Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 16,109 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
:: One-Dimensional Congruence of Segments, Basic Facts and Midpoint Relation
::  by Barbara Konstanta, Urszula Kowieska, Grzegorz Lewandowski and
:: http://creativecommons.org/licenses/by-sa/3.0/.

environ

 vocabularies AFVECT0, SUBSET_1, XBOOLE_0, RELAT_1, ZFMISC_1, ANALOAF, PARSP_1,
      DIRAF, STRUCT_0, AFVECT01;
 notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, STRUCT_0, ANALOAF, DIRAF,
      AFVECT0, RELSET_1;
 constructors DOMAIN_1, DIRAF, AFVECT0;
 registrations XBOOLE_0, STRUCT_0, AFVECT0;
 requirements SUBSET, BOOLE;
 theorems ZFMISC_1, AFVECT0, STRUCT_0, ANALOAF, DIRAF, XTUPLE_0;
 schemes RELSET_1;

begin

reserve AFV for WeakAffVect;
reserve a,a9,b,b9,c,d,p,p9,q,q9,r,r9 for Element of AFV;

registration
  let A be non empty set, C be Relation of [:A,A:];
  cluster AffinStruct(#A,C#) -> non empty;
  coherence;
end;

Lm1: a,b '||' b,c & a<>c implies a,b // b,c
proof
  assume that
A1: a,b '||' b,c and
A2: a<>c;
  not a,b // c,b by A2,AFVECT0:4,7;
  hence thesis by A1,DIRAF:def 4;
end;

Lm2: a,b // b,a iff ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b
proof
A1: now
    given p,q such that
A2: a,b '||' p,q and
A3: a,p '||' p,b and
A4: a,q '||' q,b;
    now
A5:   now
        assume
A6:     MDist p,q;
        a,b // p,q or a,b // q,p by A2,DIRAF:def 4;
        then MDist a,b by A6,AFVECT0:3,15;
        hence a,b // b,a by AFVECT0:def 2;
      end;
      assume
A7:   a<>b;
      then a,q // q,b by A4,Lm1;
      then
A8:   Mid a,q,b by AFVECT0:def 3;
A9:   now
        assume p=q;
        then a,b // p,p by A2,DIRAF:def 4;
        hence contradiction by A7,AFVECT0:def 1;
      end;
      a,p // p,b by A3,A7,Lm1;
      then Mid a,p,b by AFVECT0:def 3;
      hence a,b // b,a by A8,A9,A5,AFVECT0:20;
    end;
    hence a,b // b,a by AFVECT0:2;
  end;
  now
    assume
A10: a,b // b,a;
A11: now
      assume a<>b;
      then
A12:  MDist a,b by A10,AFVECT0:def 2;
      consider p such that
A13:  Mid a,p,b by AFVECT0:19;
A14:  a,p // p,b by A13,AFVECT0:def 3;
      consider q such that
A15:  a,b // p,q by AFVECT0:def 1;
      take p,q;
      Mid a,q,b by A13,A15,A12,AFVECT0:15,23;
      then a,q // q,b by AFVECT0:def 3;
      hence a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A15,A14,DIRAF:def 4;
    end;
    now
      assume
A16:  a=b;
      take p=a,q=a;
      a,b // p,q by A16,AFVECT0:2;
      hence a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A16,DIRAF:def 4;
    end;
    hence ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A11;
  end;
  hence thesis by A1;
end;

Lm3: a,b '||' c,d implies b,a '||' c,d
proof
  assume a,b '||' c,d;
  then a,b // c,d or a,b // d,c by DIRAF:def 4;
  then b,a // d,c or b,a // c,d by AFVECT0:7;
  hence thesis by DIRAF:def 4;
end;

Lm4: a,b '||' b,a
proof
  a,b // a,b by AFVECT0:1;
  hence thesis by DIRAF:def 4;
end;

Lm5: a,b '||' p,p implies a=b
proof
  assume a,b '||' p,p;
  then a,b // p,p by DIRAF:def 4;
  hence thesis by AFVECT0:def 1;
end;

Lm6: for a,b,c,d,p,q holds a,b '||' p,q & c,d '||' p,q implies a,b '||' c,d
proof
  let a,b,c,d,p,q;
  assume a,b '||' p,q & c,d '||' p,q;
  then a,b // p,q & c,d // p,q or a,b // p,q & c,d // q,p or a,b // q,p & c,d
  // p,q or a,b // q,p & c,d // q,p by DIRAF:def 4;
  then a,b // c,d or a,b // p,q & d,c // p,q or a,b // q,p & d,c // q,p by
AFVECT0:7,def 1;
  then a,b // c,d or a,b // d,c by AFVECT0:def 1;
  hence thesis by DIRAF:def 4;
end;

Lm7: ex b st a,b '||' b,c
proof
  consider b such that
A1: a,b // b,c by AFVECT0:def 1;
  take b;
  thus thesis by A1,DIRAF:def 4;
end;

Lm8: for a,a9,b,b9,p st a<>a9 & b<>b9 & p,a '||' p,a9 & p,b '||' p,b9 holds a,
b '||' a9,b9
proof
  let a,a9,b,b9,p;
  assume that
A1: a<>a9 and
A2: b<>b9 and
A3: p,a '||' p,a9 and
A4: p,b '||' p,b9;
  b,p // p,b9 by A2,A4,Lm1,Lm3;
  then
A5: Mid b,p,b9 by AFVECT0:def 3;
  a,p // p,a9 by A1,A3,Lm1,Lm3;
  then Mid a,p,a9 by AFVECT0:def 3;
  then a,b // b9,a9 by A5,AFVECT0:25;
  hence thesis by DIRAF:def 4;
end;

Lm9: a=b or ex c st a<>c & a,b '||' b,c or ex p,p9 st p<>p9 & a,b '||' p,p9 &
a,p '||' p,b & a,p9 '||' p9,b
proof
  consider c such that
A1: a,b // b,c by AFVECT0:def 1;
A2: now
    assume a=c;
    then consider p,p9 such that
A3: a,b '||' p,p9 and
A4: a,p '||' p,b & a,p9 '||' p9,b by A1,Lm2;
    p=p9 implies a=b by A3,Lm5;
    hence
    a=b or ex p,p9 st p<>p9 & a,b '||' p,p9 & a,p '||' p,b & a,p9 '||' p9
    ,b by A3,A4;
  end;
  now
    assume
A5: a<>c;
    a,b '||' b,c by A1,DIRAF:def 4;
    hence ex c st a<>c & a,b '||' b,c by A5;
  end;
  hence thesis by A2;
end;

Lm10: for a,b,b9,p,p9,c st a,b '||' b,c & b,b9 '||' p,p9 & b,p '||' p,b9 & b,
p9 '||' p9,b9 holds a,b9 '||' b9,c
proof
  let a,b,b9,p,p9,c;
  assume that
A1: a,b '||' b,c and
A2: b,b9 '||' p,p9 & b,p '||' p,b9 & b,p9 '||' p9,b9;
A3: b,b9 // b9,b by A2,Lm2;
A4: now
    assume
A5: a,b // b,c;
    then
A6: Mid a,b,c by AFVECT0:def 3;
A7: now
      assume MDist b,b9;
      then Mid a,b9,c by A6,AFVECT0:23;
      then a,b9 // b9,c by AFVECT0:def 3;
      hence thesis by DIRAF:def 4;
    end;
    b=b9 implies thesis by A5,DIRAF:def 4;
    hence thesis by A3,A7,AFVECT0:def 2;
  end;
  now
    assume a,b // c,b;
    then a=c by AFVECT0:4,7;
    then a,b9 // c,b9 by AFVECT0:1;
    hence thesis by DIRAF:def 4;
  end;
  hence thesis by A1,A4,DIRAF:def 4;
end;

Lm11: for a,b,b9,c st a<>c & b<>b9 & a,b '||' b,c & a,b9 '||' b9,c holds ex p,
p9 st p<>p9 & b,b9 '||' p,p9 & b,p '||' p,b9 & b,p9 '||' p9,b9
proof
  let a,b,b9,c;
  assume that
A1: a<>c and
A2: b<>b9 and
A3: a,b '||' b,c and
A4: a,b9 '||' b9,c;
  a,b9 // b9,c by A1,A4,Lm1;
  then
A5: Mid a,b9,c by AFVECT0:def 3;
  a,b // b,c by A1,A3,Lm1;
  then Mid a,b,c by AFVECT0:def 3;
  then MDist b, b9 by A2,A5,AFVECT0:20;
  then b,b9 // b9,b by AFVECT0:def 2;
  then consider p,p9 such that
A6: b,b9 '||' p,p9 and
A7: b,p '||' p,b9 & b,p9 '||' p9,b9 by Lm2;
  p<>p9 implies thesis by A6,A7;
  hence thesis by A2,A6,Lm5;
end;

Lm12: for a,b,c,p,p9,q,q9 st a,b '||' p,p9 & a,c '||' q,q9 & a,p '||' p,b & a,
q '||' q,c & a,p9 '||' p9,b & a,q9 '||' q9,c holds ex r,r9 st b,c '||' r,r9 & b
,r '||' r,c & b,r9 '||' r9,c
proof
  let a,b,c,p,p9,q,q9;
  assume a,b '||' p,p9 & a,c '||' q,q9 & a,p '||' p,b & a,q '||' q,c & a,p9
  '||' p9,b & a,q9 '||' q9,c;
  then a,b // b,a & a,c // c,a by Lm2;
  then b,c // c,b by AFVECT0:12;
  hence thesis by Lm2;
end;

set AFV0 = the WeakAffVect;
set X = the carrier of AFV0;
set XX = [:X,X:];
defpred P[object,object] means
ex a,b,c,d being Element of X st $1=[a,b] & $2=[c,d]
& a,b '||' c,d;
consider P being Relation of XX,XX such that
Lm13: for x,y being object holds [x,y] in P iff x in XX & y in XX & P[x,y]
from RELSET_1:sch 1;

Lm14: for a,b,c,d being Element of X holds [[a,b],[c,d]] in P iff a,b '||' c,d
proof
  let a,b,c,d be Element of X;
A1: [[a,b],[c,d]] in P implies a,b '||' c,d
  proof
    assume [[a,b],[c,d]] in P;
    then consider a9,b9,c9,d9 being Element of X such that
A2: [a,b]=[a9,b9] and
A3: [c,d]=[c9,d9] and
A4: a9,b9 '||' c9,d9 by Lm13;
A5: c = c9 by A3,XTUPLE_0:1;
    a=a9 & b=b9 by A2,XTUPLE_0:1;
    hence thesis by A3,A4,A5,XTUPLE_0:1;
  end;
  [a,b] in XX & [c,d] in XX by ZFMISC_1:def 2;
  hence thesis by A1,Lm13;
end;

set WAS = AffinStruct(#the carrier of AFV0,P#);

Lm15: for a,b,c,d being Element of AFV0, a9,b9,c9,d9 being Element
 of WAS st a=a9 & b=b9 & c =c9 & d=d9 holds a,b '||' c,d iff a9,b9 // c9
,d9
proof
  let a,b,c,d be Element of AFV0, a9,b9,c9,d9 be Element of WAS
  such that
A1: a=a9 & b=b9 & c =c9 & d=d9;
A2: now
    assume a9,b9 // c9,d9;
    then [[a9,b9],[c9,d9]] in P by ANALOAF:def 2;
    hence a,b '||' c,d by A1,Lm14;
  end;
  now
    assume a,b '||' c,d;
    then [[a,b],[c,d]] in the CONGR of WAS by Lm14;
    hence a9,b9 // c9,d9 by A1,ANALOAF:def 2;
  end;
  hence thesis by A2;
end;

Lm16: now
  thus ex a9,b9 being Element of WAS st a9<>b9 by STRUCT_0:def 10;
  thus for a9,b9 being Element of WAS holds a9,b9 // b9,a9
  proof
    let a9,b9 be Element of WAS;
    reconsider a=a9,b=b9 as Element of AFV0;
    a,b '||' b,a by Lm4;
    hence thesis by Lm15;
  end;
  thus for a9,b9 being Element of WAS st a9,b9 // a9,a9 holds a9=b9
  proof
    let a9,b9 be Element of WAS such that
A1: a9,b9 // a9,a9;
    reconsider a=a9,b=b9 as Element of AFV0;
    a,b '||' a,a by A1,Lm15;
    hence thesis by Lm5;
  end;
  thus for a,b,c,d,p,q being Element of WAS st a,b // p,q & c,d // p,q holds a
  ,b // c,d
  proof
    let a,b,c,d,p,q be Element of WAS such that
A2: a,b // p,q & c,d // p,q;
    reconsider a1=a,b1=b,c1=c, d1=d,p1=p,q1=q as Element of AFV0;
    a1,b1 '||' p1,q1 & c1,d1 '||' p1,q1 by A2,Lm15;
    then a1,b1 '||' c1,d1 by Lm6;
    hence thesis by Lm15;
  end;
  thus for a,c being Element of WAS ex b being Element of WAS st a,b // b,c
  proof
    let a,c be Element of WAS;
    reconsider a1=a,c1=c as Element of AFV0;
    consider b1 being Element of AFV0 such that
A3: a1,b1 '||' b1,c1 by Lm7;
    reconsider b=b1 as Element of WAS;
    a,b // b,c by A3,Lm15;
    hence thesis;
  end;
  thus for a,a9,b,b9,p being Element of WAS st a<>a9 & b<>b9& p,a // p,a9 & p,
  b // p,b9 holds a,b // a9,b9
  proof
    let a,a9,b,b9,p be Element of WAS such that
A4: a<>a9 & b<>b9 and
A5: p,a // p,a9 & p,b // p,b9;
    reconsider a1=a,a19=a9,b1=b,b19=b9,p1=p as Element of AFV0;
    p1,a1 '||' p1,a19 & p1,b1 '||' p1,b19 by A5,Lm15;
    then a1,b1 '||' a19,b19 by A4,Lm8;
    hence thesis by Lm15;
  end;
  thus for a,b being Element of WAS holds a=b or ex c being Element of WAS st
  a<>c & a,b // b,c or ex p,p9 being Element of WAS st p<>p9 & a,b // p,p9& a,p
  // p,b & a,p9 // p9,b
  proof
    let a,b be Element of WAS such that
A6: not a=b;
    reconsider a1=a,b1=b as Element of AFV0;
A7: now
      given p1,p19 being Element of AFV0 such that
A8:   p1<>p19 and
A9:   a1,b1 '||' p1,p19 & a1,p1 '||' p1,b1 and
A10:  a1,p19 '||' p19,b1;
      reconsider p=p1,p9=p19 as Element of WAS;
A11:  a,p9 // p9,b by A10,Lm15;
      a,b // p,p9 & a,p // p,b by A9,Lm15;
      hence
      ex p,p9 being Element of WAS st p<>p9 & a,b // p,p9& a,p // p,b & a
      ,p9 // p9,b by A8,A11;
    end;
    now
      given c1 being Element of AFV0 such that
A12:  a1<>c1 and
A13:  a1,b1 '||' b1,c1;
      reconsider c =c1 as Element of WAS;
      a,b // b,c by A13,Lm15;
      hence ex c being Element of WAS st a<>c & a,b // b,c by A12;
    end;
    hence thesis by A6,A7,Lm9;
  end;
  thus for a,b,b9,p,p9,c being Element of WAS st a,b // b,c & b,b9 // p,p9 & b
  ,p // p,b9& b,p9 // p9,b9 holds a,b9 // b9,c
  proof
    let a,b,b9,p,p9,c be Element of WAS such that
A14: a,b // b,c & b,b9 // p,p9 and
A15: b,p // p,b9 & b,p9 // p9,b9;
    reconsider a1=a,b1=b,b19=b9,p1=p, p19=p9,c1=c as Element of AFV0;
A16: b1,p1 '||' p1,b19 & b1,p19 '||' p19,b19 by A15,Lm15;
    a1,b1 '||' b1,c1 & b1,b19 '||' p1,p19 by A14,Lm15;
    then a1,b19 '||' b19,c1 by A16,Lm10;
    hence thesis by Lm15;
  end;
  thus for a,b,b9,c being Element of WAS st a<>c & b<>b9 & a,b // b,c & a,b9
// b9,c holds ex p,p9 being Element of WAS st p<>p9 & b,b9 // p,p9& b,p // p,b9
  & b,p9 // p9,b9
  proof
    let a,b,b9,c be Element of WAS such that
A17: a<>c & b<>b9 and
A18: a,b // b,c & a,b9 // b9,c;
    reconsider a1=a,b1=b,b19=b9,c1=c as Element of AFV0;
    a1,b1 '||' b1,c1 & a1,b19 '||' b19,c1 by A18,Lm15;
    then consider p1,p19 being Element of AFV0 such that
A19: p1<>p19 and
A20: b1,b19 '||' p1,p19 & b1,p1 '||' p1,b19 and
A21: b1,p19 '||' p19,b19 by A17,Lm11;
    reconsider p=p1,p9=p19 as Element of WAS;
A22: b,p9 // p9,b9 by A21,Lm15;
    b,b9 // p,p9 & b,p // p,b9 by A20,Lm15;
    hence thesis by A19,A22;
  end;
  thus for a,b,c,p,p9,q,q9 being Element of WAS st a,b // p,p9 & a,c // q,q9 &
  a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds ex r,r9 being
  Element of WAS st b,c // r,r9 & b,r // r,c & b,r9 // r9,c
  proof
    let a,b,c,p,p9,q,q9 be Element of WAS such that
A23: a,b // p,p9 & a,c // q,q9 and
A24: a,p // p,b & a,q // q,c and
A25: a,p9 // p9,b & a,q9 // q9,c;
    reconsider a1=a,b1=b,c1=c,p1=p,p19=p9,q1=q,q19=q9 as Element of AFV0;
A26: a1,p1 '||' p1,b1 & a1,q1 '||' q1,c1 by A24,Lm15;
A27: a1,p19 '||' p19,b1 & a1,q19 '||' q19,c1 by A25,Lm15;
    a1,b1 '||' p1,p19 & a1,c1 '||' q1,q19 by A23,Lm15;
    then consider r1,r19 being Element of AFV0 such that
A28: b1,c1 '||' r1,r19 & b1,r1 '||' r1,c1 and
A29: b1,r19 '||' r19,c1 by A26,A27,Lm12;
    reconsider r=r1,r9=r19 as Element of WAS;
A30: b,r9 // r9,c by A29,Lm15;
    b,c // r,r9 & b,r // r,c by A28,Lm15;
    hence thesis by A30;
  end;
end;

definition
  let IT be non empty AffinStruct;

  attr IT is WeakAffSegm-like means
  :Def1:
  (for a,b being Element of IT holds
a,b // b,a) & (for a,b being Element of IT st a,b // a,a holds a=b) & (for a,b,
c,d,p,q being Element of IT st a,b // p,q & c,d // p,q holds a,b // c,d) & (for
a,c being Element of IT ex b being Element of IT st a,b // b,c) & (for a,a9,b,
b9,p being Element of IT st a<>a9 & b<>b9& p,a // p,a9 & p,b // p,b9 holds a,b
// a9,b9) & (for a,b being Element of IT holds a=b or ex c being Element of IT
st ( a<>c & a,b // b,c) or ex p,p9 being Element of IT st (p<>p9 & a,b // p,p9
  & a,p // p,b & a,p9 // p9,b)) & (for a,b,b9,p,p9,c being Element of IT st a,b
// b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds a,b9 // b9,c) & (for
a,b,b9,c being Element of IT st a<>c & b<>b9 & a,b // b,c & a,b9 // b9,c holds
ex p,p9 being Element of IT st p<>p9 & b,b9 // p,p9& b,p // p,b9 & b,p9 // p9,
b9) & for a,b,c,p,p9,q,q9 being Element of IT st a,b // p,p9 & a,c // q,q9 & a,
p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds ex r,r9 being Element
  of IT st b,c // r,r9 & b,r // r,c & b,r9 // r9,c;
end;

registration
  cluster strict WeakAffSegm-like for non trivial AffinStruct;
  existence
  proof
    WAS is WeakAffSegm-like non trivial by Lm16;
    hence thesis;
  end;
end;

definition
  mode WeakAffSegm is WeakAffSegm-like non trivial AffinStruct;
end;

::
::         PROPERTIES OF RELATION OF CONGRUENCE OF THE CARRIER
::

reserve AFV for WeakAffSegm;
reserve a,b,b9,b99,c,d,p,p9 for Element of AFV;

theorem Th1:
  a,b // a,b
proof
  a,b // b,a by Def1;
  hence thesis by Def1;
end;

theorem Th2:
  a,b // c,d implies c,d // a,b
proof
  assume
A1: a,b // c,d;
  c,d // c,d by Th1;
  hence thesis by A1,Def1;
end;

theorem Th3:
  a,b // c,d implies a,b // d,c
proof
  assume
A1: a,b // c,d;
  d,c // c,d by Def1;
  hence thesis by A1,Def1;
end;

theorem Th4:
  a,b // c,d implies b,a // c,d
proof
  assume a,b // c,d;
  then c,d // a,b by Th2;
  then c,d // b,a by Th3;
  hence thesis by Th2;
end;

theorem Th5:
  for a,b holds a,a // b,b
proof
  let a,b;
  now
    consider c such that
A1: a,c // c,b by Def1;
    assume
A2: a<>b;
    c,a // c,b by A1,Th4;
    hence thesis by A2,Def1;
  end;
  hence thesis by Def1;
end;

theorem Th6:
  a,b // c,c implies a=b
proof
  assume
A1: a,b // c,c;
  a,a // c,c by Th5;
  then a,b // a,a by A1,Def1;
  hence thesis by Def1;
end;

theorem Th7:
  a,b // p,p9 & a,b // b,c & a,p // p,b & a,p9 // p9,b implies a=c
proof
  assume that
A1: a,b // p,p9 and
A2: a,b // b,c and
A3: a,p // p,b and
A4: a,p9 // p9,b;
  p,b // a,p by A3,Th2;
  then p,b // p,a by Th3;
  then
A5: b,p // p,a by Th4;
  p9,b // a,p9 by A4,Th2;
  then p9,b // p9,a by Th3;
  then
A6: b,p9 // p9,a by Th4;
  b,a // p,p9 by A1,Th4;
  then a,a // a,c by A2,A5,A6,Def1;
  then a,c // a,a by Th2;
  hence thesis by Def1;
end;

theorem
  a,b9 // a,b99 & a,b // a,b99 implies b=b9 or b=b99 or b9=b99
proof
  assume
A1: a,b9 // a,b99 & a,b // a,b99;
  now
    assume b9<>b99 & b<>b99;
    then b9,b // b99,b99 by A1,Def1;
    hence thesis by Th6;
  end;
  hence thesis;
end;

::
::          RELATION OF MAXIMAL DISTANCE AND MIDPOINT RELATION
::

definition
  let AFV;
  let a,b;

  pred MDist a,b means

  ex p,p9 st p<>p9 & a,b // p,p9 & a,p // p,b & a, p9 // p9,b;
end;

definition
  let AFV;
  let a,b,c;
  pred Mid a,b,c means
  a=b & b=c & a=c or a=c & MDist a,b or a<>c & a,b // b,c;
end;

theorem
  a<>b & not MDist a,b implies ex c st a<>c & a,b // b,c
by Def1;

theorem
  MDist a,b & a,b // b,c implies a=c
by Th7;

theorem
  MDist a,b implies a<>b
by Th2,Th6;