Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 16,109 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
:: One-Dimensional Congruence of Segments, Basic Facts and Midpoint Relation
:: by Barbara Konstanta, Urszula Kowieska, Grzegorz Lewandowski and
:: http://creativecommons.org/licenses/by-sa/3.0/.
environ
vocabularies AFVECT0, SUBSET_1, XBOOLE_0, RELAT_1, ZFMISC_1, ANALOAF, PARSP_1,
DIRAF, STRUCT_0, AFVECT01;
notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, STRUCT_0, ANALOAF, DIRAF,
AFVECT0, RELSET_1;
constructors DOMAIN_1, DIRAF, AFVECT0;
registrations XBOOLE_0, STRUCT_0, AFVECT0;
requirements SUBSET, BOOLE;
theorems ZFMISC_1, AFVECT0, STRUCT_0, ANALOAF, DIRAF, XTUPLE_0;
schemes RELSET_1;
begin
reserve AFV for WeakAffVect;
reserve a,a9,b,b9,c,d,p,p9,q,q9,r,r9 for Element of AFV;
registration
let A be non empty set, C be Relation of [:A,A:];
cluster AffinStruct(#A,C#) -> non empty;
coherence;
end;
Lm1: a,b '||' b,c & a<>c implies a,b // b,c
proof
assume that
A1: a,b '||' b,c and
A2: a<>c;
not a,b // c,b by A2,AFVECT0:4,7;
hence thesis by A1,DIRAF:def 4;
end;
Lm2: a,b // b,a iff ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b
proof
A1: now
given p,q such that
A2: a,b '||' p,q and
A3: a,p '||' p,b and
A4: a,q '||' q,b;
now
A5: now
assume
A6: MDist p,q;
a,b // p,q or a,b // q,p by A2,DIRAF:def 4;
then MDist a,b by A6,AFVECT0:3,15;
hence a,b // b,a by AFVECT0:def 2;
end;
assume
A7: a<>b;
then a,q // q,b by A4,Lm1;
then
A8: Mid a,q,b by AFVECT0:def 3;
A9: now
assume p=q;
then a,b // p,p by A2,DIRAF:def 4;
hence contradiction by A7,AFVECT0:def 1;
end;
a,p // p,b by A3,A7,Lm1;
then Mid a,p,b by AFVECT0:def 3;
hence a,b // b,a by A8,A9,A5,AFVECT0:20;
end;
hence a,b // b,a by AFVECT0:2;
end;
now
assume
A10: a,b // b,a;
A11: now
assume a<>b;
then
A12: MDist a,b by A10,AFVECT0:def 2;
consider p such that
A13: Mid a,p,b by AFVECT0:19;
A14: a,p // p,b by A13,AFVECT0:def 3;
consider q such that
A15: a,b // p,q by AFVECT0:def 1;
take p,q;
Mid a,q,b by A13,A15,A12,AFVECT0:15,23;
then a,q // q,b by AFVECT0:def 3;
hence a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A15,A14,DIRAF:def 4;
end;
now
assume
A16: a=b;
take p=a,q=a;
a,b // p,q by A16,AFVECT0:2;
hence a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A16,DIRAF:def 4;
end;
hence ex p,q st a,b '||' p,q & a,p '||' p,b & a,q '||' q,b by A11;
end;
hence thesis by A1;
end;
Lm3: a,b '||' c,d implies b,a '||' c,d
proof
assume a,b '||' c,d;
then a,b // c,d or a,b // d,c by DIRAF:def 4;
then b,a // d,c or b,a // c,d by AFVECT0:7;
hence thesis by DIRAF:def 4;
end;
Lm4: a,b '||' b,a
proof
a,b // a,b by AFVECT0:1;
hence thesis by DIRAF:def 4;
end;
Lm5: a,b '||' p,p implies a=b
proof
assume a,b '||' p,p;
then a,b // p,p by DIRAF:def 4;
hence thesis by AFVECT0:def 1;
end;
Lm6: for a,b,c,d,p,q holds a,b '||' p,q & c,d '||' p,q implies a,b '||' c,d
proof
let a,b,c,d,p,q;
assume a,b '||' p,q & c,d '||' p,q;
then a,b // p,q & c,d // p,q or a,b // p,q & c,d // q,p or a,b // q,p & c,d
// p,q or a,b // q,p & c,d // q,p by DIRAF:def 4;
then a,b // c,d or a,b // p,q & d,c // p,q or a,b // q,p & d,c // q,p by
AFVECT0:7,def 1;
then a,b // c,d or a,b // d,c by AFVECT0:def 1;
hence thesis by DIRAF:def 4;
end;
Lm7: ex b st a,b '||' b,c
proof
consider b such that
A1: a,b // b,c by AFVECT0:def 1;
take b;
thus thesis by A1,DIRAF:def 4;
end;
Lm8: for a,a9,b,b9,p st a<>a9 & b<>b9 & p,a '||' p,a9 & p,b '||' p,b9 holds a,
b '||' a9,b9
proof
let a,a9,b,b9,p;
assume that
A1: a<>a9 and
A2: b<>b9 and
A3: p,a '||' p,a9 and
A4: p,b '||' p,b9;
b,p // p,b9 by A2,A4,Lm1,Lm3;
then
A5: Mid b,p,b9 by AFVECT0:def 3;
a,p // p,a9 by A1,A3,Lm1,Lm3;
then Mid a,p,a9 by AFVECT0:def 3;
then a,b // b9,a9 by A5,AFVECT0:25;
hence thesis by DIRAF:def 4;
end;
Lm9: a=b or ex c st a<>c & a,b '||' b,c or ex p,p9 st p<>p9 & a,b '||' p,p9 &
a,p '||' p,b & a,p9 '||' p9,b
proof
consider c such that
A1: a,b // b,c by AFVECT0:def 1;
A2: now
assume a=c;
then consider p,p9 such that
A3: a,b '||' p,p9 and
A4: a,p '||' p,b & a,p9 '||' p9,b by A1,Lm2;
p=p9 implies a=b by A3,Lm5;
hence
a=b or ex p,p9 st p<>p9 & a,b '||' p,p9 & a,p '||' p,b & a,p9 '||' p9
,b by A3,A4;
end;
now
assume
A5: a<>c;
a,b '||' b,c by A1,DIRAF:def 4;
hence ex c st a<>c & a,b '||' b,c by A5;
end;
hence thesis by A2;
end;
Lm10: for a,b,b9,p,p9,c st a,b '||' b,c & b,b9 '||' p,p9 & b,p '||' p,b9 & b,
p9 '||' p9,b9 holds a,b9 '||' b9,c
proof
let a,b,b9,p,p9,c;
assume that
A1: a,b '||' b,c and
A2: b,b9 '||' p,p9 & b,p '||' p,b9 & b,p9 '||' p9,b9;
A3: b,b9 // b9,b by A2,Lm2;
A4: now
assume
A5: a,b // b,c;
then
A6: Mid a,b,c by AFVECT0:def 3;
A7: now
assume MDist b,b9;
then Mid a,b9,c by A6,AFVECT0:23;
then a,b9 // b9,c by AFVECT0:def 3;
hence thesis by DIRAF:def 4;
end;
b=b9 implies thesis by A5,DIRAF:def 4;
hence thesis by A3,A7,AFVECT0:def 2;
end;
now
assume a,b // c,b;
then a=c by AFVECT0:4,7;
then a,b9 // c,b9 by AFVECT0:1;
hence thesis by DIRAF:def 4;
end;
hence thesis by A1,A4,DIRAF:def 4;
end;
Lm11: for a,b,b9,c st a<>c & b<>b9 & a,b '||' b,c & a,b9 '||' b9,c holds ex p,
p9 st p<>p9 & b,b9 '||' p,p9 & b,p '||' p,b9 & b,p9 '||' p9,b9
proof
let a,b,b9,c;
assume that
A1: a<>c and
A2: b<>b9 and
A3: a,b '||' b,c and
A4: a,b9 '||' b9,c;
a,b9 // b9,c by A1,A4,Lm1;
then
A5: Mid a,b9,c by AFVECT0:def 3;
a,b // b,c by A1,A3,Lm1;
then Mid a,b,c by AFVECT0:def 3;
then MDist b, b9 by A2,A5,AFVECT0:20;
then b,b9 // b9,b by AFVECT0:def 2;
then consider p,p9 such that
A6: b,b9 '||' p,p9 and
A7: b,p '||' p,b9 & b,p9 '||' p9,b9 by Lm2;
p<>p9 implies thesis by A6,A7;
hence thesis by A2,A6,Lm5;
end;
Lm12: for a,b,c,p,p9,q,q9 st a,b '||' p,p9 & a,c '||' q,q9 & a,p '||' p,b & a,
q '||' q,c & a,p9 '||' p9,b & a,q9 '||' q9,c holds ex r,r9 st b,c '||' r,r9 & b
,r '||' r,c & b,r9 '||' r9,c
proof
let a,b,c,p,p9,q,q9;
assume a,b '||' p,p9 & a,c '||' q,q9 & a,p '||' p,b & a,q '||' q,c & a,p9
'||' p9,b & a,q9 '||' q9,c;
then a,b // b,a & a,c // c,a by Lm2;
then b,c // c,b by AFVECT0:12;
hence thesis by Lm2;
end;
set AFV0 = the WeakAffVect;
set X = the carrier of AFV0;
set XX = [:X,X:];
defpred P[object,object] means
ex a,b,c,d being Element of X st $1=[a,b] & $2=[c,d]
& a,b '||' c,d;
consider P being Relation of XX,XX such that
Lm13: for x,y being object holds [x,y] in P iff x in XX & y in XX & P[x,y]
from RELSET_1:sch 1;
Lm14: for a,b,c,d being Element of X holds [[a,b],[c,d]] in P iff a,b '||' c,d
proof
let a,b,c,d be Element of X;
A1: [[a,b],[c,d]] in P implies a,b '||' c,d
proof
assume [[a,b],[c,d]] in P;
then consider a9,b9,c9,d9 being Element of X such that
A2: [a,b]=[a9,b9] and
A3: [c,d]=[c9,d9] and
A4: a9,b9 '||' c9,d9 by Lm13;
A5: c = c9 by A3,XTUPLE_0:1;
a=a9 & b=b9 by A2,XTUPLE_0:1;
hence thesis by A3,A4,A5,XTUPLE_0:1;
end;
[a,b] in XX & [c,d] in XX by ZFMISC_1:def 2;
hence thesis by A1,Lm13;
end;
set WAS = AffinStruct(#the carrier of AFV0,P#);
Lm15: for a,b,c,d being Element of AFV0, a9,b9,c9,d9 being Element
of WAS st a=a9 & b=b9 & c =c9 & d=d9 holds a,b '||' c,d iff a9,b9 // c9
,d9
proof
let a,b,c,d be Element of AFV0, a9,b9,c9,d9 be Element of WAS
such that
A1: a=a9 & b=b9 & c =c9 & d=d9;
A2: now
assume a9,b9 // c9,d9;
then [[a9,b9],[c9,d9]] in P by ANALOAF:def 2;
hence a,b '||' c,d by A1,Lm14;
end;
now
assume a,b '||' c,d;
then [[a,b],[c,d]] in the CONGR of WAS by Lm14;
hence a9,b9 // c9,d9 by A1,ANALOAF:def 2;
end;
hence thesis by A2;
end;
Lm16: now
thus ex a9,b9 being Element of WAS st a9<>b9 by STRUCT_0:def 10;
thus for a9,b9 being Element of WAS holds a9,b9 // b9,a9
proof
let a9,b9 be Element of WAS;
reconsider a=a9,b=b9 as Element of AFV0;
a,b '||' b,a by Lm4;
hence thesis by Lm15;
end;
thus for a9,b9 being Element of WAS st a9,b9 // a9,a9 holds a9=b9
proof
let a9,b9 be Element of WAS such that
A1: a9,b9 // a9,a9;
reconsider a=a9,b=b9 as Element of AFV0;
a,b '||' a,a by A1,Lm15;
hence thesis by Lm5;
end;
thus for a,b,c,d,p,q being Element of WAS st a,b // p,q & c,d // p,q holds a
,b // c,d
proof
let a,b,c,d,p,q be Element of WAS such that
A2: a,b // p,q & c,d // p,q;
reconsider a1=a,b1=b,c1=c, d1=d,p1=p,q1=q as Element of AFV0;
a1,b1 '||' p1,q1 & c1,d1 '||' p1,q1 by A2,Lm15;
then a1,b1 '||' c1,d1 by Lm6;
hence thesis by Lm15;
end;
thus for a,c being Element of WAS ex b being Element of WAS st a,b // b,c
proof
let a,c be Element of WAS;
reconsider a1=a,c1=c as Element of AFV0;
consider b1 being Element of AFV0 such that
A3: a1,b1 '||' b1,c1 by Lm7;
reconsider b=b1 as Element of WAS;
a,b // b,c by A3,Lm15;
hence thesis;
end;
thus for a,a9,b,b9,p being Element of WAS st a<>a9 & b<>b9& p,a // p,a9 & p,
b // p,b9 holds a,b // a9,b9
proof
let a,a9,b,b9,p be Element of WAS such that
A4: a<>a9 & b<>b9 and
A5: p,a // p,a9 & p,b // p,b9;
reconsider a1=a,a19=a9,b1=b,b19=b9,p1=p as Element of AFV0;
p1,a1 '||' p1,a19 & p1,b1 '||' p1,b19 by A5,Lm15;
then a1,b1 '||' a19,b19 by A4,Lm8;
hence thesis by Lm15;
end;
thus for a,b being Element of WAS holds a=b or ex c being Element of WAS st
a<>c & a,b // b,c or ex p,p9 being Element of WAS st p<>p9 & a,b // p,p9& a,p
// p,b & a,p9 // p9,b
proof
let a,b be Element of WAS such that
A6: not a=b;
reconsider a1=a,b1=b as Element of AFV0;
A7: now
given p1,p19 being Element of AFV0 such that
A8: p1<>p19 and
A9: a1,b1 '||' p1,p19 & a1,p1 '||' p1,b1 and
A10: a1,p19 '||' p19,b1;
reconsider p=p1,p9=p19 as Element of WAS;
A11: a,p9 // p9,b by A10,Lm15;
a,b // p,p9 & a,p // p,b by A9,Lm15;
hence
ex p,p9 being Element of WAS st p<>p9 & a,b // p,p9& a,p // p,b & a
,p9 // p9,b by A8,A11;
end;
now
given c1 being Element of AFV0 such that
A12: a1<>c1 and
A13: a1,b1 '||' b1,c1;
reconsider c =c1 as Element of WAS;
a,b // b,c by A13,Lm15;
hence ex c being Element of WAS st a<>c & a,b // b,c by A12;
end;
hence thesis by A6,A7,Lm9;
end;
thus for a,b,b9,p,p9,c being Element of WAS st a,b // b,c & b,b9 // p,p9 & b
,p // p,b9& b,p9 // p9,b9 holds a,b9 // b9,c
proof
let a,b,b9,p,p9,c be Element of WAS such that
A14: a,b // b,c & b,b9 // p,p9 and
A15: b,p // p,b9 & b,p9 // p9,b9;
reconsider a1=a,b1=b,b19=b9,p1=p, p19=p9,c1=c as Element of AFV0;
A16: b1,p1 '||' p1,b19 & b1,p19 '||' p19,b19 by A15,Lm15;
a1,b1 '||' b1,c1 & b1,b19 '||' p1,p19 by A14,Lm15;
then a1,b19 '||' b19,c1 by A16,Lm10;
hence thesis by Lm15;
end;
thus for a,b,b9,c being Element of WAS st a<>c & b<>b9 & a,b // b,c & a,b9
// b9,c holds ex p,p9 being Element of WAS st p<>p9 & b,b9 // p,p9& b,p // p,b9
& b,p9 // p9,b9
proof
let a,b,b9,c be Element of WAS such that
A17: a<>c & b<>b9 and
A18: a,b // b,c & a,b9 // b9,c;
reconsider a1=a,b1=b,b19=b9,c1=c as Element of AFV0;
a1,b1 '||' b1,c1 & a1,b19 '||' b19,c1 by A18,Lm15;
then consider p1,p19 being Element of AFV0 such that
A19: p1<>p19 and
A20: b1,b19 '||' p1,p19 & b1,p1 '||' p1,b19 and
A21: b1,p19 '||' p19,b19 by A17,Lm11;
reconsider p=p1,p9=p19 as Element of WAS;
A22: b,p9 // p9,b9 by A21,Lm15;
b,b9 // p,p9 & b,p // p,b9 by A20,Lm15;
hence thesis by A19,A22;
end;
thus for a,b,c,p,p9,q,q9 being Element of WAS st a,b // p,p9 & a,c // q,q9 &
a,p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds ex r,r9 being
Element of WAS st b,c // r,r9 & b,r // r,c & b,r9 // r9,c
proof
let a,b,c,p,p9,q,q9 be Element of WAS such that
A23: a,b // p,p9 & a,c // q,q9 and
A24: a,p // p,b & a,q // q,c and
A25: a,p9 // p9,b & a,q9 // q9,c;
reconsider a1=a,b1=b,c1=c,p1=p,p19=p9,q1=q,q19=q9 as Element of AFV0;
A26: a1,p1 '||' p1,b1 & a1,q1 '||' q1,c1 by A24,Lm15;
A27: a1,p19 '||' p19,b1 & a1,q19 '||' q19,c1 by A25,Lm15;
a1,b1 '||' p1,p19 & a1,c1 '||' q1,q19 by A23,Lm15;
then consider r1,r19 being Element of AFV0 such that
A28: b1,c1 '||' r1,r19 & b1,r1 '||' r1,c1 and
A29: b1,r19 '||' r19,c1 by A26,A27,Lm12;
reconsider r=r1,r9=r19 as Element of WAS;
A30: b,r9 // r9,c by A29,Lm15;
b,c // r,r9 & b,r // r,c by A28,Lm15;
hence thesis by A30;
end;
end;
definition
let IT be non empty AffinStruct;
attr IT is WeakAffSegm-like means
:Def1:
(for a,b being Element of IT holds
a,b // b,a) & (for a,b being Element of IT st a,b // a,a holds a=b) & (for a,b,
c,d,p,q being Element of IT st a,b // p,q & c,d // p,q holds a,b // c,d) & (for
a,c being Element of IT ex b being Element of IT st a,b // b,c) & (for a,a9,b,
b9,p being Element of IT st a<>a9 & b<>b9& p,a // p,a9 & p,b // p,b9 holds a,b
// a9,b9) & (for a,b being Element of IT holds a=b or ex c being Element of IT
st ( a<>c & a,b // b,c) or ex p,p9 being Element of IT st (p<>p9 & a,b // p,p9
& a,p // p,b & a,p9 // p9,b)) & (for a,b,b9,p,p9,c being Element of IT st a,b
// b,c & b,b9 // p,p9 & b,p // p,b9 & b,p9 // p9,b9 holds a,b9 // b9,c) & (for
a,b,b9,c being Element of IT st a<>c & b<>b9 & a,b // b,c & a,b9 // b9,c holds
ex p,p9 being Element of IT st p<>p9 & b,b9 // p,p9& b,p // p,b9 & b,p9 // p9,
b9) & for a,b,c,p,p9,q,q9 being Element of IT st a,b // p,p9 & a,c // q,q9 & a,
p // p,b & a,q // q,c & a,p9 // p9,b & a,q9 // q9,c holds ex r,r9 being Element
of IT st b,c // r,r9 & b,r // r,c & b,r9 // r9,c;
end;
registration
cluster strict WeakAffSegm-like for non trivial AffinStruct;
existence
proof
WAS is WeakAffSegm-like non trivial by Lm16;
hence thesis;
end;
end;
definition
mode WeakAffSegm is WeakAffSegm-like non trivial AffinStruct;
end;
::
:: PROPERTIES OF RELATION OF CONGRUENCE OF THE CARRIER
::
reserve AFV for WeakAffSegm;
reserve a,b,b9,b99,c,d,p,p9 for Element of AFV;
theorem Th1:
a,b // a,b
proof
a,b // b,a by Def1;
hence thesis by Def1;
end;
theorem Th2:
a,b // c,d implies c,d // a,b
proof
assume
A1: a,b // c,d;
c,d // c,d by Th1;
hence thesis by A1,Def1;
end;
theorem Th3:
a,b // c,d implies a,b // d,c
proof
assume
A1: a,b // c,d;
d,c // c,d by Def1;
hence thesis by A1,Def1;
end;
theorem Th4:
a,b // c,d implies b,a // c,d
proof
assume a,b // c,d;
then c,d // a,b by Th2;
then c,d // b,a by Th3;
hence thesis by Th2;
end;
theorem Th5:
for a,b holds a,a // b,b
proof
let a,b;
now
consider c such that
A1: a,c // c,b by Def1;
assume
A2: a<>b;
c,a // c,b by A1,Th4;
hence thesis by A2,Def1;
end;
hence thesis by Def1;
end;
theorem Th6:
a,b // c,c implies a=b
proof
assume
A1: a,b // c,c;
a,a // c,c by Th5;
then a,b // a,a by A1,Def1;
hence thesis by Def1;
end;
theorem Th7:
a,b // p,p9 & a,b // b,c & a,p // p,b & a,p9 // p9,b implies a=c
proof
assume that
A1: a,b // p,p9 and
A2: a,b // b,c and
A3: a,p // p,b and
A4: a,p9 // p9,b;
p,b // a,p by A3,Th2;
then p,b // p,a by Th3;
then
A5: b,p // p,a by Th4;
p9,b // a,p9 by A4,Th2;
then p9,b // p9,a by Th3;
then
A6: b,p9 // p9,a by Th4;
b,a // p,p9 by A1,Th4;
then a,a // a,c by A2,A5,A6,Def1;
then a,c // a,a by Th2;
hence thesis by Def1;
end;
theorem
a,b9 // a,b99 & a,b // a,b99 implies b=b9 or b=b99 or b9=b99
proof
assume
A1: a,b9 // a,b99 & a,b // a,b99;
now
assume b9<>b99 & b<>b99;
then b9,b // b99,b99 by A1,Def1;
hence thesis by Th6;
end;
hence thesis;
end;
::
:: RELATION OF MAXIMAL DISTANCE AND MIDPOINT RELATION
::
definition
let AFV;
let a,b;
pred MDist a,b means
ex p,p9 st p<>p9 & a,b // p,p9 & a,p // p,b & a, p9 // p9,b;
end;
definition
let AFV;
let a,b,c;
pred Mid a,b,c means
a=b & b=c & a=c or a=c & MDist a,b or a<>c & a,b // b,c;
end;
theorem
a<>b & not MDist a,b implies ex c st a<>c & a,b // b,c
by Def1;
theorem
MDist a,b & a,b // b,c implies a=c
by Th7;
theorem
MDist a,b implies a<>b
by Th2,Th6;
|