Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 42,089 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 |
:: Homomorphisms of algebras. Quotient Universal Algebra
:: by Ma{\l}gorzata Korolkiewicz
environ
vocabularies UNIALG_1, SUBSET_1, NUMBERS, UNIALG_2, XBOOLE_0, FINSEQ_1,
FUNCT_1, RELAT_1, NAT_1, TARSKI, STRUCT_0, PARTFUN1, MSUALG_3, CQC_SIM1,
WELLORD1, FINSEQ_2, GROUP_6, EQREL_1, FUNCT_2, CARD_3, RELAT_2, ALG_1;
notations TARSKI, XBOOLE_0, SUBSET_1, ORDINAL1, NUMBERS, NAT_1, RELAT_1,
RELAT_2, FUNCT_1, RELSET_1, PARTFUN1, FINSEQ_1, EQREL_1, FINSEQ_2,
FUNCT_2, STRUCT_0, MARGREL1, UNIALG_1, FINSEQOP, FINSEQ_3, UNIALG_2;
constructors EQREL_1, FINSEQOP, UNIALG_2, RELSET_1, CARD_3, FINSEQ_3, CARD_1,
NAT_1, NUMBERS;
registrations RELAT_1, FUNCT_1, PARTFUN1, FUNCT_2, EQREL_1, FINSEQ_2,
STRUCT_0, UNIALG_1, UNIALG_2, ORDINAL1, FINSEQ_1, CARD_1, RELSET_1,
MARGREL1;
requirements BOOLE, SUBSET;
definitions UNIALG_2, RELAT_2, TARSKI, FUNCT_1, XBOOLE_0, FUNCT_2, MARGREL1;
equalities UNIALG_2, XBOOLE_0;
expansions UNIALG_2, FUNCT_1, FUNCT_2, MARGREL1;
theorems FINSEQ_1, FINSEQ_2, FUNCT_1, FUNCT_2, PARTFUN1, UNIALG_1, UNIALG_2,
RELAT_1, RELSET_1, EQREL_1, ZFMISC_1, FINSEQ_3, XBOOLE_0, RELAT_2,
ORDERS_1, MARGREL1;
schemes FINSEQ_1, RELSET_1, FUNCT_2, FUNCT_1;
begin
reserve U1,U2,U3 for Universal_Algebra,
n,m for Nat,
o1 for operation of U1,
o2 for operation of U2,
o3 for operation of U3,
x,y for set;
theorem Th1:
for B be non empty Subset of U1 st B = the carrier of U1 holds
Opers(U1,B) = the charact of(U1)
proof
let B be non empty Subset of U1;
A1: dom Opers(U1,B) = dom the charact of(U1) by UNIALG_2:def 6;
assume
A2: B = the carrier of U1;
now
let n be Nat;
assume
A3: n in dom the charact of(U1);
then reconsider o = (the charact of U1).n as operation of U1 by
FUNCT_1:def 3;
thus Opers(U1,B).n = o/.B by A1,A3,UNIALG_2:def 6
.= (the charact of U1).n by A2,UNIALG_2:4;
end;
hence thesis by A1;
end;
reserve a for FinSequence of U1,
f for Function of U1,U2;
theorem
f*(<*>the carrier of U1) = <*>the carrier of U2;
theorem Th3:
(id the carrier of U1)*a = a
proof
set f = id the carrier of U1;
A1: dom (f*a) = dom a by FINSEQ_3:120;
A2: now
let n be Nat;
assume
A3: n in dom(f*a);
then reconsider u = a.n as Element of U1 by A1,FINSEQ_2:11;
f.u = u;
hence (f*a).n = a.n by A3,FINSEQ_3:120;
end;
len (f*a) = len a by FINSEQ_3:120;
hence thesis by A2,FINSEQ_2:9;
end;
theorem Th4:
for h1 be Function of U1,U2, h2 be Function of U2,U3,a be
FinSequence of U1 holds h2*(h1*a) = (h2 * h1)*a
proof
let h1 be Function of U1,U2, h2 be Function of U2,U3,a be FinSequence of U1;
A1: dom a = Seg len a by FINSEQ_1:def 3;
A2: dom (h2*(h1*a)) = dom(h1*a) by FINSEQ_3:120;
dom (h1*a) = dom a by FINSEQ_3:120;
then
A3: dom (h2*(h1*a)) = Seg len a by A2,FINSEQ_1:def 3;
A4: len a = len((h2 * h1 qua Function of the carrier of U1, the carrier of
U3) *(a qua FinSequence of the carrier of U1)) by FINSEQ_3:120;
then
A5: dom ((h2 * h1)*a) = Seg len a by FINSEQ_1:def 3;
A6: now
let n be Nat;
assume
A7: n in dom(h2*(h1*a));
hence (h2*(h1*a)).n = h2.((h1*a).n) by FINSEQ_3:120
.= h2.(h1.(a.n)) by A2,A7,FINSEQ_3:120
.= (h2*h1).(a.n) by A1,A3,A7,FINSEQ_2:11,FUNCT_2:15
.= ((h2 * h1)*a).n by A3,A5,A7,FINSEQ_3:120;
end;
len(h2*(h1*a)) = len(h1*a) & len(h1*a) = len a by FINSEQ_3:120;
hence thesis by A4,A6,FINSEQ_2:9;
end;
definition
let U1,U2,f;
pred f is_homomorphism means
U1,U2 are_similar &
for n st n in dom the charact of(U1)
for o1,o2 st o1=(the charact of U1).n &
o2=(the charact of U2).n
for x be FinSequence of U1 st x in dom o1 holds f.(o1.x) = o2.(f*x);
end;
definition
let U1,U2,f;
pred f is_monomorphism means
f is_homomorphism & f is one-to-one;
pred f is_epimorphism means
f is_homomorphism & rng f = the carrier of U2;
end;
definition
let U1,U2,f;
pred f is_isomorphism means
f is_monomorphism & f is_epimorphism;
end;
definition
let U1,U2;
pred U1,U2 are_isomorphic means
ex f st f is_isomorphism;
end;
theorem Th5:
id the carrier of U1 is_homomorphism
proof
thus U1,U1 are_similar;
let n;
assume n in dom the charact of(U1);
let o1,o2 be operation of U1;
assume
A1: o1=(the charact of U1).n & o2=(the charact of U1).n;
set f = id the carrier of U1;
let x be FinSequence of U1;
assume x in dom o1;
then o1.x in rng o1 by FUNCT_1:def 3;
then reconsider u = o1.x as Element of U1;
f.u = u;
hence thesis by A1,Th3;
end;
theorem Th6:
for h1 be Function of U1,U2, h2 be Function of U2,U3 st h1
is_homomorphism & h2 is_homomorphism holds h2 * h1 is_homomorphism
proof
let h1 be Function of U1,U2, h2 be Function of U2,U3;
set s1 = signature U1, s2 = signature U2, s3 = signature U3;
assume that
A1: h1 is_homomorphism and
A2: h2 is_homomorphism;
U1,U2 are_similar by A1;
then
A3: s1 = s2;
U2,U3 are_similar by A2;
hence s1 = s3 by A3;
let n;
assume
A4: n in dom the charact of(U1);
let o1,o3;
assume that
A5: o1=(the charact of U1).n and
A6: o3=(the charact of U3).n;
let a;
reconsider b = h1*a as Element of (the carrier of U2)* by FINSEQ_1:def 11;
assume
A7: a in dom o1;
then
A8: o1.a in rng o1 by FUNCT_1:def 3;
dom o1 = (arity o1)-tuples_on (the carrier of U1) by MARGREL1:22;
then a in {w where w is Element of (the carrier of U1)*: len w = arity o1}
by A7,FINSEQ_2:def 4;
then
A9: ex w be Element of (the carrier of U1)* st w = a & len w = arity o1;
A10: len s1 = len the charact of(U1) & dom the charact of(U1) = Seg len the
charact of(U1) by FINSEQ_1:def 3,UNIALG_1:def 4;
A11: len s2 = len the charact of(U2) & dom the charact of(U2) = Seg len the
charact of(U2) by FINSEQ_1:def 3,UNIALG_1:def 4;
then reconsider o2 = (the charact of U2).n as operation of U2 by A3,A10,A4,
FUNCT_1:def 3;
A12: dom s1 = Seg len s1 by FINSEQ_1:def 3;
then
A13: s2.n = arity o2 by A3,A10,A4,UNIALG_1:def 4;
s1.n = arity o1 by A10,A12,A4,A5,UNIALG_1:def 4;
then len(h1*a) = arity o2 by A3,A13,A9,FINSEQ_3:120;
then dom o2 = (arity o2)-tuples_on (the carrier of U2) & b in {s where s is
Element of (the carrier of U2)*: len s = arity o2} by MARGREL1:22;
then h1*a in dom o2 by FINSEQ_2:def 4;
then
A14: h2.(o2.(h1*a)) = o3.(h2*(h1*a)) by A2,A3,A10,A11,A4,A6;
h1.(o1.a) = o2.(h1*a) by A1,A4,A5,A7;
hence (h2 * h1).(o1.a) = o3.(h2*(h1*a)) by A8,A14,FUNCT_2:15
.= o3.((h2 * h1)*a) by Th4;
end;
theorem Th7:
f is_isomorphism iff f is_homomorphism & rng f = the
carrier of U2 & f is one-to-one
proof
thus f is_isomorphism implies f is_homomorphism & rng f = the
carrier of U2 & f is one-to-one
proof
assume f is_isomorphism;
then f is_monomorphism & f is_epimorphism;
hence thesis;
end;
assume f is_homomorphism & rng f = the carrier of U2 & f is one-to-one;
then f is_monomorphism & f is_epimorphism;
hence thesis;
end;
theorem Th8:
f is_isomorphism implies dom f = the carrier of U1 & rng f
= the carrier of U2
proof
assume f is_isomorphism;
then f is_epimorphism;
hence thesis by FUNCT_2:def 1;
end;
theorem Th9:
for h be Function of U1,U2, h1 be Function of U2,U1 st h
is_isomorphism & h1=h" holds h1 is_homomorphism
proof
let h be Function of U1,U2,h1 be Function of U2,U1;
assume that
A1: h is_isomorphism and
A2: h1=h";
A3: h is one-to-one by A1,Th7;
A4: h is_homomorphism by A1,Th7;
then
A5: U1,U2 are_similar;
then
A6: signature U1 = signature U2;
A7: len (signature U1) = len the charact of(U1) & dom the charact of(U1) =
Seg len the charact of(U1) by FINSEQ_1:def 3,UNIALG_1:def 4;
A8: dom (signature U2) = Seg len (signature U2) by FINSEQ_1:def 3;
A9: len (signature U2) = len the charact of(U2) & dom the charact of(U2) =
Seg len the charact of(U2) by FINSEQ_1:def 3,UNIALG_1:def 4;
A10: rng h = the carrier of U2 by A1,Th7;
now
let n;
assume
A11: n in dom the charact of(U2);
let o2,o1;
assume
A12: o2 = (the charact of U2).n & o1 = (the charact of U1).n;
let x be FinSequence of U2;
defpred P[set,set] means h.$2 = x.$1;
A13: dom x = Seg len x by FINSEQ_1:def 3;
A14: for m be Nat st m in Seg len x ex a being Element of U1 st P[m,a]
proof
let m be Nat;
assume m in Seg len x;
then m in dom x by FINSEQ_1:def 3;
then x.m in the carrier of U2 by FINSEQ_2:11;
then consider a be object such that
A15: a in dom h and
A16: h.a = x.m by A10,FUNCT_1:def 3;
reconsider a as Element of U1 by A15;
take a;
thus thesis by A16;
end;
consider p being FinSequence of U1 such that
A17: dom p = Seg len x & for m be Nat st m in Seg len x holds P[m,p.m]
from FINSEQ_1:sch 5(A14);
A18: dom (h*p) = dom p by FINSEQ_3:120;
now
let n be Nat;
assume
A19: n in dom x;
hence x.n = h.(p.n) by A17,A13
.= (h*p).n by A17,A13,A18,A19,FINSEQ_3:120;
end;
then
A20: x = h*p by A17,A13,A18;
A21: len p = len x by A17,FINSEQ_1:def 3;
assume x in dom o2;
then x in (arity o2)-tuples_on the carrier of U2 by MARGREL1:22;
then x in {s where s is Element of (the carrier of U2)*: len s = arity o2
} by FINSEQ_2:def 4;
then
A22: ex s be Element of (the carrier of U2)* st x=s & len s = arity o2;
A23: (h1 * h) = (id dom h) by A2,A3,FUNCT_1:39
.= id the carrier of U1 by FUNCT_2:def 1;
then
A24: h1*x = (id the carrier of U1)*p by A20,Th4
.=p by Th3;
reconsider p as Element of (the carrier of U1)* by FINSEQ_1:def 11;
(signature U1).n = arity o1 & (signature U2).n = arity o2 by A6,A8,A9,A11
,A12,UNIALG_1:def 4;
then
p in {w where w is Element of (the carrier of U1)*: len w = arity o1}
by A6,A22,A21;
then p in (arity o1)-tuples_on the carrier of U1 by FINSEQ_2:def 4;
then
A25: p in dom o1 by MARGREL1:22;
then
A26: h1.(o2.x) = h1.(h.(o1.p)) by A4,A6,A7,A9,A11,A12,A20;
A27: o1.p in the carrier of U1 by A25,PARTFUN1:4;
then o1.p in dom h by FUNCT_2:def 1;
hence h1.(o2.x) = (id the carrier of U1).(o1.p) by A23,A26,FUNCT_1:13
.= o1.(h1*x) by A24,A27,FUNCT_1:17;
end;
hence thesis by A5;
end;
theorem Th10:
for h be Function of U1,U2, h1 be Function of U2,U1 st h
is_isomorphism & h1 = h" holds h1 is_isomorphism
proof
let h be Function of U1,U2,h1 be Function of U2,U1;
assume that
A1: h is_isomorphism and
A2: h1=h";
A3: h1 is_homomorphism by A1,A2,Th9;
A4: h is one-to-one by A1,Th7;
then rng h1 = dom h by A2,FUNCT_1:33
.= the carrier of U1 by FUNCT_2:def 1;
hence thesis by A2,A4,A3,Th7;
end;
theorem Th11:
for h be Function of U1,U2, h1 be Function of U2,U3 st h
is_isomorphism & h1 is_isomorphism holds h1 * h is_isomorphism
proof
let h be Function of U1,U2, h1 be Function of U2,U3;
assume that
A1: h is_isomorphism and
A2: h1 is_isomorphism;
dom h1 = the carrier of U2 & rng h = the carrier of U2 by A1,Th8,
FUNCT_2:def 1;
then
A3: rng (h1 * h) = rng h1 by RELAT_1:28
.= the carrier of U3 by A2,Th8;
h is_homomorphism & h1 is_homomorphism by A1,A2,Th7;
then
A4: h1 * h is_homomorphism by Th6;
h is one-to-one & h1 is one-to-one by A1,A2,Th7;
hence thesis by A3,A4,Th7;
end;
theorem
U1,U1 are_isomorphic
proof
set i = id the carrier of U1;
i is_homomorphism & rng i = the carrier of U1 by Th5;
then i is_isomorphism by Th7;
hence thesis;
end;
theorem
U1,U2 are_isomorphic implies U2,U1 are_isomorphic
proof
assume U1,U2 are_isomorphic;
then consider f such that
A1: f is_isomorphism;
f is_monomorphism by A1;
then
A2: f is one-to-one;
then
A3: rng(f") = dom f by FUNCT_1:33
.= the carrier of U1 by FUNCT_2:def 1;
A4: f is_epimorphism by A1;
dom(f") = rng f by A2,FUNCT_1:33
.= the carrier of U2 by A4;
then reconsider g = f" as Function of U2,U1 by A3,FUNCT_2:def 1,RELSET_1:4;
take g;
thus thesis by A1,Th10;
end;
theorem
U1,U2 are_isomorphic & U2,U3 are_isomorphic implies U1,U3 are_isomorphic
proof
assume U1,U2 are_isomorphic;
then consider f such that
A1: f is_isomorphism;
assume U2,U3 are_isomorphic;
then consider g be Function of U2,U3 such that
A2: g is_isomorphism;
g * f is_isomorphism by A1,A2,Th11;
hence thesis;
end;
definition
let U1,U2,f;
assume
A1: f is_homomorphism;
func Image f -> strict SubAlgebra of U2 means
:Def6:
the carrier of it = f .: (the carrier of U1);
existence
proof
A2: dom f = the carrier of U1 by FUNCT_2:def 1;
then reconsider A = f .: (the carrier of U1) as non empty Subset of U2;
take B = UniAlgSetClosed(A);
A is opers_closed
proof
let o2 be operation of U2;
consider n being Nat such that
A3: n in dom the charact of(U2) and
A4: (the charact of U2).n = o2 by FINSEQ_2:10;
let s be FinSequence of A;
assume
A5: len s = arity o2;
defpred P[object,object] means f.$2 = s.$1;
A6: for x being object st x in dom s
ex y being object st y in the carrier of U1 & P[x,y]
proof
let x be object;
assume
A7: x in dom s;
then reconsider x0 = x as Element of NAT;
s.x0 in A by A7,FINSEQ_2:11;
then consider y being object such that
A8: y in dom f and
y in the carrier of U1 and
A9: f.y = s.x0 by FUNCT_1:def 6;
take y;
thus thesis by A8,A9;
end;
consider s1 be Function such that
A10: dom s1 = dom s & rng s1 c= the carrier of U1 &
for x being object st x in
dom s holds P[x,s1.x] from FUNCT_1:sch 6(A6);
dom s1 = Seg len s by A10,FINSEQ_1:def 3;
then reconsider s1 as FinSequence by FINSEQ_1:def 2;
reconsider s1 as FinSequence of U1 by A10,FINSEQ_1:def 4;
reconsider s1 as Element of (the carrier of U1)* by FINSEQ_1:def 11;
A11: len s1 = len s by A10,FINSEQ_3:29;
A12: dom (signature U2) = Seg len (signature U2) by FINSEQ_1:def 3;
A13: U1,U2 are_similar by A1;
then
A14: signature U1 = signature U2;
A15: dom (signature U1) = dom (signature U2) by A13;
A16: len (signature U2) = len the charact of(U2) & dom the charact of(U2)
= Seg len the charact of(U2) by FINSEQ_1:def 3,UNIALG_1:def 4;
then
A17: (signature U2).n = arity o2 by A3,A4,A12,UNIALG_1:def 4;
A18: len (f*s1) = len s1 by FINSEQ_3:120;
A19: dom (f*s1) = Seg len (f*s1) & dom s = Seg len s1 by A10,FINSEQ_1:def 3;
now
let m be Nat;
assume
A20: m in dom s;
then f.(s1.m) = s.m by A10;
hence (f*s1).m = s.m by A18,A19,A20,FINSEQ_3:120;
end;
then
A21: s = f*s1 by A11,A18,FINSEQ_2:9;
A22: dom (signature U1) = Seg len (signature U1) by FINSEQ_1:def 3;
A23: len (signature U1) = len the charact of(U1) & dom the charact of(U1)
= Seg len the charact of(U1) by FINSEQ_1:def 3,UNIALG_1:def 4;
then reconsider o1 = (the charact of U1).n as operation of U1 by A3,A16
,A22,A15,A12,FUNCT_1:def 3;
(signature U1).n = arity o1 by A3,A16,A15,A12,UNIALG_1:def 4;
then
s1 in {w where w is Element of (the carrier of U1)* : len w = arity
o1 } by A14,A5,A17,A11;
then s1 in (arity o1)-tuples_on the carrier of U1 by FINSEQ_2:def 4;
then
A24: s1 in dom o1 by MARGREL1:22;
then
A25: o1.s1 in rng o1 by FUNCT_1:def 3;
f.(o1.s1) = o2.(f*s1) by A1,A3,A4,A23,A16,A22,A15,A12,A24;
hence thesis by A2,A21,A25,FUNCT_1:def 6;
end;
then B = UAStr (# A,Opers(U2,A) #) by UNIALG_2:def 8;
hence thesis;
end;
uniqueness
proof
let A,B be strict SubAlgebra of U2;
reconsider A1 = the carrier of A as non empty Subset of U2
by UNIALG_2:def 7;
the charact of(A) = Opers(U2,A1) by UNIALG_2:def 7;
hence thesis by UNIALG_2:def 7;
end;
end;
theorem
for h be Function of U1,U2 st h is_homomorphism holds rng h =
the carrier of Image h
proof
let h be Function of U1,U2;
dom h = the carrier of U1 by FUNCT_2:def 1;
then
A1: rng h = h.:(the carrier of U1) by RELAT_1:113;
assume h is_homomorphism;
hence thesis by A1,Def6;
end;
theorem
for U2 being strict Universal_Algebra, f be Function of U1,U2 st f
is_homomorphism holds f is_epimorphism iff Image f = U2
proof
let U2 be strict Universal_Algebra;
let f be Function of U1,U2;
assume
A1: f is_homomorphism;
thus f is_epimorphism implies Image f = U2
proof
reconsider B = the carrier of Image f as non empty Subset of U2 by
UNIALG_2:def 7;
assume f is_epimorphism;
then
A2: the carrier of U2 = rng f
.= f.:(dom f) by RELAT_1:113
.= f.:(the carrier of U1) by FUNCT_2:def 1
.= the carrier of Image f by A1,Def6;
the charact of(Image f) = Opers(U2,B) by UNIALG_2:def 7;
hence thesis by A2,Th1;
end;
assume Image f = U2;
then the carrier of U2 = f.:(the carrier of U1) by A1,Def6
.= f.:(dom f) by FUNCT_2:def 1
.= rng f by RELAT_1:113;
hence thesis by A1;
end;
begin :: Quotient Universal Algebra
definition
let U1 be 1-sorted;
mode Relation of U1 is Relation of the carrier of U1;
mode Equivalence_Relation of U1 is Equivalence_Relation of the carrier of U1;
end;
definition
let U1;
mode Congruence of U1 -> Equivalence_Relation of U1 means
:Def7:
for n,o1
st n in dom the charact of(U1) & o1 = (the charact of U1).n for x,y be
FinSequence of U1 st x in dom o1 & y in dom o1 & [x,y] in ExtendRel(it) holds [
o1.x,o1.y] in it;
existence
proof
reconsider P = id the carrier of U1 as Equivalence_Relation of U1;
take P;
let n,o1;
assume that
n in dom the charact of(U1) and
o1 = (the charact of U1).n;
let x,y be FinSequence of U1;
assume that
A1: x in dom o1 and
y in dom o1 and
A2: [x,y] in ExtendRel(P);
[x,y] in id ((the carrier of U1)*) by A2,FINSEQ_3:121;
then
A3: x = y by RELAT_1:def 10;
o1.x in rng o1 by A1,FUNCT_1:def 3;
hence thesis by A3,RELAT_1:def 10;
end;
end;
reserve E for Congruence of U1;
definition
let U1 be Universal_Algebra, E be Congruence of U1, o be operation of U1;
func QuotOp(o,E) -> homogeneous quasi_total non empty PartFunc of (Class E)*
,(Class E) means
:Def8:
dom it = (arity o)-tuples_on (Class E) & for y be
FinSequence of (Class E) st y in dom it for x be FinSequence of the carrier of
U1 st x is_representatives_FS y holds it.y = Class(E,o.x);
existence
proof
defpred P[object,object] means
for y be FinSequence of (Class E) st y = $1 holds
for x be FinSequence of the carrier of U1 st x is_representatives_FS y holds $2
= Class(E,o.x);
set X = (arity o)-tuples_on (Class E);
A1: for e be object st e in X ex u be object st u in Class(E) & P[e,u]
proof
let e be object;
A2: dom o = (arity o)-tuples_on the carrier of U1 by MARGREL1:22
.={q where q is Element of (the carrier of U1)*: len q = arity o} by
FINSEQ_2:def 4;
assume e in X;
then e in {s where s is Element of (Class E)*: len s = arity o} by
FINSEQ_2:def 4;
then consider s be Element of (Class E)* such that
A3: s = e and
A4: len s = arity o;
consider x be FinSequence of the carrier of U1 such that
A5: x is_representatives_FS s by FINSEQ_3:122;
take y = Class(E,o.x);
A6: len x = arity o by A4,A5,FINSEQ_3:def 4;
x is Element of (the carrier of U1)* by FINSEQ_1:def 11;
then
A7: x in dom o by A2,A6;
then
A8: o.x in rng o by FUNCT_1:def 3;
hence y in Class E by EQREL_1:def 3;
let a be FinSequence of (Class E);
assume
A9: a = e;
let b be FinSequence of the carrier of U1;
assume
A10: b is_representatives_FS a;
then
A11: len b = arity o by A3,A4,A9,FINSEQ_3:def 4;
for m st m in dom x holds [x.m,b.m] in E
proof
let m;
assume
A12: m in dom x;
then
A13: Class(E,x.m) = s.m & x.m in rng x by A5,FINSEQ_3:def 4,FUNCT_1:def 3;
dom x = Seg arity o by A6,FINSEQ_1:def 3
.= dom b by A11,FINSEQ_1:def 3;
then Class(E,b.m) = s.m by A3,A9,A10,A12,FINSEQ_3:def 4;
hence thesis by A13,EQREL_1:35;
end;
then
A14: [x,b] in ExtendRel(E) by A6,A11,FINSEQ_3:def 3;
b is Element of (the carrier of U1)* by FINSEQ_1:def 11;
then
(ex n being Nat st n in dom the charact of(U1) & (the charact of U1
).n = o ) & b in dom o by A2,A11,FINSEQ_2:10;
then [o.x,o.b] in E by A7,A14,Def7;
hence thesis by A8,EQREL_1:35;
end;
consider F being Function such that
A15: dom F = X & rng F c= Class(E) & for e be object st e in X holds P[e,
F.e] from FUNCT_1:sch 6(A1);
X in the set of all m-tuples_on Class E;
then X c= union the set of all m-tuples_on Class E by ZFMISC_1:74;
then X c= (Class E)* by FINSEQ_2:108;
then reconsider F as PartFunc of (Class E)*,Class E by A15,RELSET_1:4;
A16: dom F = {t where t is Element of (Class E)*: len t = arity o} by A15,
FINSEQ_2:def 4;
A17: for x,y be FinSequence of Class E st len x = len y & x in dom F holds
y in dom F
proof
let x,y be FinSequence of Class E;
assume that
A18: len x = len y and
A19: x in dom F;
A20: y is Element of (Class E)* by FINSEQ_1:def 11;
ex t1 be Element of (Class E)* st x = t1 & len t1 = arity o by A16,A19;
hence thesis by A16,A18,A20;
end;
A21: ex x being FinSequence st x in dom F
proof
set a = the Element of X;
a in X;
hence ex x being FinSequence st x in dom F by A15;
end;
dom F is with_common_domain
proof
let x,y be FinSequence;
assume x in dom F & y in dom F;
then (ex t1 be Element of (Class E)* st x = t1 & len t1 = arity o )& ex
t2 be Element of (Class E)* st y = t2 & len t2 = arity o by A16;
hence thesis;
end;
then reconsider
F as homogeneous quasi_total non empty PartFunc of (Class E)*,
Class E by A17,A21,MARGREL1:def 21,def 22;
take F;
thus dom F = (arity o)-tuples_on (Class E) by A15;
let y be FinSequence of (Class E);
assume
A22: y in dom F;
let x be FinSequence of the carrier of U1;
assume x is_representatives_FS y;
hence thesis by A15,A22;
end;
uniqueness
proof
let F,G be homogeneous quasi_total non empty PartFunc of (Class(E))*,Class
(E);
assume that
A23: dom F = (arity o)-tuples_on (Class E) and
A24: for y be FinSequence of Class(E) st y in dom F for x be
FinSequence of the carrier of U1 st x is_representatives_FS y holds F.y = Class
(E,o.x) and
A25: dom G = (arity(o))-tuples_on (Class(E)) and
A26: for y be FinSequence of Class(E) st y in dom G for x be
FinSequence of the carrier of U1 st x is_representatives_FS y holds G.y = Class
(E,o.x);
for a be object st a in dom F holds F.a = G.a
proof
let a be object;
assume
A27: a in dom F;
then reconsider b = a as FinSequence of Class(E) by FINSEQ_1:def 11;
consider x be FinSequence of the carrier of U1 such that
A28: x is_representatives_FS b by FINSEQ_3:122;
F.b = Class(E,o.x) by A24,A27,A28;
hence thesis by A23,A25,A26,A27,A28;
end;
hence thesis by A23,A25;
end;
end;
definition
let U1,E;
func QuotOpSeq(U1,E) -> PFuncFinSequence of Class E means
:Def9:
len it =
len the charact of(U1) & for n st n in dom it for o1 st (the charact of(U1)).n
= o1 holds it.n = QuotOp(o1,E);
existence
proof
defpred P[set,set] means for o be Element of Operations(U1) st o = (the
charact of(U1)).$1 holds $2 = QuotOp(o,E);
A1: for n be Nat st n in Seg len the charact of(U1) ex x be Element of
PFuncs((Class E)*,(Class E)) st P[n,x]
proof
let n be Nat;
assume n in Seg len the charact of(U1);
then n in dom the charact of(U1) by FINSEQ_1:def 3;
then reconsider o = (the charact of(U1)).n as operation of U1 by
FUNCT_1:def 3;
reconsider x = QuotOp(o,E) as Element of PFuncs((Class E)*,(Class E)) by
PARTFUN1:45;
take x;
thus thesis;
end;
consider p be FinSequence of PFuncs((Class E)*,(Class E)) such that
A2: dom p = Seg len the charact of(U1) & for n be Nat st n in Seg len
the charact of(U1) holds P[n,p.n] from FINSEQ_1:sch 5(A1);
reconsider p as PFuncFinSequence of Class E;
take p;
thus len p = len the charact of(U1) by A2,FINSEQ_1:def 3;
let n;
assume n in dom p;
hence thesis by A2;
end;
uniqueness
proof
let F,G be PFuncFinSequence of Class E;
assume that
A3: len F = len the charact of(U1) and
A4: for n st n in dom F for o1 st (the charact of(U1)).n = o1 holds F.
n = QuotOp(o1,E) and
A5: len G = len the charact of(U1) and
A6: for n st n in dom G for o1 st (the charact of(U1)).n = o1 holds G.
n = QuotOp(o1,E);
now
let n be Nat;
assume
A7: n in dom F;
dom F = Seg len the charact of(U1) by A3,FINSEQ_1:def 3;
then n in dom the charact of(U1) by A7,FINSEQ_1:def 3;
then reconsider o1 = (the charact of U1).n as operation of U1 by
FUNCT_1:def 3;
A8: dom F = dom the charact of(U1) & dom G = dom the charact of(U1) by A3,A5,
FINSEQ_3:29;
F.n = QuotOp(o1,E) by A4,A7;
hence F.n = G.n by A6,A8,A7;
end;
hence thesis by A3,A5,FINSEQ_2:9;
end;
end;
definition
let U1,E;
func QuotUnivAlg(U1,E) -> strict Universal_Algebra equals
UAStr (# Class(E),QuotOpSeq(U1,E) #);
coherence
proof
set UU = UAStr (# Class(E),QuotOpSeq(U1,E) #);
for n be Nat,h be PartFunc of (Class E)*,(Class E) st n in dom QuotOpSeq
(U1,E) & h = QuotOpSeq(U1,E).n holds h is homogeneous
proof
let n be Nat,h be PartFunc of (Class E)*,(Class E);
assume that
A1: n in dom QuotOpSeq(U1,E) and
A2: h = QuotOpSeq(U1,E).n;
n in Seg len QuotOpSeq(U1,E) by A1,FINSEQ_1:def 3;
then n in Seg len the charact of U1 by Def9;
then n in dom the charact of U1 by FINSEQ_1:def 3;
then reconsider o = (the charact of U1).n as operation of U1 by
FUNCT_1:def 3;
QuotOpSeq(U1,E).n = QuotOp(o,E) by A1,Def9;
hence thesis by A2;
end;
then
A3: the charact of UU is homogeneous;
for n be Nat ,h be PartFunc of (Class E)*,(Class E) st n in dom
QuotOpSeq(U1,E) & h = QuotOpSeq(U1,E).n holds h is quasi_total
proof
let n be Nat,h be PartFunc of (Class E)*,(Class E);
assume that
A4: n in dom QuotOpSeq(U1,E) and
A5: h = QuotOpSeq(U1,E).n;
n in Seg len QuotOpSeq(U1,E) by A4,FINSEQ_1:def 3;
then n in Seg len the charact of(U1) by Def9;
then n in dom the charact of U1 by FINSEQ_1:def 3;
then reconsider o = (the charact of U1).n as operation of U1 by
FUNCT_1:def 3;
QuotOpSeq(U1,E).n = QuotOp(o,E) by A4,Def9;
hence thesis by A5;
end;
then
A6: the charact of UU is quasi_total;
for n be object st n in dom QuotOpSeq(U1,E)
holds QuotOpSeq(U1,E).n is non empty
proof
let n be object;
assume
A7: n in dom QuotOpSeq(U1,E);
then n in Seg len QuotOpSeq(U1,E) by FINSEQ_1:def 3;
then n in Seg len the charact of U1 by Def9;
then
A8: n in dom the charact of U1 by FINSEQ_1:def 3;
reconsider n as Element of NAT by A7;
reconsider o = (the charact of U1).n as operation of U1
by A8,FUNCT_1:def 3;
QuotOpSeq(U1,E).n = QuotOp(o,E) by A7,Def9;
hence thesis;
end;
then
A9: the charact of UU is non-empty by FUNCT_1:def 9;
the charact of UU <> {}
proof
assume
A10: the charact of UU = {};
len the charact of UU = len the charact of U1 by Def9;
hence contradiction by A10;
end;
hence thesis by A3,A6,A9,UNIALG_1:def 1,def 2,def 3;
end;
end;
definition
let U1,E;
func Nat_Hom(U1,E) -> Function of U1,QuotUnivAlg(U1,E) means
:Def11:
for u be Element of U1 holds it.u = Class(E,u);
existence
proof
defpred P[Element of U1,set] means $2 = Class(E,$1);
A1: for x being Element of U1 ex y being Element of QuotUnivAlg(U1,E) st P
[x,y]
proof
let x be Element of U1;
reconsider y = Class(E,x) as Element of QuotUnivAlg(U1,E) by
EQREL_1:def 3;
take y;
thus thesis;
end;
consider f being Function of U1,QuotUnivAlg(U1,E) such that
A2: for x being Element of U1 holds P[x,f.x] from FUNCT_2:sch 3(A1);
take f;
thus thesis by A2;
end;
uniqueness
proof
let f,g be Function of U1,QuotUnivAlg(U1,E);
assume that
A3: for u be Element of U1 holds f.u = Class(E,u) and
A4: for u be Element of U1 holds g.u = Class(E,u);
now
let u be Element of U1;
f.u = Class(E,u) by A3;
hence f.u = g.u by A4;
end;
hence thesis;
end;
end;
theorem Th17:
for U1,E holds Nat_Hom(U1,E) is_homomorphism
proof
let U1,E;
set f = Nat_Hom(U1,E), u1 = the carrier of U1, qu = the carrier of
QuotUnivAlg(U1,E);
A1: len (signature U1) = len the charact of(U1) by UNIALG_1:def 4;
A2: dom (signature U1) = Seg len(signature U1) by FINSEQ_1:def 3;
A3: len QuotOpSeq(U1,E) = len the charact of(U1) by Def9;
A4: len (signature QuotUnivAlg(U1,E)) = len the charact of(QuotUnivAlg(U1,E)
) by UNIALG_1:def 4;
now
let n be Nat;
assume
A5: n in dom (signature U1);
then n in dom the charact of(U1) by A1,A2,FINSEQ_1:def 3;
then reconsider o1 = (the charact of U1).n as operation of U1 by
FUNCT_1:def 3;
n in dom QuotOpSeq(U1,E) by A3,A1,A2,A5,FINSEQ_1:def 3;
then
A6: QuotOpSeq(U1,E).n = QuotOp(o1,E) by Def9;
reconsider cl = QuotOp(o1,E) as homogeneous quasi_total non empty PartFunc
of qu*,qu;
consider b be object such that
A7: b in dom cl by XBOOLE_0:def 1;
reconsider b as Element of qu* by A7;
dom QuotOp(o1,E) = (arity o1)-tuples_on Class(E) by Def8;
then b in {w where w is Element of (Class(E))*: len w = arity o1} by A7,
FINSEQ_2:def 4;
then ex w be Element of (Class(E))* st w = b & len w = arity o1;
then
A8: arity cl = arity o1 by A7,MARGREL1:def 25;
n in dom (signature QuotUnivAlg(U1,E)) & (signature U1).n = arity o1
by A3,A4,A2,A5,FINSEQ_1:def 3,UNIALG_1:def 4;
hence (signature U1).n = (signature QuotUnivAlg(U1,E)).n by A6,A8,
UNIALG_1:def 4;
end;
hence signature U1 = signature QuotUnivAlg(U1,E) by A3,A4,A1,FINSEQ_2:9;
let n;
assume n in dom the charact of(U1);
then n in Seg len the charact of(U1) by FINSEQ_1:def 3;
then
A9: n in dom QuotOpSeq(U1,E) by A3,FINSEQ_1:def 3;
let o1 be operation of U1, o2 be operation of QuotUnivAlg(U1,E);
assume
(the charact of U1).n = o1 & o2 = (the charact of QuotUnivAlg(U1,E) ).n;
then
A10: o2 = QuotOp(o1,E) by A9,Def9;
let x be FinSequence of U1;
reconsider x1 = x as Element of u1* by FINSEQ_1:def 11;
reconsider fx = f*x as FinSequence of Class(E);
reconsider fx as Element of (Class(E))* by FINSEQ_1:def 11;
A11: len (f*x) = len x by FINSEQ_3:120;
now
let m;
assume
A12: m in dom x;
then
A13: m in dom(f*x) by FINSEQ_3:120;
x.m in rng x by A12,FUNCT_1:def 3;
then reconsider xm = x.m as Element of u1;
thus Class(E,x.m) = f.xm by Def11
.= fx.m by A13,FINSEQ_3:120;
end;
then
A14: x is_representatives_FS fx by A11,FINSEQ_3:def 4;
assume
A15: x in dom o1;
then o1.x in rng o1 by FUNCT_1:def 3;
then reconsider ox = o1.x as Element of u1;
dom o1 = (arity o1)-tuples_on u1 by MARGREL1:22
.= {p where p is Element of u1* : len p = arity o1} by FINSEQ_2:def 4;
then
A16: ex p be Element of u1* st p = x1 & len p = arity o1 by A15;
A17: f.(o1.x) = Class(E,ox) by Def11
.= Class(E,o1.x);
dom QuotOp(o1,E) = (arity o1)-tuples_on Class(E) by Def8
.= {q where q is Element of (Class(E))*: len q = arity o1} by
FINSEQ_2:def 4;
then fx in dom QuotOp(o1,E) by A16,A11;
hence thesis by A17,A10,A14,Def8;
end;
theorem
for U1,E holds Nat_Hom(U1,E) is_epimorphism
proof
let U1,E;
set f = Nat_Hom(U1,E), qa = QuotUnivAlg(U1,E), cqa = the carrier of qa, u1 =
the carrier of U1;
thus f is_homomorphism by Th17;
thus rng f c= cqa;
let x be object;
assume
A1: x in cqa;
then reconsider x1 = x as Subset of u1;
consider y being object such that
A2: y in u1 and
A3: x1 = Class(E,y) by A1,EQREL_1:def 3;
reconsider y as Element of u1 by A2;
dom f = u1 by FUNCT_2:def 1;
then f.y in rng f by FUNCT_1:def 3;
hence thesis by A3,Def11;
end;
definition
let U1,U2;
let f be Function of U1,U2;
assume
A1: f is_homomorphism;
func Cng(f) -> Congruence of U1 means
:Def12:
for a,b be Element of U1 holds [a,b] in it iff f.a = f.b;
existence
proof
defpred P[set,set] means f.$1 = f.$2;
set u1 = the carrier of U1;
consider R being Relation of u1,u1 such that
A2: for x,y being Element of u1 holds [x,y] in R iff P[x,y] from
RELSET_1:sch 2;
R is_reflexive_in u1
proof
let x be object;
assume x in u1;
then reconsider x1 = x as Element of u1;
f.x1 =f.x1;
hence thesis by A2;
end;
then
A3: dom R = u1 & field R = u1 by ORDERS_1:13;
A4: R is_transitive_in u1
proof
let x,y,z be object;
assume that
A5: x in u1 & y in u1 & z in u1 and
A6: [x,y] in R & [y,z] in R;
reconsider x1 = x, y1=y, z1 = z as Element of u1 by A5;
f.x1 = f.y1 & f.y1 = f.z1 by A2,A6;
hence thesis by A2;
end;
R is_symmetric_in u1
proof
let x,y be object;
assume that
A7: x in u1 & y in u1 and
A8: [x,y] in R;
reconsider x1 = x, y1=y as Element of u1 by A7;
f.x1 = f.y1 by A2,A8;
hence thesis by A2;
end;
then reconsider R as Equivalence_Relation of U1 by A3,A4,PARTFUN1:def 2
,RELAT_2:def 11,def 16;
now
U1,U2 are_similar by A1;
then
A9: signature U1 = signature U2;
let n be Nat,o be operation of U1;
assume that
A10: n in dom the charact of(U1) and
A11: o = (the charact of U1).n;
len (signature U1) = len the charact of(U1) & len (signature U2) =
len the charact of(U2) by UNIALG_1:def 4;
then dom the charact of(U2) = dom the charact of(U1) by A9,FINSEQ_3:29;
then reconsider o2 = (the charact of U2).n as operation of U2 by A10,
FUNCT_1:def 3;
let x,y be FinSequence of U1;
assume that
A12: x in dom o & y in dom o and
A13: [x,y] in ExtendRel(R);
o.x in rng o & o.y in rng o by A12,FUNCT_1:def 3;
then reconsider ox = o.x, oy = o.y as Element of u1;
A14: len x = len y by A13,FINSEQ_3:def 3;
A15: len (f*y) = len y by FINSEQ_3:120;
then
A16: dom (f*y) = Seg len x by A14,FINSEQ_1:def 3;
A17: len (f*x) = len x by FINSEQ_3:120;
A18: now
let m be Nat;
assume
A19: m in dom (f*y);
then m in dom y by A14,A16,FINSEQ_1:def 3;
then
A20: y.m in rng y by FUNCT_1:def 3;
A21: m in dom x by A16,A19,FINSEQ_1:def 3;
then x.m in rng x by FUNCT_1:def 3;
then reconsider xm = x.m, ym = y.m as Element of u1 by A20;
[x.m,y.m] in R by A13,A21,FINSEQ_3:def 3;
then
A22: f.xm = f.ym by A2
.= (f*y).m by A19,FINSEQ_3:120;
m in dom (f*x) by A17,A16,A19,FINSEQ_1:def 3;
hence (f*y).m = (f*x).m by A22,FINSEQ_3:120;
end;
f.(o.x) = o2.(f*x) & f.(o.y) = o2.(f*y) by A1,A10,A11,A12;
then f.(ox) = f.(oy) by A14,A17,A15,A18,FINSEQ_2:9;
hence [o.x,o.y] in R by A2;
end;
then reconsider R as Congruence of U1 by Def7;
take R;
let a,b be Element of u1;
thus [a,b] in R implies f.a = f.b by A2;
assume f.a = f.b;
hence thesis by A2;
end;
uniqueness
proof
set u1 = the carrier of U1;
let X,Y be Congruence of U1;
assume that
A23: for a,b be Element of U1 holds [a,b] in X iff f.a = f.b and
A24: for a,b be Element of U1 holds [a,b] in Y iff f.a = f.b;
for x,y be object holds [x,y] in X iff [x,y] in Y
proof
let x,y be object;
thus [x,y] in X implies [x,y] in Y
proof
assume
A25: [x,y] in X;
then reconsider x1 = x,y1 = y as Element of u1 by ZFMISC_1:87;
f.x1 = f.y1 by A23,A25;
hence thesis by A24;
end;
assume
A26: [x,y] in Y;
then reconsider x1 = x,y1 = y as Element of u1 by ZFMISC_1:87;
f.x1 = f.y1 by A24,A26;
hence thesis by A23;
end;
hence thesis by RELAT_1:def 2;
end;
end;
definition
let U1,U2 be Universal_Algebra, f be Function of U1,U2;
assume
A1: f is_homomorphism;
func HomQuot(f) -> Function of QuotUnivAlg(U1,Cng(f)),U2 means
:Def13:
for a be Element of U1 holds it.(Class(Cng f,a)) = f.a;
existence
proof
set qa = QuotUnivAlg(U1,Cng(f)), cqa = the carrier of qa, u1 = the carrier
of U1, u2 = the carrier of U2;
defpred P[object,object] means
for a be Element of u1 st $1 = Class(Cng f,a)
holds $2 = f.a;
A2: for x being object st x in cqa ex y being object st y in u2 & P[x,y]
proof
let x be object;
assume
A3: x in cqa;
then reconsider x1 = x as Subset of u1;
consider a be object such that
A4: a in u1 and
A5: x1 = Class(Cng f,a) by A3,EQREL_1:def 3;
reconsider a as Element of u1 by A4;
take y = f.a;
thus y in u2;
let b be Element of u1;
assume x = Class(Cng f,b);
then b in Class(Cng f,a) by A5,EQREL_1:23;
then [b,a] in Cng(f) by EQREL_1:19;
hence thesis by A1,Def12;
end;
consider F being Function such that
A6: dom F = cqa & rng F c= u2 & for x being object st x in cqa holds P[x,F.x]
from
FUNCT_1:sch 6(A2);
reconsider F as Function of qa,U2 by A6,FUNCT_2:def 1,RELSET_1:4;
take F;
let a be Element of u1;
Class(Cng f,a) in Class(Cng f) by EQREL_1:def 3;
hence thesis by A6;
end;
uniqueness
proof
set qa = QuotUnivAlg(U1,Cng(f)), cqa = the carrier of qa, u1 = the carrier
of U1;
let F,G be Function of qa,U2;
assume that
A7: for a be Element of u1 holds F.(Class(Cng f,a)) = f.a and
A8: for a be Element of u1 holds G.(Class(Cng f,a)) = f.a;
let x be Element of cqa;
x in cqa;
then reconsider x1 = x as Subset of u1;
consider a be object such that
A9: a in u1 & x1 = Class(Cng f,a) by EQREL_1:def 3;
thus F.x = f.a by A7,A9
.= G.x by A8,A9;
end;
end;
theorem Th19:
f is_homomorphism implies HomQuot(f) is_homomorphism
& HomQuot(f) is_monomorphism
proof
set qa = QuotUnivAlg(U1,Cng(f)), cqa = the carrier of qa, u1 = the carrier
of U1, F = HomQuot(f);
assume
A1: f is_homomorphism;
thus
A2: F is_homomorphism
proof
Nat_Hom(U1,Cng f) is_homomorphism by Th17;
then U1,qa are_similar;
then
A3: signature U1 = signature qa;
U1,U2 are_similar by A1;
then signature U2 = signature qa by A3;
hence qa,U2 are_similar;
let n;
assume
A4: n in dom the charact of(qa);
A5: len (signature U1) = len the charact of(U1) & len (signature qa) =
len the charact of(qa) by UNIALG_1:def 4;
A6: dom the charact of(qa) = Seg len (the charact of qa) & dom the
charact of(U1 ) = Seg len (the charact of U1) by FINSEQ_1:def 3;
then reconsider o1 = (the charact of U1).n as operation of U1 by A3,A4,A5,
FUNCT_1:def 3;
A7: dom o1 = (arity o1)-tuples_on u1 by MARGREL1:22
.= {p where p is Element of u1* : len p = arity o1} by FINSEQ_2:def 4;
let oq be operation of qa, o2 be operation of U2;
assume that
A8: oq = (the charact of qa).n and
A9: o2 = (the charact of U2).n;
let x be FinSequence of qa;
assume
A10: x in dom oq;
reconsider x1 = x as FinSequence of Class(Cng f);
reconsider x1 as Element of (Class(Cng f))* by FINSEQ_1:def 11;
consider y be FinSequence of U1 such that
A11: y is_representatives_FS x1 by FINSEQ_3:122;
reconsider y as Element of u1* by FINSEQ_1:def 11;
A12: len x1 = len y by A11,FINSEQ_3:def 4;
then
A13: len (F*x) = len y by FINSEQ_3:120;
A14: len y = len (f*y) by FINSEQ_3:120;
A15: now
let m be Nat;
assume
A16: m in Seg len y;
then
A17: m in dom (F*x) by A13,FINSEQ_1:def 3;
A18: m in dom(f*y) by A14,A16,FINSEQ_1:def 3;
A19: m in dom y by A16,FINSEQ_1:def 3;
then reconsider ym = y.m as Element of u1 by FINSEQ_2:11;
x1.m = Class(Cng f,y.m) by A11,A19,FINSEQ_3:def 4;
hence (F*x).m = F.(Class(Cng f,ym)) by A17,FINSEQ_3:120
.= f.(y.m) by A1,Def13
.= (f*y).m by A18,FINSEQ_3:120;
end;
dom(F*x) = Seg len y by A13,FINSEQ_1:def 3;
then
A20: o2.(F*x) = o2.(f*y) by A13,A14,A15,FINSEQ_2:9;
A21: oq = QuotOp(o1,Cng f) by A4,A8,Def9;
then dom oq = (arity o1)-tuples_on Class(Cng f) by Def8
.= {w where w is Element of (Class(Cng f))*: len w = arity o1} by
FINSEQ_2:def 4;
then ex w be Element of (Class(Cng f))* st w = x1 & len w = arity o1 by A10
;
then
A22: y in dom o1 by A12,A7;
then o1.y in rng o1 by FUNCT_1:def 3;
then reconsider o1y = o1.y as Element of u1;
F.(oq.x) = F.(Class(Cng f,o1y)) by A10,A11,A21,Def8
.= f.(o1.y) by A1,Def13;
hence thesis by A1,A3,A4,A9,A6,A5,A22,A20;
end;
A23: dom F = cqa by FUNCT_2:def 1;
F is one-to-one
proof
let x,y be object;
assume that
A24: x in dom F and
A25: y in dom F and
A26: F.x = F.y;
reconsider x1 = x, y1 = y as Subset of u1 by A23,A24,A25;
consider a be object such that
A27: a in u1 and
A28: x1 = Class(Cng f,a) by A24,EQREL_1:def 3;
reconsider a as Element of u1 by A27;
consider b be object such that
A29: b in u1 and
A30: y1 = Class(Cng f,b) by A25,EQREL_1:def 3;
reconsider b as Element of u1 by A29;
A31: F.y1 = f.b by A1,A30,Def13;
F.x1 = f.a by A1,A28,Def13;
then [a,b] in Cng(f) by A1,A26,A31,Def12;
hence thesis by A28,A30,EQREL_1:35;
end;
hence thesis by A2;
end;
::$N First isomorphism theorem for universal algebras
theorem Th20:
f is_epimorphism implies HomQuot(f) is_isomorphism
proof
set qa = QuotUnivAlg(U1,Cng(f)), u1 = the carrier of U1, u2 = the carrier of
U2, F = HomQuot(f);
assume
A1: f is_epimorphism;
then
A2: f is_homomorphism;
then F is_monomorphism by Th19;
then
A3: F is one-to-one;
A4: rng f = u2 by A1;
A5: rng F = u2
proof
thus rng F c= u2;
let x be object;
assume x in u2;
then consider y being object such that
A6: y in dom f and
A7: f.y = x by A4,FUNCT_1:def 3;
reconsider y as Element of u1 by A6;
set u = Class(Cng f,y);
A8: dom F = the carrier of qa & u in Class(Cng f) by EQREL_1:def 3
,FUNCT_2:def 1;
F.u = x by A2,A7,Def13;
hence thesis by A8,FUNCT_1:def 3;
end;
F is_homomorphism by A2,Th19;
hence thesis by A3,A5,Th7;
end;
theorem
f is_epimorphism implies QuotUnivAlg(U1,Cng(f)),U2 are_isomorphic
proof
assume
A1: f is_epimorphism;
take HomQuot(f);
thus thesis by A1,Th20;
end;
|