reconsider o = (the charact of U1).n as operation of U1 by
FUNCT_1:def 3;
    QuotOpSeq(U1,E).n = QuotOp(o,E) by A4,Def9;
    hence thesis by A5;
  end;
  then
A6: the charact of UU is quasi_total;
  for n be object st n in dom QuotOpSeq(U1,E)
  holds QuotOpSeq(U1,E).n is non empty
  proof
    let n be object;
    assume
A7: n in dom QuotOpSeq(U1,E);
    then n in Seg len QuotOpSeq(U1,E) by FINSEQ_1:def 3;
    then n in Seg len the charact of U1 by Def9;
    then
A8: n in dom the charact of U1 by FINSEQ_1:def 3;
    reconsider n as Element of NAT by A7;
    reconsider o = (the charact of U1).n as operation of U1
    by A8,FUNCT_1:def 3;
    QuotOpSeq(U1,E).n = QuotOp(o,E) by A7,Def9;
    hence thesis;
  end;
  then
A9: the charact of UU is non-empty by FUNCT_1:def 9;
  the charact of UU <> {}
  proof
    assume
A10: the charact of UU = {};
    len the charact of UU = len the charact of U1 by Def9;
    hence contradiction by A10;
  end;
  hence thesis by A3,A6,A9,UNIALG_1:def 1,def 2,def 3;
end;
end;

definition
  let U1,E;
  func Nat_Hom(U1,E) -> Function of U1,QuotUnivAlg(U1,E) means
  :Def11:
  for u be Element of U1 holds it.u = Class(E,u);
  existence
  proof
    defpred P[Element of U1,set] means $2 = Class(E,$1);
A1: for x being Element of U1 ex y being Element of QuotUnivAlg(U1,E) st P
    [x,y]
    proof
      let x be Element of U1;
      reconsider y = Class(E,x) as Element of QuotUnivAlg(U1,E) by
EQREL_1:def 3;
      take y;
      thus thesis;
    end;
    consider f being Function of U1,QuotUnivAlg(U1,E) such that
A2: for x being Element of U1 holds P[x,f.x] from FUNCT_2:sch 3(A1);
    take f;
    thus thesis by A2;
  end;
  uniqueness
  proof
    let f,g be Function of U1,QuotUnivAlg(U1,E);
    assume that
A3: for u be Element of U1 holds f.u = Class(E,u) and
A4: for u be Element of U1 holds g.u = Class(E,u);
    now
      let u be Element of U1;
      f.u = Class(E,u) by A3;
      hence f.u = g.u by A4;
    end;
    hence thesis;
  end;
end;

theorem Th17:
  for U1,E holds Nat_Hom(U1,E) is_homomorphism
proof
  let U1,E;
  set f = Nat_Hom(U1,E), u1 = the carrier of U1, qu = the carrier of
  QuotUnivAlg(U1,E);
A1: len (signature U1) = len the charact of(U1) by UNIALG_1:def 4;
A2: dom (signature U1) = Seg len(signature U1) by FINSEQ_1:def 3;
A3: len QuotOpSeq(U1,E) = len the charact of(U1) by Def9;
A4: len (signature QuotUnivAlg(U1,E)) = len the charact of(QuotUnivAlg(U1,E)
  ) by UNIALG_1:def 4;
  now
    let n be Nat;
    assume
A5: n in dom (signature U1);
    then n in dom the charact of(U1) by A1,A2,FINSEQ_1:def 3;
    then reconsider o1 = (the charact of U1).n as operation of U1 by
FUNCT_1:def 3;
    n in dom QuotOpSeq(U1,E) by A3,A1,A2,A5,FINSEQ_1:def 3;
    then
A6: QuotOpSeq(U1,E).n = QuotOp(o1,E) by Def9;
    reconsider cl = QuotOp(o1,E) as homogeneous quasi_total non empty PartFunc
    of qu*,qu;
    consider b be object such that
A7: b in dom cl by XBOOLE_0:def 1;
    reconsider b as Element of qu* by A7;
    dom QuotOp(o1,E) = (arity o1)-tuples_on Class(E) by Def8;
    then b in {w where w is Element of (Class(E))*: len w = arity o1} by A7,
FINSEQ_2:def 4;
    then ex w be Element of (Class(E))* st w = b & len w = arity o1;
    then
A8: arity cl = arity o1 by A7,MARGREL1:def 25;
    n in dom (signature QuotUnivAlg(U1,E)) & (signature U1).n = arity o1
    by A3,A4,A2,A5,FINSEQ_1:def 3,UNIALG_1:def 4;
    hence (signature U1).n = (signature QuotUnivAlg(U1,E)).n by A6,A8,
UNIALG_1:def 4;
  end;
  hence signature U1 = signature QuotUnivAlg(U1,E) by A3,A4,A1,FINSEQ_2:9;
  let n;
  assume n in dom the charact of(U1);
  then n in Seg len the charact of(U1) by FINSEQ_1:def 3;
  then
A9: n in dom QuotOpSeq(U1,E) by A3,FINSEQ_1:def 3;
  let o1 be operation of U1, o2 be operation of QuotUnivAlg(U1,E);
  assume
  (the charact of U1).n = o1 & o2 = (the charact of QuotUnivAlg(U1,E) ).n;
  then
A10: o2 = QuotOp(o1,E) by A9,Def9;
  let x be FinSequence of U1;
  reconsider x1 = x as Element of u1* by FINSEQ_1:def 11;
  reconsider fx = f*x as FinSequence of Class(E);
  reconsider fx as Element of (Class(E))* by FINSEQ_1:def 11;
A11: len (f*x) = len x by FINSEQ_3:120;
  now
    let m;
    assume
A12: m in dom x;
    then
A13: m in dom(f*x) by FINSEQ_3:120;
    x.m in rng x by A12,FUNCT_1:def 3;
    then reconsider xm = x.m as Element of u1;
    thus Class(E,x.m) = f.xm by Def11
      .= fx.m by A13,FINSEQ_3:120;
  end;
  then
A14: x is_representatives_FS fx by A11,FINSEQ_3:def 4;
  assume
A15: x in dom o1;
  then o1.x in rng o1 by FUNCT_1:def 3;
  then reconsider ox = o1.x as Element of u1;
  dom o1 = (arity o1)-tuples_on u1 by MARGREL1:22
    .= {p where p is Element of u1* : len p = arity o1} by FINSEQ_2:def 4;
  then
A16: ex p be Element of u1* st p = x1 & len p = arity o1 by A15;
A17: f.(o1.x) = Class(E,ox) by Def11
    .= Class(E,o1.x);
  dom QuotOp(o1,E) = (arity o1)-tuples_on Class(E) by Def8
    .= {q where q is Element of (Class(E))*: len q = arity o1} by
FINSEQ_2:def 4;
  then fx in dom QuotOp(o1,E) by A16,A11;
  hence thesis by A17,A10,A14,Def8;
end;

theorem
  for U1,E holds Nat_Hom(U1,E) is_epimorphism
proof
  let U1,E;
  set f = Nat_Hom(U1,E), qa = QuotUnivAlg(U1,E), cqa = the carrier of qa, u1 =
  the carrier of U1;
  thus f is_homomorphism by Th17;
  thus rng f c= cqa;
  let x be object;
  assume
A1: x in cqa;
  then reconsider x1 = x as Subset of u1;
  consider y being object such that
A2: y in u1 and
A3: x1 = Class(E,y) by A1,EQREL_1:def 3;
  reconsider y as Element of u1 by A2;
  dom f = u1 by FUNCT_2:def 1;
  then f.y in rng f by FUNCT_1:def 3;
  hence thesis by A3,Def11;
end;

definition
  let U1,U2;
  let f be Function of U1,U2;
  assume
A1: f is_homomorphism;
  func Cng(f) -> Congruence of U1 means
  :Def12:
  for a,b be Element of U1 holds [a,b] in it iff f.a = f.b;
  existence
  proof
    defpred P[set,set] means f.$1 = f.$2;
    set u1 = the carrier of U1;
    consider R being Relation of u1,u1 such that
A2: for x,y being Element of u1 holds [x,y] in R iff P[x,y] from
    RELSET_1:sch 2;
    R is_reflexive_in u1
    proof
      let x be object;
      assume x in u1;
      then reconsider x1 = x as Element of u1;
      f.x1 =f.x1;
      hence thesis by A2;
    end;
    then
A3: dom R = u1 & field R = u1 by ORDERS_1:13;
A4: R is_transitive_in u1
    proof
      let x,y,z be object;
      assume that
A5:   x in u1 & y in u1 & z in u1 and
A6:   [x,y] in R & [y,z] in R;
      reconsider x1 = x, y1=y, z1 = z as Element of u1 by A5;
      f.x1 = f.y1 & f.y1 = f.z1 by A2,A6;
      hence thesis by A2;
    end;
    R is_symmetric_in u1
    proof
      let x,y be object;
      assume that
A7:   x in u1 & y in u1 and
A8:   [x,y] in R;
      reconsider x1 = x, y1=y as Element of u1 by A7;
      f.x1 = f.y1 by A2,A8;
      hence thesis by A2;
    end;
    then reconsider R as Equivalence_Relation of U1 by A3,A4,PARTFUN1:def 2
,RELAT_2:def 11,def 16;
    now
      U1,U2 are_similar by A1;
      then
A9:   signature U1 = signature U2;
      let n be Nat,o be operation of U1;
      assume that
A10:  n in dom the charact of(U1) and
A11:  o = (the charact of U1).n;
      len (signature U1) = len the charact of(U1) & len (signature U2) =
      len the charact of(U2) by UNIALG_1:def 4;
      then dom the charact of(U2) = dom the charact of(U1) by A9,FINSEQ_3:29;
      then reconsider o2 = (the charact of U2).n as operation of U2 by A10,
FUNCT_1:def 3;
      let x,y be FinSequence of U1;
      assume that
A12:  x in dom o & y in dom o and
A13:  [x,y] in ExtendRel(R);
      o.x in rng o & o.y in rng o by A12,FUNCT_1:def 3;
      then reconsider ox = o.x, oy = o.y as Element of u1;
A14:  len x = len y by A13,FINSEQ_3:def 3;
A15:  len (f*y) = len y by FINSEQ_3:120;
      then
A16:  dom (f*y) = Seg len x by A14,FINSEQ_1:def 3;
A17:  len (f*x) = len x by FINSEQ_3:120;
A18:  now
        let m be Nat;
        assume
A19:    m in dom (f*y);
        then m in dom y by A14,A16,FINSEQ_1:def 3;
        then
A20:    y.m in rng y by FUNCT_1:def 3;
A21:    m in dom x by A16,A19,FINSEQ_1:def 3;
        then x.m in rng x by FUNCT_1:def 3;
        then reconsider xm = x.m, ym = y.m as Element of u1 by A20;
        [x.m,y.m] in R by A13,A21,FINSEQ_3:def 3;
        then
A22:    f.xm = f.ym by A2
          .= (f*y).m by A19,FINSEQ_3:120;
        m in dom (f*x) by A17,A16,A19,FINSEQ_1:def 3;
        hence (f*y).m = (f*x).m by A22,FINSEQ_3:120;
      end;
      f.(o.x) = o2.(f*x) & f.(o.y) = o2.(f*y) by A1,A10,A11,A12;
      then f.(ox) = f.(oy) by A14,A17,A15,A18,FINSEQ_2:9;
      hence [o.x,o.y] in R by A2;
    end;
    then reconsider R as Congruence of U1 by Def7;
    take R;
    let a,b be Element of u1;
    thus [a,b] in R implies f.a = f.b by A2;
    assume f.a = f.b;
    hence thesis by A2;
  end;
  uniqueness
  proof
    set u1 = the carrier of U1;
    let X,Y be Congruence of U1;
    assume that
A23: for a,b be Element of U1 holds [a,b] in X iff f.a = f.b and
A24: for a,b be Element of U1 holds [a,b] in Y iff f.a = f.b;
    for x,y be object holds [x,y] in X iff [x,y] in Y
    proof
      let x,y be object;
      thus [x,y] in X implies [x,y] in Y
      proof
        assume
A25:    [x,y] in X;
        then reconsider x1 = x,y1 = y as Element of u1 by ZFMISC_1:87;
        f.x1 = f.y1 by A23,A25;
        hence thesis by A24;
      end;
      assume
A26:  [x,y] in Y;
      then reconsider x1 = x,y1 = y as Element of u1 by ZFMISC_1:87;
      f.x1 = f.y1 by A24,A26;
      hence thesis by A23;
    end;
    hence thesis by RELAT_1:def 2;
  end;
end;

definition
  let U1,U2 be Universal_Algebra, f be Function of U1,U2;
  assume
A1: f is_homomorphism;
  func HomQuot(f) -> Function of QuotUnivAlg(U1,Cng(f)),U2 means
  :Def13:
  for a be Element of U1 holds it.(Class(Cng f,a)) = f.a;
  existence
  proof
    set qa = QuotUnivAlg(U1,Cng(f)), cqa = the carrier of qa, u1 = the carrier
    of U1, u2 = the carrier of U2;
    defpred P[object,object] means
   for a be Element of u1 st $1 = Class(Cng f,a)
    holds $2 = f.a;
A2: for x being object st x in cqa ex y being object st y in u2 & P[x,y]
    proof
      let x be object;
      assume
A3:   x in cqa;
      then reconsider x1 = x as Subset of u1;
      consider a be object such that
A4:   a in u1 and
A5:   x1 = Class(Cng f,a) by A3,EQREL_1:def 3;
      reconsider a as Element of u1 by A4;
      take y = f.a;
      thus y in u2;
      let b be Element of u1;
      assume x = Class(Cng f,b);
      then b in Class(Cng f,a) by A5,EQREL_1:23;
      then [b,a] in Cng(f) by EQREL_1:19;
      hence thesis by A1,Def12;
    end;
    consider F being Function such that
A6: dom F = cqa & rng F c= u2 & for x being object st x in cqa holds P[x,F.x]
     from
    FUNCT_1:sch 6(A2);
    reconsider F as Function of qa,U2 by A6,FUNCT_2:def 1,RELSET_1:4;
    take F;
    let a be Element of u1;
    Class(Cng f,a) in Class(Cng f) by EQREL_1:def 3;
    hence thesis by A6;
  end;
  uniqueness
  proof
    set qa = QuotUnivAlg(U1,Cng(f)), cqa = the carrier of qa, u1 = the carrier
    of U1;
    let F,G be Function of qa,U2;
    assume that
A7: for a be Element of u1 holds F.(Class(Cng f,a)) = f.a and
A8: for a be Element of u1 holds G.(Class(Cng f,a)) = f.a;
    let x be Element of cqa;
    x in cqa;
    then reconsider x1 = x as Subset of u1;
    consider a be object such that
A9: a in u1 & x1 = Class(Cng f,a) by EQREL_1:def 3;
    thus F.x = f.a by A7,A9
      .= G.x by A8,A9;
  end;
end;

theorem Th19:
  f is_homomorphism implies HomQuot(f) is_homomorphism
& HomQuot(f) is_monomorphism
proof
  set qa = QuotUnivAlg(U1,Cng(f)), cqa = the carrier of qa, u1 = the carrier
  of U1, F = HomQuot(f);
  assume
A1: f is_homomorphism;
  thus
A2: F is_homomorphism
  proof
    Nat_Hom(U1,Cng f) is_homomorphism by Th17;
    then U1,qa are_similar;
    then
A3: signature U1 = signature qa;
    U1,U2 are_similar by A1;
    then signature U2 = signature qa by A3;
    hence qa,U2 are_similar;
    let n;
    assume
A4: n in dom the charact of(qa);
A5: len (signature U1) = len the charact of(U1) & len (signature qa) =
    len the charact of(qa) by UNIALG_1:def 4;
A6: dom the charact of(qa) = Seg len (the charact of qa) & dom the
    charact of(U1 ) = Seg len (the charact of U1) by FINSEQ_1:def 3;
    then reconsider o1 = (the charact of U1).n as operation of U1 by A3,A4,A5,
FUNCT_1:def 3;
A7: dom o1 = (arity o1)-tuples_on u1 by MARGREL1:22
      .= {p where p is Element of u1* : len p = arity o1} by FINSEQ_2:def 4;
    let oq be operation of qa, o2 be operation of U2;
    assume that
A8: oq = (the charact of qa).n and
A9: o2 = (the charact of U2).n;
    let x be FinSequence of qa;
    assume
A10: x in dom oq;
    reconsider x1 = x as FinSequence of Class(Cng f);
    reconsider x1 as Element of (Class(Cng f))* by FINSEQ_1:def 11;
    consider y be FinSequence of U1 such that
A11: y is_representatives_FS x1 by FINSEQ_3:122;
    reconsider y as Element of u1* by FINSEQ_1:def 11;
A12: len x1 = len y by A11,FINSEQ_3:def 4;
    then
A13: len (F*x) = len y by FINSEQ_3:120;
A14: len y = len (f*y) by FINSEQ_3:120;
A15: now
      let m be Nat;
      assume
A16:  m in Seg len y;
      then
A17:  m in dom (F*x) by A13,FINSEQ_1:def 3;
A18:  m in dom(f*y) by A14,A16,FINSEQ_1:def 3;
A19:  m in dom y by A16,FINSEQ_1:def 3;
      then reconsider ym = y.m as Element of u1 by FINSEQ_2:11;
      x1.m = Class(Cng f,y.m) by A11,A19,FINSEQ_3:def 4;
      hence (F*x).m = F.(Class(Cng f,ym)) by A17,FINSEQ_3:120
        .= f.(y.m) by A1,Def13
        .= (f*y).m by A18,FINSEQ_3:120;
    end;
    dom(F*x) = Seg len y by A13,FINSEQ_1:def 3;
    then
A20: o2.(F*x) = o2.(f*y) by A13,A14,A15,FINSEQ_2:9;
A21: oq = QuotOp(o1,Cng f) by A4,A8,Def9;
    then dom oq = (arity o1)-tuples_on Class(Cng f) by Def8
      .= {w where w is Element of (Class(Cng f))*: len w = arity o1} by
FINSEQ_2:def 4;
    then ex w be Element of (Class(Cng f))* st w = x1 & len w = arity o1 by A10
;
    then
A22: y in dom o1 by A12,A7;
    then o1.y in rng o1 by FUNCT_1:def 3;
    then reconsider o1y = o1.y as Element of u1;
    F.(oq.x) = F.(Class(Cng f,o1y)) by A10,A11,A21,Def8
      .= f.(o1.y) by A1,Def13;
    hence thesis by A1,A3,A4,A9,A6,A5,A22,A20;
  end;
A23: dom F = cqa by FUNCT_2:def 1;
  F is one-to-one
  proof
    let x,y be object;
    assume that
A24: x in dom F and
A25: y in dom F and
A26: F.x = F.y;
    reconsider x1 = x, y1 = y as Subset of u1 by A23,A24,A25;
    consider a be object such that
A27: a in u1 and
A28: x1 = Class(Cng f,a) by A24,EQREL_1:def 3;
    reconsider a as Element of u1 by A27;
    consider b be object such that
A29: b in u1 and
A30: y1 = Class(Cng f,b) by A25,EQREL_1:def 3;
    reconsider b as Element of u1 by A29;
A31: F.y1 = f.b by A1,A30,Def13;
    F.x1 = f.a by A1,A28,Def13;
    then [a,b] in Cng(f) by A1,A26,A31,Def12;
    hence thesis by A28,A30,EQREL_1:35;
  end;
  hence thesis by A2;
end;

::$N First isomorphism theorem for universal algebras
theorem Th20:
  f is_epimorphism implies HomQuot(f) is_isomorphism
proof
  set qa = QuotUnivAlg(U1,Cng(f)), u1 = the carrier of U1, u2 = the carrier of
  U2, F = HomQuot(f);
  assume
A1: f is_epimorphism;
  then
A2: f is_homomorphism;
  then F is_monomorphism by Th19;
  then
A3: F is one-to-one;
A4: rng f = u2 by A1;
A5: rng F = u2
  proof
    thus rng F c= u2;
    let x be object;
    assume x in u2;
    then consider y being object such that
A6: y in dom f and
A7: f.y = x by A4,FUNCT_1:def 3;
    reconsider y as Element of u1 by A6;
    set u = Class(Cng f,y);
A8: dom F = the carrier of qa & u in Class(Cng f) by EQREL_1:def 3
,FUNCT_2:def 1;
    F.u = x by A2,A7,Def13;
    hence thesis by A8,FUNCT_1:def 3;
  end;
  F is_homomorphism by A2,Th19;
  hence thesis by A3,A5,Th7;
end;

theorem
  f is_epimorphism implies QuotUnivAlg(U1,Cng(f)),U2 are_isomorphic
proof
  assume
A1: f is_epimorphism;
  take HomQuot(f);
  thus thesis by A1,Th20;
end;