Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 72,494 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
:: Zero Based Finite Sequences
::  by Tetsuya Tsunetou , Grzegorz Bancerek and Yatsuka Nakamura

environ

 vocabularies NUMBERS, SUBSET_1, FUNCT_1, ARYTM_3, XXREAL_0, XBOOLE_0, TARSKI,
      NAT_1, ORDINAL1, FINSEQ_1, CARD_1, FINSET_1, RELAT_1, PARTFUN1, FUNCOP_1,
      ORDINAL4, ORDINAL2, ARYTM_1, REAL_1, ZFMISC_1, FUNCT_4, VALUED_0,
      AFINSQ_1, PRGCOR_2, CAT_1, AMISTD_1, AMISTD_3, AMISTD_2, VALUED_1,
      CONNSP_3, XCMPLX_0;
 notations TARSKI, XBOOLE_0, ZFMISC_1, SUBSET_1, RELAT_1, FUNCT_1, ORDINAL1,
      CARD_1, ORDINAL2, NUMBERS, ORDINAL4, XCMPLX_0, XREAL_0, NAT_1, PARTFUN1,
      BINOP_1, FINSOP_1, NAT_D, FINSET_1, FINSEQ_1, FUNCOP_1, FUNCT_4, FUNCT_7,
      XXREAL_0, VALUED_0, VALUED_1;
 constructors WELLORD2, FUNCT_4, XXREAL_0, ORDINAL4, FUNCT_7, ORDINAL3,
      VALUED_1, ENUMSET1, NAT_D, XXREAL_2, BINOP_1, FINSOP_1, RELSET_1, CARD_1,
      NUMBERS;
 registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_1, ORDINAL1, FUNCOP_1,
      XXREAL_0, XREAL_0, NAT_1, CARD_1, ORDINAL2, NUMBERS, VALUED_1, XXREAL_2,
      MEMBERED, FINSET_1, FUNCT_4, FINSEQ_1, INT_1;
 requirements REAL, NUMERALS, SUBSET, BOOLE, ARITHM;
 definitions TARSKI, ORDINAL1, XBOOLE_0, RELAT_1, PARTFUN1, CARD_1;
 equalities ORDINAL1, FUNCOP_1, VALUED_1;
 expansions TARSKI, ORDINAL1, RELAT_1, CARD_1, FUNCT_1;
 theorems TARSKI, AXIOMS, FUNCT_1, NAT_1, ZFMISC_1, RELAT_1, RELSET_1,
      ORDINAL1, CARD_1, FINSEQ_1, FUNCT_7, ORDINAL4, CARD_2, FUNCT_4, ORDINAL3,
      XBOOLE_0, XBOOLE_1, FINSET_1, FUNCOP_1, XREAL_1, VALUED_0, ENUMSET1,
      XXREAL_0, XREAL_0, GRFUNC_1, XXREAL_2, NAT_D, VALUED_1, XTUPLE_0,
      FINSEQ_3, ORDINAL2, INT_1;
 schemes FUNCT_1, SUBSET_1, NAT_1, XBOOLE_0, CLASSES1, FINSEQ_1;

begin

reserve k,n for Nat,
  x,y,z,y1,y2 for object,X,Y for set,
  f,g for Function;

:: Extended Segments of Natural Numbers

theorem Th0: ::: CHORD:1 moved eventually from there -> go to INT_1
  for n being non zero Nat holds n-1 is Nat & 1 <= n
  proof
   let n be non zero Nat;
A1: 0+1 <= n by NAT_1:13;
   then 0+1-1 <= n-1 by XREAL_1:9;
   then n-1 in NAT by INT_1:3;
   hence n-1 is Nat;
   thus thesis by A1;
end;

theorem Th1:
  Segm n \/ { n } = Segm(n+1)
proof
   n in Segm(n+1) by NAT_1:45;
   then
A1:{n} c= Segm(n+1) by ZFMISC_1:31;
   Segm n c= Segm(n+1) by NAT_1:39,11;
  hence Segm n \/ { n } c= Segm(n+1) by A1,XBOOLE_1:8;
  let x be object;
  assume
A2: x in Segm(n+1);
    then reconsider x as Nat;
  now
   x < n+1 by A2,NAT_1:44;
   then per cases by NAT_1:22;
   case x < n;
    hence x in Segm n by NAT_1:44;
   end;
   case x = n;
    hence x in {n} by TARSKI:def 1;
   end;
  end;
 hence thesis by XBOOLE_0:def 3;
end;

theorem Th2:
  Seg n c= Segm(n+1)
proof
  let x be object;
  assume
A1: x in Seg n;
  then reconsider x as Element of NAT;
  x<=n by A1,FINSEQ_1:1;
  then x<n+1 by NAT_1:13;
  hence thesis by NAT_1:44;
end;

theorem
  n+1 = {0} \/ Seg n
proof
  thus n+1 c= {0} \/ Seg n
  proof
   let x be object;
    assume x in n+1;
    then x in {j where j is Nat: j<n+1} by AXIOMS:4;
    then consider j being Nat such that
A1: j=x and
A2: j<n+1;
    j=0 or 1<j+1 & j<=n by A2,NAT_1:13,XREAL_1:29;
    then j=0 or 1<=j & j<=n by NAT_1:13;
    then x in {0} or x in Seg n by A1,FINSEQ_1:1,TARSKI:def 1;
    hence thesis by XBOOLE_0:def 3;
  end;
A3: Segm 1 c= Segm(n+1) by NAT_1:39,11;
  Seg(n) c= Segm(n+1) by Th2;
  hence thesis by A3,CARD_1:49,XBOOLE_1:8;
end;

::  Finite ExFinSequences

theorem
  for r being Function holds r is finite Sequence-like iff
  ex n st dom r = n by FINSET_1:10;

definition
  mode XFinSequence is finite Sequence;
end;

reserve p,q,r,s,t for XFinSequence;

registration let p;
  cluster dom p -> natural;
  coherence;
end;

notation let p;
  synonym len p for card p;
end;

registration let p;
  identify len p with dom p;
  compatibility
  proof
    thus len p = card dom p by CARD_1:62
      .= dom p;
  end;
  identify dom p with len p;
  compatibility;
end;

definition let p;
  redefine func len p -> Element of NAT;
  coherence
  proof
    card p = card p;
    hence thesis;
  end;
end;

definition let p;
  redefine func dom p -> Subset of NAT;
  coherence
  proof
    {i where i is Nat:i<len p} c= NAT
    proof
      let x be object;
      assume x in {i where i is Nat:i<len p};
      then ex i being Nat st i=x & i<len p;
      hence thesis by ORDINAL1:def 12;
    end;
    hence thesis by AXIOMS:4;
  end;
end;

theorem
  (ex k st dom f c= k) implies ex p st f c= p
proof
  given k such that
A1: dom f c= k;
  deffunc F(object) = f.$1;
  consider g such that
A2: dom g = k &
for x being object st x in k holds g.x = F(x) from FUNCT_1:sch 3;
  reconsider g as XFinSequence by A2,FINSET_1:10,ORDINAL1:def 7;
  take g;
  let y,z be object;
  assume A3: [y,z] in f;
  then
A4: y in dom f by XTUPLE_0:def 12;
  then
A5: [y,g.y] in g by A1,A2,FUNCT_1:1;
  z is set by TARSKI:1;
  then f.y = z by A3,A4,FUNCT_1:def 2;
  hence thesis by A1,A2,A4,A5;
end;

scheme XSeqEx{A()->Nat,P[object,object]}:
  ex p st dom p = A() & for k st k in A() holds P[k,p.k]
provided
A1: for k st k in A() ex x being object st P[k,x]
proof
A2: for x being object st x in A() ex y being object st P[x,y]
  proof
    let x be object;
    assume
A3: x in A();
    A()={i where i is Nat: i<A()} by AXIOMS:4;
    then ex i being Nat st i=x & i<A() by A3;
    hence thesis by A1,A3;
  end;
  consider f being Function such that
A4: dom f = A() &
  for x being object st x in A() holds P[x,f.x] from CLASSES1:sch 1(A2);
  reconsider p=f as XFinSequence by A4,FINSET_1:10,ORDINAL1:def 7;
  take p;
  thus thesis by A4;
end;

scheme
  XSeqLambda{A()->Nat,F(object) -> object}:
ex p being XFinSequence st len p = A() &
  for k st k in A() holds p.k=F(k) proof
  consider f being Function such that
A1: dom f = A() &
for x being object st x in A() holds f.x=F(x) from FUNCT_1:sch 3;
  reconsider p=f as XFinSequence by A1,FINSET_1:10,ORDINAL1:def 7;
  take p;
  thus thesis by A1;
end;

theorem
  z in p implies ex k st k in dom p & z=[k,p.k]
proof
  assume
A1: z in p;
  then consider x,y being object such that
A2: z=[x,y] by RELAT_1:def 1;
  x in dom p by A1,A2,FUNCT_1:1;
  then reconsider k = x as Element of NAT;
  take k;
  thus thesis by A1,A2,FUNCT_1:1;
end;

theorem
  dom p = dom q & (for k st k in dom p holds p.k = q.k) implies p = q;

Lm1: k < len p iff k in dom p
 proof
  thus k < len p implies k in dom p
   proof assume k < len p;
     then k in Segm len p by NAT_1:44;
    hence k in dom p;
   end;
  assume k in dom p;
   then k in Segm len p;
  hence k < len p by NAT_1:44;
 end;

theorem Th8:
  ( len p = len q & for k st k < len p holds p.k=q.k ) implies p=q
proof
  assume that
A1: len p = len q and
A2: for k st k<len p holds p.k = q.k;
   for x being object st x in dom p holds p.x = q.x by A2,Lm1;
  hence thesis by A1;
end;

registration let p,n;
  cluster p|n -> finite;
  coherence;
end;

theorem
  rng p c= dom f implies f*p is XFinSequence
proof
  assume rng p c= dom f;
  then dom(f*p) = len p by RELAT_1:27;
  hence thesis by ORDINAL1:def 7;
end;

theorem Th10:
  k <= len p implies dom(p|k) = k
 proof assume k <= len p;
   then Segm k c= Segm len p by NAT_1:39;
  hence dom(p|k) = k by RELAT_1:62;
 end;

:: XFinSequences of D

registration let D be set;
  cluster finite for Sequence of D;
  existence
  proof
    {} is Sequence of D by ORDINAL1:30;
    hence thesis;
  end;
end;

definition let D be set;
  mode XFinSequence of D is finite Sequence of D;
end;

theorem Th11:
  for D being set, f being XFinSequence of D holds f is PartFunc of NAT,D
proof
  let D be set, f be XFinSequence of D;
  dom f c= NAT & rng f c= D by RELAT_1:def 19;
  hence thesis by RELSET_1:4;
end;

registration
  cluster empty -> Sequence-like for Function;
  coherence;
end;

reserve D for set;

registration
 let k be Nat, a be object;
 cluster Segm k --> a -> finite Sequence-like;
 coherence;
end;

::$CT

theorem Th12:
  for D being non empty set ex p being XFinSequence of D st len p = k
proof
  let D be non empty set;
  set y = the Element of D;
  set p = k --> y;
  reconsider p = k --> y as XFinSequence;
  reconsider p as XFinSequence of D;
  take p;
  thus thesis;
end;

::                                ::
::    The Empty XFinSequence      ::
::                                ::

theorem
  len p = 0 iff p = {};

theorem Th14:
  for D be set holds {} is XFinSequence of D
proof
  let D be set;
  rng {} c= D;
  hence thesis by RELAT_1:def 19;
end;

registration let D be set;
  cluster empty for XFinSequence of D;
  existence
  proof
    {} is XFinSequence of D by Th14;
    hence thesis;
  end;
end;

registration
  let D be non empty set;
  cluster non empty for XFinSequence of D;
  existence
  proof
    set k = 1;
    consider p being XFinSequence of D such that
A1: len p = k by Th12;
    p <> {} by A1;
    hence thesis;
  end;
end;

definition let x;
  func <%x%> -> set equals
  0 .--> x;
  coherence;
end;

registration let x;
  cluster <%x%> -> non empty;
  coherence;
end;

definition let D be set;
  func <%>D -> XFinSequence of D equals
  {};
  coherence by Th14;
end;

registration
  let D be set;
  cluster <%>D -> empty;
  coherence;
end;

definition let p,q;
  redefine func p^q means
:Def3: dom it = len p + len q & (for k st k in dom p
  holds it.k=p.k) & for k st k in dom q holds it.(len p + k) = q.k;
  compatibility
  proof
    let pq be Sequence;
A1: len p +^ len q = len p + len q by CARD_2:36;
    hereby
      assume
A2:   pq = p^q;
      hence dom pq = len p + len q by A1,ORDINAL4:def 1;
      thus for k st k in dom p holds pq.k=p.k by A2,ORDINAL4:def 1;
      let k;
      assume k in dom q;
      then pq.(len p +^ k) = q.k & k in NAT by A2,ORDINAL4:def 1;
      hence pq.(len p + k) = q.k by CARD_2:36;
    end;
    assume that
A3: dom pq = len p + len q and
A4: for k st k in dom p holds pq.k=p.k and
A5: for k st k in dom q holds pq.(len p + k) = q.k;
A6: now
      let a be Ordinal;
      assume
A7:   a in dom q;
      then reconsider k = a as Element of NAT;
      thus pq.(dom p +^ a) = pq.(len p + k) by CARD_2:36
        .= q.a by A5,A7;
    end;
    for a be Ordinal st a in dom p holds pq.a = p.a by A4;
    hence thesis by A1,A3,A6,ORDINAL4:def 1;
  end;
end;

registration
  let p,q;
  cluster p^q -> finite;
  coherence
  proof
    dom (p^q) = (dom p)+^dom q by ORDINAL4:def 1;
    hence thesis by FINSET_1:10;
  end;
end;

theorem
  len(p^q) = len p + len q by Def3;

theorem Th16:
  len p <= k & k < len p + len q implies (p^q).k=q.(k-len p)
proof
  assume that
A1: len p <= k and
A2: k < len p + len q;
  consider m being Nat such that
A3: len p + m = k by A1,NAT_1:10;
  k - len p < len p + len q - len p by A2,XREAL_1:14;
  then m in dom q by A3,Lm1;
  hence thesis by A3,Def3;
end;

theorem Th17:
  len p <= k & k < len(p^q) implies (p^q).k = q.(k - len p)
proof
  assume that
A1: len p <= k and
A2: k < len(p^q);
  k < len p + len q by A2,Def3;
  hence thesis by A1,Th16;
end;

theorem Th18:
  k in dom (p^q) implies (k in dom p or ex n st n in dom q & k=len
  p + n )
proof
  assume k in dom(p^q);
  then k in Segm(len p + len q) by Def3;
  then
A1: k < len p + len q by NAT_1:44;
  now
    assume len p <= k;
    then consider n being Nat such that
A2: k=len p + n by NAT_1:10;
    n + len p - len p < len q + len p - len p by A1,A2,XREAL_1:14;
    hence thesis by A2,Lm1;
  end;
  hence thesis by Lm1;
end;

theorem Th19:
  for p,q being Sequence holds dom p c= dom(p^q)
proof
  let p,q be Sequence;
  dom(p^q) = (dom p)+^(dom q) by ORDINAL4:def 1;
  hence thesis by ORDINAL3:24;
end;

theorem Th20:
  x in dom q implies ex k st k=x & len p + k in dom(p^q)
proof
  assume
A1: x in dom q;
  then reconsider k=x as Element of NAT;
  take k;
  len p + k < len p + len q by XREAL_1:8,A1,Lm1;
  then len p + k in Segm(len p + len q) by NAT_1:44;
  hence thesis by Def3;
end;

theorem Th21:
  k in dom q implies len p + k in dom(p^q)
proof
  assume k in dom q;
  then ex n st n=k & len p + n in dom(p^q) by Th20;
  hence thesis;
end;

theorem
  rng p c= rng(p^q)
proof
A1: dom p c= dom(p^q) by Th19;
    let x be object;
    assume x in rng p;
    then consider y being object such that
A2: y in dom p and
A3: x=p.y by FUNCT_1:def 3;
    reconsider k=y as Element of NAT by A2;
    (p^q).k=p.k by A2,Def3;
    hence x in rng(p^q) by A2,A3,A1,FUNCT_1:3;
end;

theorem
  rng q c= rng(p^q)
proof
    let x be object;
    assume x in rng q;
    then consider y being object such that
A1: y in dom q and
A2: x=q.y by FUNCT_1:def 3;
    reconsider k=y as Element of NAT by A1;
    len p + k in dom(p^q) & (p^q).(len p + k) = q.k by A1,Def3,Th21;
    hence x in rng(p^q) by A2,FUNCT_1:3;
end;

theorem Th24: ::: ORDINAL4:2
  rng(p^q) = rng p \/ rng q by ORDINAL4:2;

theorem Th25:
  p^q^r = p^(q^r)
proof
A1: for k st k in dom p holds ((p^q)^r).k=p.k
  proof
    let k;
    assume
A2: k in dom p;
    dom p c= dom(p^q) by Th19;
    hence (p^q^r).k=(p^q).k by A2,Def3
      .=p.k by A2,Def3;
  end;
A3: for k st k in dom(q^r) holds ((p^q)^r).(len p + k)=(q^r).k
  proof
    let k;
    assume
A4: k in dom(q^r);
A5: now
      assume not k in dom q;
      then consider n such that
A6:   n in dom r and
A7:   k=len q + n by A4,Th18;
      thus (p^q^r).(len p + k) =(p^q^r).(len p + len q + n) by A7
        .=(p^q^r).(len(p^q) + n) by Def3
        .=r.n by A6,Def3
        .=(q^r).k by A6,A7,Def3;
    end;
    now
      assume
A8:   k in dom q;
      then (len p + k) in dom(p^q) by Th21;
      hence (p^q^r).(len p + k) = (p^q).(len p + k) by Def3
        .=q.k by A8,Def3
        .=(q^r).k by A8,Def3;
    end;
    hence thesis by A5;
  end;
  dom ((p^q)^r) = (len (p^q) + len r) by Def3
    .= (len p + len q + len r) by Def3
    .= (len p + (len q + len r))
    .= (len p + len(q^r)) by Def3;
  hence thesis by A1,A3,Def3;
end;

theorem Th26:
  p^r = q^r or r^p = r^q implies p = q
proof
A1: now
    assume
A2: p^r = q^r;
    then len p + len r = len(q^r) by Def3;
    then
A3: len p + len r = len q + len r by Def3;
    for k st k in dom p holds p.k=q.k
    proof
      let k;
      assume
A4:   k in dom p;
      hence p.k=(q^r).k by A2,Def3
        .=q.k by A3,A4,Def3;
    end;
    hence thesis by A3;
  end;
A5: now
    assume
A6: r^p=r^q;
    then
A7: len r + len p = len(r^q) by Def3
      .=len r + len q by Def3;
    for k st k in dom p holds p.k=q.k
    proof
      let k;
      assume
A8:   k in dom p;
      hence p.k = (r^q).(len r + k) by A6,Def3
        .= q.k by A7,A8,Def3;
    end;
    hence thesis by A7;
  end;
  assume p^r = q^r or r^p = r^q;
  hence thesis by A1,A5;
end;

registration let p;
 reduce p^{} to p;
 reducibility
 proof
A1: for k st k in dom p holds p.k=(p^{}).k by Def3;
  dom(p^{}) = len p + len {} by Def3
    .= dom p;
  hence p^{} = p by A1;
 end;
 reduce {}^p to p;
 reducibility
  proof
A2: for k st k in dom p holds p.k = ({}^p).k
  proof
    let k;
    assume
A3: k in dom p;
    thus ({}^p).k =({}^p).(len {} + k)
      .=p.k by A3,Def3;
  end;
  dom({}^p) = (len {} + len p) by Def3
    .= dom p;
  hence thesis by A2;
  end;
end;

::$CT

theorem Th27:
  p^q = {} implies p={} & q={}
proof
  assume p^q={};
  then 0 = len (p^q)
    .= len p + len q by Def3;
  hence thesis;
end;

registration
  let D be set;
  let p,q be XFinSequence of D;
  cluster p^q -> D-valued;
  coherence
  proof
A1: rng q c= D by RELAT_1:def 19;
    rng(p^q) = rng p \/ rng q & rng p c= D by Th24,RELAT_1:def 19;
    hence thesis by A1,XBOOLE_1:8;
  end;
end;

Lm2: for x1, y1 being set holds [x,y] in {[x1,y1]} implies x = x1 & y = y1
proof
  let x1, y1 be set;
  assume [x,y] in {[x1,y1]};
  then [x,y] = [x1,y1] by TARSKI:def 1;
  hence thesis by XTUPLE_0:1;
end;

definition
  let x;
  redefine func <%x%> -> Function means
  :Def4:
  dom it = 1 & it.0 = x;
  coherence;
  compatibility
  proof
    let f be Function;
    thus f = <%x%> implies dom f = 1 & f.0 = x by CARD_1:49,FUNCOP_1:72;
    assume that
A1: dom f = 1 and
A2: f.0 = x;
    reconsider g = { [0,f.0] } as Function;
    for y,z being object holds [y,z] in f iff [y,z] in g
    proof let y,z be object;
      hereby
        assume
A3:     [y,z] in f;
        then y in {0} by A1,CARD_1:49,XTUPLE_0:def 12;
        then
A4:     y = 0 by TARSKI:def 1;
A5:     rng f = {f.0} by A1,CARD_1:49,FUNCT_1:4;
        z in rng f by A3,XTUPLE_0:def 13;
        then z = f.0 by A5,TARSKI:def 1;
        hence [y,z] in g by A4,TARSKI:def 1;
      end;
      assume [y,z] in g;
      then
A6:   y = 0 & z = f.0 by Lm2;
      0 in dom f by A1,CARD_1:49,TARSKI:def 1;
      hence thesis by A6,FUNCT_1:def 2;
    end;
    then f = { [0,f.0] };
    hence thesis by A2,FUNCT_4:82;
  end;
end;

registration
  let x;
  cluster <%x%> -> Function-like Relation-like;
  coherence;
end;

registration
  let x;
  cluster <%x%> -> finite Sequence-like;
  coherence by Def4;
end;

theorem
  p^q is XFinSequence of D implies p is XFinSequence of D & q is
  XFinSequence of D
proof
  assume p^q is XFinSequence of D;
  then rng(p^q) c= D by RELAT_1:def 19;
  then
A1: rng p \/ rng q c= D by Th24;
  rng p c= rng p \/ rng q by XBOOLE_1:7;
  then rng p c= D by A1;
  hence p is XFinSequence of D by RELAT_1:def 19;
  rng q c= rng p \/ rng q by XBOOLE_1:7;
  then rng q c= D by A1;
  hence thesis by RELAT_1:def 19;
end;

definition
  let x,y;
  func <%x,y%> -> set equals
  <%x%>^<%y%>;
  correctness;
  let z;
  func <%x,y,z%> -> set equals
  <%x%>^<%y%>^<%z%>;
  correctness;
end;

registration
  let x,y;
  cluster <%x,y%> -> Function-like Relation-like;
  coherence;
  let z;
  cluster <%x,y,z%> -> Function-like Relation-like;
  coherence;
end;

registration
  let x,y;
  cluster <%x,y%> -> finite Sequence-like;
  coherence;
  let z;
  cluster <%x,y,z%> -> finite Sequence-like;
  coherence;
end;

theorem
  <%x%> = { [0,x] } by FUNCT_4:82;

theorem Th30:
  p=<%x%> iff dom p = Segm 1 & rng p = {x}
proof
  thus p = <%x%> implies dom p = Segm 1 & rng p = {x}
  proof
    assume
A1: p = <%x%>;
    hence dom p = Segm 1 by Def4;
    rng p = {p.0} by FUNCT_1:4,A1;
    hence thesis by A1,Def4;
  end;
  assume that
A2: dom p = Segm 1 and
A3: rng p = {x};
  1=0+1;
  then p.0 in {x} by A2,A3,FUNCT_1:3,NAT_1:45;
  then p.0 = x by TARSKI:def 1;
  hence thesis by A2,Def4;
end;

theorem Th31:
  p = <%x%> iff len p = 1 & p.0 = x by Def4;

registration
  let x;
  reduce <%x%>.0 to x;
  reducibility by Th31;
end;

theorem Th32:
  (<%x%>^p).0 = x
proof
  0 in 1 by CARD_1:49,TARSKI:def 1;
  then 0 in dom <%x%> by Def4;
  then (<%x%>^p).0 = <%x%>.0 by Def3;
  hence thesis;
end;

theorem Th33:
  (p^<%x%>).(len p)=x
proof
A1: dom <%x%> = 1 & 0 in Segm(0+1) by Def4,NAT_1:45;
  len p + 0 = len p;
  hence (p^<%x%>).(len p) = <%x%>.0 by A1,Def3
    .=x;
end;

theorem
  <%x,y,z%>=<%x%>^<%y,z%> & <%x,y,z%>=<%x,y%>^<%z%> by Th25;

theorem Th35:
  p = <%x,y%> iff len p = 2 & p.0=x & p.1=y
proof
  thus p = <%x,y%> implies len p = 2 & p.0=x & p.1=y
  proof
    assume
A1: p=<%x,y%>;
    hence len p = len <%x%> + len <%y%> by Def3
      .= 1 + len <%y%> by Th30
      .= 1 + 1 by Th30
      .=2;
    0 in {0} by TARSKI:def 1;
    then
A3: 0 in dom <%y%>;
    0 in dom <%x%> by TARSKI:def 1;
    hence p.0 = <%x%>.0 by A1,Def3
      .= x;
    thus p.1 = (<%x%>^<%y%>).(len <%x%> + 0) by A1,Th30
      .= <%y%>.0 by A3,Def3
      .= y;
  end;
  assume that
A4: len p = 2 and
A5: p.0=x and
A6: p.1=y;
A7: for k st k in dom <%y%> holds p.((len <%x%>)+k)=<%y%>.k
  proof
    let k;
    assume a8: k in dom <%y%>;
    thus p.((len <%x%>) + k) = p.(1+k) by Th30
      .=p.(1+0) by a8,TARSKI:def 1
      .=<%y%>.0 by A6
      .= <%y%>.k by a8,TARSKI:def 1;
  end;
A9: for k st k in dom <%x%> holds p.k=<%x%>.k
  proof
    let k;
    assume k in dom <%x%>;
    then k=0 by TARSKI:def 1;
    hence thesis by A5;
  end;
  dom p = (1+1) by A4
    .= (len <%x%> + 1) by Th30
    .= (len <%x%> + len <%y%>) by Th30;
  hence thesis by A9,A7,Def3;
end;

registration
  let x,y;
  reduce <%x,y%>.0 to x;
  reducibility by Th35;
  reduce <%x,y%>.1 to y;
  reducibility by Th35;
end;

theorem Th36:
  p = <%x,y,z%> iff len p = 3 & p.0 = x & p.1 = y & p.2 = z
proof
  thus p = <%x,y,z%> implies len p = 3 & p.0 = x & p.1 = y & p.2 = z
  proof
A2: 0 in dom <%x%> by TARSKI:def 1;
A3: 0 in dom <%z%> by TARSKI:def 1;
    assume
A4: p =<%x,y,z%>;
    hence len p =len <%x,y%> + len <%z%> by Def3
      .=2 + len <%z%> by Th35
      .=2+1 by Th30
      .=3;
    thus p.0 = (<%x%>^<%y,z%>).0 by A4,Th25
      .=<%x%>.0 by A2,Def3
      .=x;
    1 in Segm(1+1) & len <%x,y%> = 2 by Th35,NAT_1:45;
    hence p.1 =<%x,y%>.1 by A4,Def3
      .=y;
    thus p.2 =(<%x,y%>^<%z%>).(len (<%x,y%>) + 0) by A4,Th35
      .= <%z%>.0 by A3,Def3
      .= z;
  end;
  assume that
A5: len p = 3 and
A6: p.0 = x and
A7: p.1 = y and
A8: p.2 = z;
A9: for k st k in dom <%x,y%> holds p.k=<%x,y%>.k
  proof
A10: len <%x,y%> = 2 by Th35;
    let k such that
A11: k in dom <%x,y%>;
A12: k=1 implies p.k=<%x,y%>.k by A7;
    k=0 implies p.k=<%x,y%>.k by A6;
    hence thesis by A11,A10,A12,CARD_1:50,TARSKI:def 2;
  end;
A13: for k st k in dom <%z%> holds p.( (len <%x,y%>) + k) = <%z%>.k
  proof
    let k;
    assume k in dom <%z%>;
    then
A14: k = 0 by TARSKI:def 1;
    hence p.( (len <%x,y%>) + k) = p.(2+0) by Th35
      .=<%z%>.k by A8,A14;
  end;
  dom p = (2+1) by A5
    .= ((len <%x,y%>) + 1) by Th35
    .= ((len <%x,y%>) + len <%z%>) by Th30;
  hence thesis by A9,A13,Def3;
end;

registration
  let x,y,z;
  reduce <%x,y,z%>.0 to x;
  reducibility by Th36;
  reduce <%x,y,z%>.1 to y;
  reducibility by Th36;
  reduce <%x,y,z%>.2 to z;
  reducibility by Th36;
end;

registration
  let x;
  cluster <%x%> -> 1-element;
  coherence by Th30;
  let y;
  cluster <%x,y%> -> 2-element;
  coherence by Th35;
  let z;
  cluster <%x,y,z%> -> 3-element;
  coherence by Th36;
end;

registration let n be Nat;
 cluster n-element -> n-defined for XFinSequence;
 coherence;
end;

registration let n be Nat, x be object;
 cluster n --> x -> finite Sequence-like;
 coherence;
end;

registration let n be Nat;
 cluster n-element for XFinSequence;
 existence
  proof
   take n --> 0;
   thus card(n --> 0)= n;
  end;
end;

registration let n be Nat;
 cluster -> total for n-element n-defined XFinSequence;
 coherence
  proof let s be n-element XFinSequence;
    thus dom s = n by CARD_1:def 7;
  end;
end;

theorem Th37:
  p <> {} implies ex q,x st p=q^<%x%>
proof
  assume p <> {};
  then consider n being Nat such that
A1: len p = n+1 by NAT_1:6;
A2: dom p = Segm(n+1) by A1;
  reconsider n as Element of NAT by ORDINAL1:def 12;
  set q=p| n;
  dom q = len p /\ n & Segm n c= Segm len p by A1,NAT_1:11,39,RELAT_1:61;
  then
A3: dom q = n by XBOOLE_1:28;
A4: for x being object st x in dom p holds p.x = (q^<%p.(len p - 1)%>).x
  proof
    let x be object;
    assume
A5: x in dom p;
    then reconsider k = x as Element of NAT;
A6: now
      assume
A7:   k in n;
      hence p.k=q.k by A3,FUNCT_1:47
        .=(q^<%p.(len p - 1)%>).k by A3,A7,Def3;
    end;
A8: now
      0 in Segm(0+1) by NAT_1:45;
      then
A9:   0 in dom <%p.(len p - 1)%> by Def4;
      assume
A10:   k in {n};
      hence (q^<%p.(len p - 1)%>).k =(q^<%p.(len p - 1)%>).(len q + 0) by A3,
TARSKI:def 1
        .=<%p.(len p - 1)%>.0 by A9,Def3
        .=p.k by A1,A10,TARSKI:def 1;
    end;
    k in Segm n \/ {n} by A5,Th1,A2;
    hence thesis by A6,A8,XBOOLE_0:def 3;
  end;
  take q;
  take p.(len p - 1);
  dom(q^<%p.(len p - 1)%>) = (len q + len <%p.(len p - 1)%>) by Def3
    .= dom p by A1,A3,Th30;
  hence q^<%p.(len p - 1)%>=p by A4;
end;

registration
  let D be non empty set;
  let d1 be Element of D;
  cluster <%d1%> -> D -valued;
  coherence;
  let d2 be Element of D;
  cluster <%d1,d2%> -> D -valued;
  coherence;
  let d3 be Element of D;
  cluster <%d1,d2,d3%> -> D -valued;
  coherence;
end;

:: Scheme of induction for extended finite sequences

scheme
  IndXSeq{P[XFinSequence]}: for p holds P[p]
provided
A1: P[{}] and
A2: for p,x st P[p] holds P[p^<%x%>]
proof
  defpred P1[Real] means for p st len p = $1 holds P[p];
  let p;
  consider X being Subset of REAL such that
A3: for x being Element of REAL holds x in X iff P1[x] from SUBSET_1:sch 3;
  for k holds k in X
  proof
A4: 0 in REAL by XREAL_0:def 1;
    defpred R[Nat] means $1 in X;
    for p st len p = 0 holds P[p]
    proof
      let p;
      assume len p = 0;
      then p = {};
      hence thesis by A1;
    end;
    then
A5: R[0] by A3,A4;
A6: for n st R[n] holds R[n+1]
    proof
      let n;
      assume
A7:   R[n];
A8: n+1 in REAL by XREAL_0:def 1;
      P1[n+1]
      proof
        let p;
        assume
A9:     len p = n+1;
        then p <> {};
        then consider w being XFinSequence, x such that
A10:     p = w^<%x%> by Th37;
        len p = len w + len <%x%> by A10,Def3
        .= len w+1 by Def4;
        hence P[p] by A10,A2,A3,A7,A9;
      end;
      hence thesis by A3,A8;
    end;
    thus for k holds R[k] from NAT_1:sch 2(A5,A6);
  end;
  then len p in X;
  hence thesis by A3;
end;

theorem
  for p,q,r,s being XFinSequence st p^q = r^s & len p <= len r ex t
  being XFinSequence st p^t = r
proof
  defpred P[XFinSequence] means for p,q,s st p^q=$1^s & len p <= len $1 holds
  ex t being XFinSequence st p^t=$1;
A1: for r,x st P[r] holds P[r^<%x%>]
  proof
    let r,x;
    assume
A2: for p,q,s st p^q=r^s & len p <= len r ex t st p^t=r;
    let p,q,s;
    assume that
A3: p^q=(r^<%x%>)^s and
A4: len p <= len (r^<%x%>);
A5: now
      assume len p <> len(r^<%x%>);
      then len p <> len r + len <%x%> by Def3;
      then
A6:   len p <> len r + 1 by Th30;
      len p <= len r + len <%x%> by A4,Def3;
      then
A7:   len p <= len r + 1 by Th30;
      p^q=r^(<%x%>^s) by A3,Th25;
      then consider t being XFinSequence such that
A8:   p^t = r by A2,A6,A7,NAT_1:8;
      p^(t^<%x%>) = r^<%x%> by A8,Th25;
      hence thesis;
    end;
    now
      assume
A9:   len p = len(r^<%x%>);
A10:  for k st k in dom p holds p.k=(r^<%x%>).k
      proof
        let k;
        assume
A11:    k in dom p;
        hence p.k = (r^<%x%>^s).k by A3,Def3
          .=(r^<%x%>).k by A9,A11,Def3;
      end;
      p^{} =r^<%x%> by A9,A10;
      hence thesis;
    end;
    hence thesis by A5;
  end;
A12: P[{}]
  proof
    let p,q,s;
    assume that
    p^q={}^s and
A13: len p <= len {};
    take {};
    thus p^{} = {} by A13;
  end;
  for r holds P[r] from IndXSeq(A12,A1);
  hence thesis;
end;

definition
  let D be set;
  func D^omega -> set means
  :Def7:
  x in it iff x is XFinSequence of D;
  existence
  proof
    defpred P[object] means $1 is XFinSequence of D;
    consider X such that
A1: x in X iff x in bool [:NAT,D:] & P[x] from XBOOLE_0:sch 1;
    take X;
    let x;
    thus x in X implies x is XFinSequence of D by A1;
    assume x is XFinSequence of D;
    then reconsider p = x as XFinSequence of D;
    reconsider p as PartFunc of NAT,D by Th11;
    p c= [:NAT,D:];
    hence thesis by A1;
  end;
  uniqueness
  proof
    defpred P[object] means $1 is XFinSequence of D;
    thus for X1,X2 being set st
     (for x being object holds x in X1 iff P[x]) &
     (
    for x being object holds x in X2 iff P[x]) holds X1 = X2
    from XBOOLE_0:sch 3;
  end;
end;

registration
  let D be set;
  cluster D^omega -> non empty;
  coherence
  proof
    set f = the XFinSequence of D;
    f in D^omega by Def7;
    hence thesis;
  end;
end;

theorem
  x in D^omega iff x is XFinSequence of D by Def7;

theorem
  {} in D^omega
proof
  {} = <%>D;
  hence thesis by Def7;
end;

scheme
  SepXSeq{D()->non empty set, P[XFinSequence]}:
 ex X st for x holds x in X iff
  ex p st p in D()^omega & P[p] & x=p proof
  defpred P1[object] means ex p st P[p] & $1=p;
  consider Y such that
A1: for x being object holds x in Y iff x in D()^omega & P1[x]
from XBOOLE_0:sch 1;
  take Y;
  x in Y implies ex p st p in D()^omega & P[p] & x=p
  proof
    assume x in Y;
    then x in D()^omega & ex p st P[p] & x=p by A1;
    hence thesis;
  end;
  hence thesis by A1;
end;

notation
  let p be XFinSequence;
  let i,x be set;
  synonym Replace(p,i,x) for p+*(i,x);
end;

registration
  let p be XFinSequence;
  let i,x be object;
  cluster p+*(i,x) -> finite Sequence-like;
  coherence
  proof
    dom (p+*(i,x)) = dom p by FUNCT_7:30;
    hence thesis by FINSET_1:10;
  end;
end;

theorem
  for p being XFinSequence, i being Element of NAT, x being set holds
  len Replace(p,i,x) = len p & (i < len p implies Replace(p,i,x).i = x) & for j
  being Element of NAT st j <> i holds Replace(p,i,x).j = p.j
proof
  let p be XFinSequence;
  let i be Element of NAT, x be set;
  set f = Replace(p,i,x);
  thus len f = len p by FUNCT_7:30;
  i < len p implies not Segm len p c= Segm i by NAT_1:39;
  hence i < len p implies f.i = x by FUNCT_7:31,ORDINAL1:16;
  thus thesis by FUNCT_7:32;
end;

registration
  let D be non empty set;
  let p be XFinSequence of D;
  let i be Element of NAT, a be Element of D;
  cluster Replace(p,i,a) -> D -valued;
  coherence
  proof
      per cases;
      suppose
        i in dom p;
        then Replace(p,i,a) = p+*(i.-->a) by FUNCT_7:def 3;
        then
A1:     rng Replace(p,i,a) c= rng p \/ rng (i.-->a) by FUNCT_4:17;
        rng (i.-->a) = {a} by FUNCOP_1:8;
        then
A2:     rng (i.-->a) c= D by ZFMISC_1:31;
        rng p c= D by RELAT_1:def 19;
        then rng p \/ rng (i.-->a) c= D by A2,XBOOLE_1:8;
        hence rng Replace(p,i,a) c= D by A1;
      end;
      suppose
        not i in dom p;
        then Replace(p,i,a) = p by FUNCT_7:def 3;
        hence rng Replace(p,i,a) c= D by RELAT_1:def 19;
      end;
    end;
end;

:: missing, 2008.02.02, A.K.

registration
  cluster -> real-valued for XFinSequence of REAL;
  coherence
  proof
    let F be XFinSequence of REAL;
    rng F c= REAL by RELAT_1:def 19;
    hence thesis by VALUED_0:def 3;
  end;
end;

registration
  cluster -> natural-valued for XFinSequence of NAT;
  coherence
  proof
    let F be XFinSequence of NAT;
    rng F c= NAT by RELAT_1:def 19;
    hence thesis by VALUED_0:def 6;
  end;
end;

registration
  cluster non empty natural-valued for XFinSequence;
  existence
  proof
    <%0%> is natural-valued & <%0%> is non empty;
    hence thesis;
  end;
end;

:: 2009.0929, A.T.

theorem Th42:
  for x1, x2, x3, x4 being set st
   p = <%x1%>^<%x2%>^<%x3%>^<%x4%>
  holds len p = 4 & p.0 = x1 & p.1 = x2 & p.2 = x3 & p.3 = x4
proof
  let x1, x2, x3, x4 be set;
  assume
A1: p = <%x1%>^<%x2%>^<%x3%>^<%x4%>;
  set p13 = <%x1%>^<%x2%>^<%x3%>;
A2: p13 = <%x1, x2, x3%>;
  then
A3: len p13 = 3 by Th36;
A4: p13.0 = x1 & p13.1 = x2 by A2;
A5: p13.2 = x3 by A2;
  thus len p = len p13 + len <%x4%> by A1,Def3
    .= 3 + 1 by A3,Th30
    .= 4;
   0 in 3 & 1 in 3 & 2 in 3 by CARD_1:51,ENUMSET1:def 1;
  hence p.0 = x1 & p.1 = x2 & p.2 = x3 by A1,A4,A5,Def3,A3;
  thus p.3 = p.len p13 by A2,Th36
    .= x4 by A1,Th33;
end;

theorem Th43:
  for x1, x2, x3, x4, x5 being set st
     p = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>
  holds len p = 5 & p.0 = x1 & p.1 = x2 & p.2 = x3 & p.3 = x4 & p.4 = x5
proof
  let x1, x2, x3, x4, x5 be set;
  assume
A1: p = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>;
  set p14 = <%x1%>^<%x2%>^<%x3%>^<%x4%>;
A2: len p14 = 4 by Th42;
A3: p14.0 = x1 & p14.1 = x2 by Th42;
A4: p14.2 = x3 & p14.3 = x4 by Th42;
  thus len p = len p14 + len <%x5%> by A1,Def3
    .= 4 + 1 by A2,Th30
    .= 5;
   0 in 4 & ... & 3 in 4 by CARD_1:52,ENUMSET1:def 2;
  hence p.0 = x1 & p.1 = x2 & p.2 = x3 & p.3 = x4 by A1,A3,A4,Def3,A2;
  thus p.4 = p.len p14 by Th42
    .= x5 by A1,Th33;
end;

theorem Th44:
  for x1, x2, x3, x4, x5, x6 being set st
     p = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>^<%x6%>
  holds len p = 6 & p.0 = x1 & p.1 = x2 & p.2 = x3 & p.3 = x4 & p.4 = x5 &
  p.5 = x6
proof
  let x1, x2, x3, x4, x5, x6 be set;
  assume
A1: p = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>^<%x6%>;
  set p15 = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>;
A2: len p15 = 5 by Th43;
A3: p15.0 = x1 & p15.1 = x2 by Th43;
A4: p15.2 = x3 & p15.3 = x4 by Th43;
A5: p15.4 = x5 by Th43;
  thus len p = len p15 + len <%x6%> by A1,Def3
    .= 5 + 1 by A2,Th30
    .= 6;
   0 in 5 & ... & 4 in 5 by CARD_1:53,ENUMSET1:def 3;
  hence p.0 = x1 & p.1 = x2 & p.2 = x3 & p.3 = x4 & p.4 = x5
  by A1,A3,A4,A5,Def3,A2;
  thus p.5 = p.len p15 by Th43
    .= x6 by A1,Th33;
end;

theorem Th45:
  for x1, x2, x3, x4, x5, x6, x7 being set st
     p = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>^<%x6%>^<%x7%>
  holds len p = 7 & p.0 = x1 & p.1 = x2 & p.2 = x3 & p.3 = x4 & p.4 = x5 &
  p.5 = x6 & p.6 = x7
proof
  let x1, x2, x3, x4, x5, x6, x7 be set;
  assume
A1: p = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>^<%x6%>^<%x7%>;
  set p16 = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>^<%x6%>;
A2: len p16 = 6 by Th44;
A3: p16.0 = x1 & p16.1 = x2 by Th44;
A4: p16.2 = x3 & p16.3 = x4 by Th44;
A5: p16.4 = x5 & p16.5 = x6 by Th44;
  thus len p = len p16 + len <%x7%> by A1,Def3
    .= 6 + 1 by A2,Th30
    .= 7;
   0 in 6 & ... & 5 in 6 by CARD_1:54,ENUMSET1:def 4;
  hence p.0 = x1 & p.1 = x2 & p.2 = x3 & p.3 = x4 & p.4 = x5 & p.5 = x6
  by A1,A3,A4,A5,Def3,A2;
  thus p.6 = p.len p16 by Th44
    .= x7 by A1,Th33;
end;

theorem Th46:
  for x1,x2,x3,x4, x5, x6, x7, x8 being set st
    p = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>^<%x6%>^<%x7%>^<%x8%>
  holds len p = 8 & p.0 = x1 & p.1 = x2 & p.2 = x3 & p.3 = x4 & p.4 = x5 &
  p.5 = x6 & p.6 = x7 & p.7 = x8
proof
  let x1, x2, x3, x4, x5, x6, x7, x8 be set;
  assume
A1: p = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>^<%x6%>^<%x7%>^<%x8%>;
  set p17 = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>^<%x6%>^<%x7%>;
A2: len p17 = 7 by Th45;
A3: p17.0 = x1 & p17.1 = x2 by Th45;
A4: p17.2 = x3 & p17.3 = x4 by Th45;
A5: p17.4 = x5 & p17.5 = x6 by Th45;
A6: p17.6 = x7 by Th45;
  thus len p = len p17 + len <%x8%> by A1,Def3
    .= 7 + 1 by A2,Th30
    .= 8;
   0 in 7 & ... & 6 in 7 by CARD_1:55,ENUMSET1:def 5;
  hence p.0 = x1 & p.1 = x2 & p.2 = x3 & p.3 = x4 & p.4 = x5 & p.5 = x6 &
  p.6 = x7 by A1,A3,A4,A5,A6,Def3,A2;
  thus p.7 = p.len p17 by Th45
    .= x8 by A1,Th33;
end;

theorem
  for x1,x2,x3,x4,x5,x6,x7, x8, x9 being set st
     p = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>^<%x6%>^<%x7%>^<%x8%>^<%x9%>
  holds len p = 9 & p.0 = x1 & p.1 = x2 & p.2 = x3 & p.3 = x4 & p.4 = x5 &
  p.5 = x6 & p.6 = x7 & p.7 = x8 & p.8 = x9
proof
  let x1, x2, x3, x4, x5, x6, x7, x8, x9 be set;
  assume
A1: p = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>^<%x6%>^<%x7%>^<%x8%>^<%x9%>;
  set p17 = <%x1%>^<%x2%>^<%x3%>^<%x4%>^<%x5%>^<%x6%>^<%x7%>^<%x8%>;
A2: len p17 = 8 by Th46;
A3: p17.0 = x1 & p17.1 = x2 by Th46;
A4: p17.2 = x3 & p17.3 = x4 by Th46;
A5: p17.4 = x5 & p17.5 = x6 by Th46;
A6: p17.6 = x7 & p17.7 = x8 by Th46;
  thus len p = len p17 + len <%x9%> by A1,Def3
    .= 8 + 1 by A2,Th30
    .= 9;
   0 in 8 & ... & 7 in 8 by CARD_1:56,ENUMSET1:def 6;
  hence p.0 = x1 & p.1 = x2 & p.2 = x3 & p.3 = x4 & p.4 = x5 & p.5 = x6 &
  p.6 = x7 & p.7 = x8 by A1,A3,A4,A5,A6,Def3,A2;
  thus p.8 = p.len p17 by Th46
    .= x9 by A1,Th33;
end;

:: K.P. 12.2009

theorem :: FINSEQ_2:7
   n <len p implies (p^q).n=p.n
proof
  assume n <len p;
  then n in dom p by Lm1;
  hence thesis by Def3;
end;

theorem :: FINSEQ_2:10
  len p <= n implies (p|n) = p
proof
  assume len p<=n;
   then Segm len p c= Segm n by NAT_1:39;
  hence thesis by RELAT_1:68;
end;

theorem Th50: :: FINSEQ_1:11
  n <=len p & k in n
  implies (p|n).k = p.k & k in dom p
proof
  assume that
A1: n <=len p and
A2: k in n;
A3: Segm n c= Segm len p by A1,NAT_1:39;
  then n = dom p /\ n by XBOOLE_1:28
    .= dom(p|n) by RELAT_1:61;
  hence thesis by A2,A3,FUNCT_1:47;
end;

theorem Th51: :: FINSEQ_1:12
  n <= len p implies len(p|n) = n
 proof
  assume n <= len p;
   then Segm n c= Segm len p by NAT_1:39;
   hence thesis by RELAT_1:62;
 end;

theorem :: FINSEQ_1:13
  len(p|n) <= n
 proof
   Segm len(p|n) c= Segm n by RELAT_1:58;
  hence thesis by NAT_1:39;
 end;

theorem Th53: :: FINSEQ_1:14
  len p = n+1 implies p = (p|n) ^ <% p.n %>
proof
  set pn = p|n;
  set x=p.n;
  assume
A1: len p = n+1;
then A2: n < len p by NAT_1:13;
then A3: len pn = n by Th51;
A4: now
    let m be Nat;
    assume m in dom p;
    then m<len p by Lm1;
    then
A5: m <= len pn by A1,A3,NAT_1:13;
    now
      per cases;
      case
        m = len pn;
        hence p.m = (pn^<%x%>).m by A3,Th33;
      end;
      case
        m <> len pn;
        then m< len pn by A5,XXREAL_0:1;
        then
A6:     m in dom pn by Lm1;
        hence (pn^<%x%>).m = pn.m by Def3
          .= p.m by A2,A3,A6,Th50;
      end;
    end;
    hence p.m = (pn^<%x%>).m;
  end;
  len (pn^<%x%>) = n + len <%x%> by A3,Def3
    .= len p by A1,Def4;
  hence thesis by A4;
end;

theorem Th54: :: CATALAN2:1
  (p^q)|dom p = p
proof
    set r=(p^q)|(dom p);
A1: now
    let k such that
A2: k < len p;
A3: k in dom p by A2,Lm1;
    then
A4: (p^q).k=p.k by Def3;
    k+0<len p+len q by A2,XREAL_1:8;
    then k in Segm(len p+len q) by NAT_1:44;
    then k in dom (p^q) by Def3;
    then k in dom (p^q)/\ dom p by A3,XBOOLE_0:def 4;
    hence r.k=p.k by A4,FUNCT_1:48;
  end;
  dom p c= dom (p^q) by Th19;
  then len r= len p by RELAT_1:62;
  hence thesis by A1,Th8;
end;

theorem :: CATALAN2:2
  n <= dom p implies (p^q)|n = p|n
proof
  assume n <= dom p;
  then Segm n c= Segm len p by NAT_1:39;
  then ((p^q)|dom p)|n=(p^q)|n by RELAT_1:74;
  hence thesis by Th54;
end;

theorem :: CATALAN2:3
  n = dom p + k implies (p^q)|n = p^(q|k)
proof
  assume
A1: n = dom p + k;
  now
    per cases;
    suppose
A2:   n>=len (p^q);
      then n>=len p+len q by Def3;
      then Segm len q c= Segm k by NAT_1:39,A1,XREAL_1:8;
      then
A3:   q|k = q by RELAT_1:68;
      Segm len(p^q) c= Segm n by A2,NAT_1:39;
      hence thesis by A3,RELAT_1:68;
    end;
    suppose
A4:   n<len (p^q);
      then
A5:   len ((p^q)|n)=n by Th10;
      n<len p+len q by A4,Def3;
      then k < len q by A1,XREAL_1:6;
      then len (q|k)=k by Th10;
      then
A6:   len (p^(q|k))=len p + k by Def3;
      now
        let m be Nat such that
A7:     m in dom ((p^q)|n);
A8:     m < len ((p^q)|n) by A7,Lm1;then
        m <len (p^q) by A4,A5,XXREAL_0:2;
        then
A9:     m in len (p^q) by Lm1;
        m in n by A4,Th10,A7;
        then
A10:     m in dom (p^q) /\ n by A9,XBOOLE_0:def 4;
        then
A11:    ((p^q)|n).m=(p^q).m by FUNCT_1:48;
        now
          per cases;
          suppose
            m<len p;
            then m in dom p by Lm1;
            then (p^(q|k)).m=p.m & (p^q).m=p.m by Def3;
            hence ((p^q)|n).m=(p^(q|k)).m by A10,FUNCT_1:48;
          end;
          suppose
A12:        m>=len p;
            m < len (p^q) by A4,A5,A8,XXREAL_0:2;
            then
A13:        q.(m-len p)=(p^q).m by A12,Th17;
A14:        m-len p+len p< len (p^q) by A4,A5,A8,XXREAL_0:2;
A15:        m-len p is Nat by A12,NAT_1:21;
            len (p^q)=len p+len q by Def3;
            then m-len p<len q by A14,XREAL_1:6;
            then
A16:        m-len p in len q by A15,Lm1;
            m-len p < k by A1,A5,A14,A8,XREAL_1:6;
            then m-len p in Segm k by A15,NAT_1:44;
            then
A17:        m-len p in k/\dom q by A16,XBOOLE_0:def 4;
            (p^(q|k)).m=(q|k).(m-len p) by A1,A6,A5,A12,A8,Th17;
            hence ((p^q)|n).m=(p^(q|k)).m by A11,A13,A17,FUNCT_1:48;
          end;
        end;
        hence ((p^q)|n).m=(p^(q|k)).m;
      end;
      hence thesis by A6,A1,A4,Th10;
    end;
  end;
  hence thesis;
end;

theorem :: CATALAN2:4
  ex q st p = (p|n)^q
proof
  now
    per cases;
    suppose
      n > len p;
      then Segm len p c= Segm n by NAT_1:39;
      then
A1:   p|n=p by RELAT_1:68;
      p^{}=p;
      hence thesis by A1;
    end;
    suppose
      n <= len p;
      then reconsider n1=len p-n as Element of NAT by NAT_1:21;
      defpred P[Nat] means for k st k= len p-$1 holds ex q st p=(p|k)^q;
A2:   for m be Nat st P[m] holds P[m+1]
      proof
        let m be Nat such that
A3:     P[m];
        let k such that
A4:     k = len p-(m+1);
        consider q such that
A5:     p=(p|(k+1))^q by A3,A4;
        Segm k c= Segm(k+1) by NAT_1:39,11;
        then
A6:     (p|(k+1))|k =p|k by RELAT_1:74;
         len p-m<=len p-0 by XREAL_1:10;
        then len (p | (k+1)) = k+1 by Th51,A4;
        then p|(k+1)=(p|(k+1))|k^<%(p|(k+1)).k%> by Th53;
        then p=(p|k)^(<%(p|(k+1)).k%>^q) by A5,A6,Th25;
        hence thesis;
      end;
      p|(len p-0)=p & p^{}=p;
      then
A7:   P[0];
A8:      for m be Nat holds P[m] from NAT_1:sch 2(A7,A2);
      n=len p-n1;
      hence thesis by A8;
    end;
  end;
  hence thesis;
end;

theorem :: FLANG_1:10
 len p = n + k implies ex q1, q2 being
   XFinSequence st len q1 = n & len q2 = k & p = q1 ^ q2
proof
  defpred P[Nat] means for p being XFinSequence, i, j be Nat
st len p = $1 & len p =
  i + j ex q1, q2 being XFinSequence st len q1 = i & len q2 = j & p = q1 ^ q2;
A1: now
    let n;
    assume
A2: P[n];
    thus P[n + 1]
    proof
      let p be XFinSequence;
      let i, j be Nat;
      assume that
A3:   len p = n + 1 and
A4:   len p = i + j;
      per cases;
      suppose
A5:     j = 0;
        take q1 = p;
        take q2 = {};
        thus thesis by A4,A5;
      end;
      suppose
        j > 0;
        then consider k such that
A6:     j = k + 1 by NAT_1:6;
        p <> {} by A3;
        then consider q being XFinSequence, x such that
A7:     p = q ^ <%x%> by Th37;
A8:     n + 1 = len q + len <%x%> by A3,A7,Def3
          .= len q + 1 by Th30;
        n = i + k by A3,A4,A6;
        then consider q1, q2 being XFinSequence such that
A9:     len q1 = i and
A10:    len q2 = k and
A11:    q = q1 ^ q2 by A2,A8;
A12:    len (q2 ^ <%x%>) = len q2 + len <%x%> by Def3
          .= j by A6,A10,Th30;
        p = q1 ^ (q2 ^ <%x%>) by A7,A11,Th25;
        hence thesis by A9,A12;
      end;
    end;
  end;
A13: P[0]
  proof
    let p be XFinSequence;
    let i, j be Nat;
    assume that
A14: len p = 0 and
A15: len p = i + j;
A16: p = {} ^ {} by A14;
    len {} = i by A14,A15;
    hence thesis by A15,A16;
  end;
  for n holds P[n] from NAT_1:sch 2(A13, A1);
  hence thesis;
end;

theorem :: FSM_3:6
  <%x%>^p = <%y%>^q implies x = y & p = q
proof
  assume A1: <%x%>^p = <%y%>^q;
  (<%x%>^p).0 = x by Th32;
  then x = y by A1,Th32;
  hence thesis by A1,Th26;
end;

definition
  let D be set,q be FinSequence of D;
  func FS2XFS q -> XFinSequence of D means :Def8:
  len it=len q & for i being Nat st i < len q holds q.(i+1)=it.i;
  existence
  proof
    deffunc F(Nat) =q.($1 +1);
    ex p being XFinSequence st len p = len q & for k be Nat
    st k in len q holds p.k=F(k) from XSeqLambda;
    then consider p being XFinSequence such that
A1: len p = len q and
A2: for k be Nat st k in Segm len q holds p.k=F(k);
    rng p c= D
    proof
      let y be object;
A3:   rng q c= D by FINSEQ_1:def 4;
      assume y in rng p;
      then consider x being object such that
A4:   x in dom p and
A5:   y=p.x by FUNCT_1:def 3;
      reconsider nx=x as Element of NAT by A4;
A6:   nx+1<=len q by NAT_1:13,A1,A4,Lm1;
      0+1<=nx+1 by NAT_1:13;
      then nx+1 in Seg len q by A6,FINSEQ_1:1;
      then nx+1 in dom q by FINSEQ_1:def 3;
      then
A7:   q.(nx+1) in rng q by FUNCT_1:def 3;
      p.nx= q.(nx +1) by A1,A2,A4;
      hence thesis by A5,A7,A3;
    end;
    then
A8: p is XFinSequence of D by RELAT_1:def 19;
    for i being Nat st i<len q holds q.(i+1)=p.i by A2,NAT_1:44;
    hence thesis by A1,A8;
  end;
  uniqueness
  proof
    thus for p1,p2 being XFinSequence of D st
    (len p1=len q & for i be Nat st i<len q holds
    q.(i+1)=p1.i)& (len p2=len q & for i be Nat
    st i<len q holds q.(i+1)=p2.i) holds
    p1=p2
    proof
      let p1,p2 be XFinSequence of D;
      assume that
A9:   len p1=len q and
A10:  for i be Nat st i<len q holds q.(i+1)=p1.i and
A11:  len p2=len q and
A12:  for i be Nat st i<len q holds q.(i+1)=p2.i;
      for i be Nat st i<len p1 holds p1.i=p2.i
      proof
        let i be Nat;
        assume
A13:    i<len p1;
        then q.(i+1)=p1.i by A9,A10;
        hence thesis by A9,A12,A13;
      end;
      hence thesis by A9,A11,Th8;
    end;
  end;
end;

reserve i for Nat;

definition
  let q be XFinSequence;
  func XFS2FS q -> FinSequence means :Def9A:
  len it=len q & for i be Nat st 1<=i & i<= len q holds q.(i-'1)=it.i;
  existence
  proof
    deffunc F(Nat) = q.($1-'1);
    ex p being FinSequence st len p = len q &
    for k being Nat st k in dom p holds p.k=F(k) from FINSEQ_1:sch 2;
    then consider p being FinSequence such that
A1: len p = len q and
A2: for k being Nat st k in dom p holds p.k=F(k);
A11: dom p = Seg len q by A1,FINSEQ_1:def 3;
    for i be Nat st 1<=i & i<=len q holds q.(i-'1)=p.i by A2,A11,FINSEQ_1:1;
    hence thesis by A1;
  end;
  uniqueness
  proof
    thus for p1,p2 being FinSequence st (len p1=len q & for i st 1<=i & i
<=len q holds q.(i-'1)=p1.i)& (len p2=len q & for i st 1<=i & i<=len q holds q.
    (i-'1)=p2.i) holds p1=p2
    proof
      let p1,p2 be FinSequence;
      assume that
A12:  len p1=len q and
A13:  for i st 1<=i & i<=len q holds q.(i-'1)=p1.i and
A14:  len p2=len q and
A15:  for i st 1<=i & i<=len q holds q.(i-'1)=p2.i;
      for i be Nat st 1<=i & i<=len p1 holds p1.i=p2.i
      proof
        let i be Nat;
        assume
A16:    1<=i & i<=len p1;
        then q.(i-'1)=p1.i by A12,A13;
        hence thesis by A12,A15,A16;
      end;
      hence thesis by A12,A14,FINSEQ_1:14;
    end;
  end;
end;

definition
  let D be set, q be XFinSequence of D;
  redefine func XFS2FS q -> FinSequence of D;
  coherence
  proof
    set p = XFS2FS q;
A1: len p = len q by Def9A;
    rng p c= D
    proof
      let y be object;
A3:   rng q c= D by RELAT_1:def 19;
      assume y in rng p;
      then consider x being object such that
A4:   x in dom p and
A5:   y=p.x by FUNCT_1:def 3;
      reconsider nx=x as Element of NAT by A4;
A6:   nx in Seg len q by A1,A4,FINSEQ_1:def 3;
      then f: 1<=nx by FINSEQ_1:1;
      then nx-1>=0 by XREAL_1:48; then
A7:   nx-1=nx-'1 by XREAL_0:def 2;
A8:   nx-'1<nx-'1+1 by NAT_1:13;
F:    nx<=len q by A6,FINSEQ_1:1;
      then nx-'1<len q by A7,A8,XXREAL_0:2;
      then a9: nx-'1 in dom q by Lm1;
AA:   1<=nx & nx<=len q by F,f;
A9:   q.(nx-'1) in rng q by FUNCT_1:def 3,a9;
      p.nx = q.(nx -'1) by Def9A,AA;
      hence thesis by A5,A9,A3;
    end;
    hence thesis by FINSEQ_1:def 4;
  end;
end;

theorem
  for D being set, n being Nat, r being set st r in D holds
    (n-->r) is XFinSequence of D;

definition
  let D be non empty set;
  let q be FinSequence of D, n be Nat;
  assume that
A1: n>len q and
A2: NAT c= D;
  func FS2XFS*(q,n) -> non empty XFinSequence of D means
  len q = it.0 &
  len it=n & (for i be Nat st 1<=i & i<= len q holds it.i=q.i)&
  for j being Nat st len q
  <j & j<n holds it.j=0;
  existence
  proof
    reconsider x=len q as Element of D by A2;
    reconsider r=0 as Element of D by A2;
    reconsider q5= ((n-'len q-'1)-->r) as XFinSequence of D;
    <%x%> ^ (FS2XFS q) <>{} by Th27;
    then reconsider
    p0=<%x%> ^ (FS2XFS q)^q5 as non empty XFinSequence of D by Th27;
A3: 0 in dom (<%x%>) by Lm1;
A4: len <%x%>=1 by Def4;
    0 in Segm(len <%x%> + len (FS2XFS q)) by NAT_1:44;
    then 0 in len (<%x%> ^ (FS2XFS q)) by Def3;
    then
A5: p0.0=(<%x%> ^ (FS2XFS q)).0 by Def3
      .=(<%x%>).0 by A3,Def3
      .=x;
A6: for i st 1<=i & i<= len q holds p0.i=q.i
    proof
      let i;
      assume that
A7:   1<=i and
A8:   i<= len q;
A9:   i-'1=i-1 by XREAL_0:def 2,A7,XREAL_1:48;
      i<i+1 by NAT_1:13;
      then i-1<i+1-1 by XREAL_1:9;
      then
A10:  i-'1 <len q by A8,A9,XXREAL_0:2;
      then i-'1 in Segm len q by NAT_1:44;
      then
A11:  i-'1 in len (FS2XFS q) by Def8;
      i<1+len q by A8,NAT_1:13;
      then i< (len (<%x%>)+len (FS2XFS q)) by A4,Def8;
      then i in Segm(len (<%x%>)+len (FS2XFS q)) by NAT_1:44;
      then i in len (<%x%> ^ (FS2XFS q)) by Def3;
      then p0.i =(<%x%>^(FS2XFS q)).(1+(i-'1)) by A9,Def3
        .=(FS2XFS q).(i-'1) by A4,A11,Def3
        .=q.(i-'1+1) by A10,Def8
        .=q.i by A9;
      hence thesis;
    end;
A12: n-len q>0 by A1,XREAL_1:50;
    then
A13: n-'len q=n-len q by XREAL_0:def 2;
    then n-'len q>=0+1 by A12,NAT_1:13;
    then
A14: n-'len q -1>=0 by XREAL_1:48;
A15: len q5=(n-'len q-'1);
A16: for j being Nat st len q<j & j<n holds p0.j=0
    proof
      let j be Nat;
      assume that
A17:  len q<j and
A18:  j<n;
A19:  len (<%x%> ^ (FS2XFS q)) =len (<%x%>) + len (FS2XFS q) by Def3
        .=1+len q by A4,Def8;
      len q<n by A17,A18,XXREAL_0:2;
      then
A20:  n-len q>0 by XREAL_1:50;
      then
A21:  n-'len q=n-len q by XREAL_0:def 2;
      then n-len q>=0+1 by A20,NAT_1:13;
      then n-'len q-1>=0 by A21,XREAL_1:48;
      then
A22:  n-'len q-'1 =n-(len q+1) by A21,XREAL_0:def 2;
      1+len q<=j by A17,NAT_1:13; then
A23:  j-'(1+len q)=j-(1+len q) by XREAL_0:def 2,XREAL_1:48;
      j-(len q+1)< n-(len q+1) by A18,XREAL_1:9;
      then
A24:  j-'len (<%x%> ^ (FS2XFS q)) in Segm(n-'len q-'1) by A19,A23,A22,NAT_1:44;
      j =len (<%x%> ^ (FS2XFS q))+(j-'len (<%x%> ^ (FS2XFS q))) by A19,A23;
      then p0.j=q5.(j-'len (<%x%> ^ (FS2XFS q))) by A15,A24,Def3
        .=0;
      hence thesis;
    end;
    len p0=len (<%x%> ^ (FS2XFS q)) + len q5 by Def3
      .=len <%x%> + len (FS2XFS q) + len q5 by Def3
      .= 1 + len (FS2XFS q) + len q5 by Th30
      .=1 + len q + len q5 by Def8
      .=1+len q+(n-'len q-'1)
      .=(n-(len q+1))+(len q+1) by A13,A14,XREAL_0:def 2
      .=n;
    hence thesis by A5,A6,A16;
  end;
  uniqueness
  proof
    let p1,p2 be non empty XFinSequence of D;
    assume that
A25: len q = (p1.0) and
A26: len p1=n and
A27: for i st 1<=i & i<= len q holds p1.i=q.i and
A28: for j being Nat st len q<j & j<n holds p1.j=0 and
A29: len q = (p2.0) and
A30: len p2=n and
A31: for i st 1<=i & i<= len q holds p2.i=q.i and
A32: for j being Nat st len q<j & j<n holds p2.j=0;
    for i be Nat st i<n holds p1.i=p2.i
    proof
      let i be Nat;
      assume i<n; then
A33:  i<0+1 or 1<=i & i<=len q or len q<i & i<n;
      now
        per cases by A33,NAT_1:13;
        case i=0;
          hence thesis by A25,A29;
        end;
        case
A34:      1<=i & i<=len q;
          then p1.i=q.i by A27;
          hence thesis by A31,A34;
        end;
        case
A35:      len q<i & i<n;
          then p1.i=0 by A28;
          hence thesis by A32,A35;
        end;
      end;
      hence thesis;
    end;
    hence thesis by A26,A30,Th8;
  end;
end;

reserve m for Nat,
        D for non empty set;

definition
  let D be non empty set;
  let p be XFinSequence of D;
  assume that
A1: p.0 is Nat and
A2: p.0 in len p;
  func XFS2FS*(p) -> FinSequence of D means :Def11:
  for m be Nat st m = p.0 holds
  len it =m & for i st 1<=i & i<= m holds it.i=p.i;
  existence
  proof
    reconsider m0=p.0 as Element of NAT by A1,ORDINAL1:def 12;
    deffunc F(set)= p.$1;
    ex q being FinSequence st len q = m0 & for k being Nat st k in dom q
    holds q.k=F(k) from FINSEQ_1:sch 2;
    then consider q being FinSequence such that
A3: len q = m0 and
A4: for k being Nat st k in dom q holds q.k=F(k);
    rng q c= D
    proof
A5:   m0 < len p by A2,Lm1;
      let y be object;
      assume y in rng q;
      then consider x being object such that
A6:   x in dom q and
A7:   y=q.x by FUNCT_1:def 3;
      reconsider k0=x as Element of NAT by A6;
      k0 in Seg m0 by A3,A6,FINSEQ_1:def 3;
      then k0<=m0 by FINSEQ_1:1;
      then k0 < len p by A5,XXREAL_0:2;
      then
A8:   k0 in dom p by Lm1;
      y=p.k0 by A4,A6,A7;
      then rng p c= D & y in rng p by A8,FUNCT_1:def 3,RELAT_1:def 19;
      hence thesis;
    end;
    then reconsider q0=q as FinSequence of D by FINSEQ_1:def 4;
A9: dom q = Seg m0 by A3,FINSEQ_1:def 3;
    for m be Nat st
    m = (p.0) holds len q0 =m & for i st 1<=i & i<= m holds q0.i =p.i
    by A4,A9,FINSEQ_1:1,A3;
    hence thesis;
  end;
  uniqueness
  proof
    reconsider m2=p.0 as Nat by A1;
    let g1,g2 be FinSequence of D;
    assume that
A10: for m st m = p.0 holds len g1 =m & for i st 1<=i & i<= m holds g1
    .i=p. i and
A11: for m st m = p.0 holds len g2 =m & for i st 1<=i & i<= m holds g2
    . i=p.i;
A12: len g1=m2 by A10;
A13: for i be Nat st 1<=i & i<=len g1 holds g1.i=g2.i
    proof
      let i be Nat;
      assume
A14:  1<=i & i<=len g1;
      then g1.i=p.i by A10,A12;
      hence thesis by A11,A12,A14;
    end;
    len g2=m2 by A11;
    hence thesis by A10,A13,FINSEQ_1:14;
  end;
end;

theorem
  for p being XFinSequence of D st p.0=0 & 0<len p holds
  XFS2FS*(p)={}
proof
  let p be XFinSequence of D;
  assume that
A1: p.0=0 and
A2: 0<len p;
  set q= XFS2FS*(p);
  0 in len p by A2,Lm1;
  then len q=0 by A1,Def11;
  hence thesis;
end;

:: from EXTPRO_1, 2010.01.11, A.T.

definition
  let F be Function;
  attr F is initial means
:Def12:
  for m,n being Nat st n in dom F & m < n holds m in dom F;
end;

registration
  cluster empty -> initial for Function;
  coherence;
end;

registration
  cluster -> initial for XFinSequence;
  coherence
  proof
    let p be XFinSequence;
    let m,n being Nat such that
A1: n in dom p;
    assume m < n;
    then m in Segm n by NAT_1:44;
    hence m in dom p by A1,ORDINAL1:10;
  end;
end;

:: following, 2010.01.11, A.T.

registration
 cluster -> NAT-defined for XFinSequence;
 coherence
  proof let f be XFinSequence;
   thus dom f c= NAT;
  end;
end;

theorem Th62:
  for F being non empty initial NAT-defined Function holds 0 in dom F
proof
 let F be non empty initial NAT-defined Function;
  consider x being object such that
A1: x in dom F by XBOOLE_0:def 1;
  dom F c= NAT by RELAT_1:def 18;
  then reconsider x as Element of NAT by A1;
  x = 0 or 0 < x;
  hence 0 in dom F by A1,Def12;
end;

registration
  cluster initial finite NAT-defined -> Sequence-like for Function;
  coherence
  proof let F be Function;
    assume
A1:   F is initial finite NAT-defined;
    thus dom F is epsilon-transitive
    proof let x be set;
      assume
A2:    x in dom F;
      then reconsider i = x as Nat by A1;
     let y be object;
     assume y in x; then
A3:  y in Segm i;
     then reconsider j = y as Nat;
     thus y in dom F by A1,A2,NAT_1:44,A3;
    end;
  let x,y be set;
  assume x in dom F & y in dom F;
    then reconsider x,y as Ordinal by A1;
    x in y or x = y or y in x by ORDINAL1:14;
   hence thesis;
  end;
end;

theorem
 for F being finite initial NAT-defined Function
 for n being Nat holds
  n in dom F iff n < card F by Lm1;

:: from AMISTD_2, 2010.04.16, A.T.

theorem
  for F being initial NAT-defined Function,
  G being NAT-defined Function st dom F = dom G holds G is initial by Def12;

theorem
  for F being initial NAT-defined finite Function
  holds dom F = { k where k is Element of NAT: k < card F }
proof
  let F be initial NAT-defined finite Function;
  hereby
    let x be object;
    assume
A1: x in dom F;
    then reconsider f = x as Element of NAT;
    f < card F by A1,Lm1;
    hence x in { k where k is Element of NAT: k < card F };
  end;
  let x be object;
  assume x in { k where k is Element of NAT: k < card F };
  then ex k being Element of NAT st x = k & k < card F;
  hence thesis by Lm1;
end;

theorem
  for F being non empty XFinSequence,
      G be non empty NAT-defined finite Function
   st F c= G & LastLoc F = LastLoc G
  holds F = G
proof
  let F be initial non empty NAT-defined finite Function, G be non empty NAT
  -defined finite Function such that
A1: F c= G and
A2: LastLoc F = LastLoc G;
  dom F = dom G
  proof
    thus dom F c= dom G by A1,GRFUNC_1:2;
    let x be object;
    assume
A3: x in dom G;
    dom G c= NAT by RELAT_1:def 18;
    then reconsider x as Element of NAT by A3;
A4: LastLoc F in dom F by VALUED_1:30;
    x <= LastLoc F by A2,A3,VALUED_1:32;
    then x < LastLoc F or x = LastLoc F by XXREAL_0:1;
    hence thesis by A4,Def12;
  end;
  hence thesis by A1,GRFUNC_1:3;
end;

theorem Th67:
  for F being non empty XFinSequence holds
  LastLoc F = card F -' 1
proof
  let F be initial non empty NAT-defined finite Function;
  consider k being Nat such that
A1: LastLoc F = k;
  reconsider k as Element of NAT by ORDINAL1:def 12;
  k < card F by A1,Lm1,VALUED_1:30;
  then
A2: k <= card F -' 1 by NAT_D:49;
  per cases by A2,XXREAL_0:1;
  suppose
    k < card F -' 1;
    then k+1 < card F -' 1 + 1 by XREAL_1:6;
    then k+1 < card F by NAT_1:14,XREAL_1:235;
    then
A3: k+1 <= k by A1,VALUED_1:32,Lm1;
    k <= k+1 by NAT_1:11;
    then k+0 = k+1 by A3,XXREAL_0:1;
    hence thesis;
  end;
  suppose
    k = card F -' 1;
    hence thesis by A1;
  end;
end;

theorem
  for F being initial non empty NAT-defined finite Function holds
  FirstLoc F = 0 by Th62,VALUED_1:35;

registration
  let F be initial non empty NAT-defined finite Function;
  cluster CutLastLoc F -> initial;
  coherence
  proof
    set G = CutLastLoc F;
    per cases;
    suppose G is empty;
      then reconsider H = G as empty finite Function;
      H is initial;
      hence thesis;
    end;
    suppose G is non empty;
      then reconsider G as non empty finite Function;
      G is initial
      proof
        let m,l be Nat such that
A1:     l in dom G and
A2:     m < l;
        set M = dom F;
        reconsider R = {[LastLoc F, F.LastLoc F]} as Relation;
a3:     R = LastLoc F .--> (F.LastLoc F) by FUNCT_4:82; then
A4:     dom F \ dom R = dom G by VALUED_1:36; then
        l in dom F by A1,XBOOLE_0:def 5; then
A5:     m in dom F by A2,Def12;
        l in M by A4,A1,XBOOLE_0:def 5;
        then m <> LastLoc F by A2,XXREAL_2:def 8;
        then not m in {LastLoc F} by TARSKI:def 1;
        hence thesis by a3,A4,A5,XBOOLE_0:def 5;
      end;
      hence thesis;
    end;
  end;
end;

reserve l for Nat;

theorem
 for I being finite initial NAT-defined Function, J being Function
 holds dom I misses dom Shift(J,card I)
proof let I be finite initial NAT-defined Function, J be Function;
  assume
A1: dom I meets dom Shift(J,card I);
  dom Shift(J,card I) = { l+card I: l in dom J } by VALUED_1:def 12;
  then consider x being object such that
A2: x in dom I and
A3: x in { l+card I: l in dom J } by A1,XBOOLE_0:3;
  consider l such that
A4: x = l+card I and
  l in dom J by A3;
  thus contradiction by NAT_1:11,A2,A4,Lm1;
end;

:: from SCMPDS_4, 2010.05.14, A.T.

theorem
  not m in dom p implies not m+1 in dom p
proof
  assume not m in dom p; then
A1: m >= card p by Lm1;
  m+1 >= m by NAT_1:11;
  hence thesis by Lm1,A1,XXREAL_0:2;
end;

:: from SCM_COMP, 2010.05.16, A.T.

registration let D be set;
 cluster D^omega -> functional;
 coherence by Def7;
end;

registration let D be set;
  cluster -> finite Sequence-like for Element of D^omega;
  coherence by Def7;
end;

definition let D be set;
 let f be XFinSequence of D;
 func Down f -> Element of D^omega equals
 f;
 coherence by Def7;
end;

definition let D be set;
 let f be XFinSequence of D, g be Element of D^omega;
 redefine func f^g -> Element of D^omega;
 coherence
  proof
    reconsider g as XFinSequence of D by Def7;
    f^g is XFinSequence of D;
   hence thesis by Def7;
  end;
end;

definition let D be set;
 let f, g be Element of D^omega;
 redefine func f^g -> Element of D^omega;
 coherence
  proof
    reconsider f,g as XFinSequence of D by Def7;
    f^g is XFinSequence of D;
   hence thesis by Def7;
  end;
end;

:: missing, 2010.05.15, A.T.

theorem Th71:
  p c= p^q
proof
A1: dom p c= dom(p^q) by Th19;
  for x being object st x in dom p holds (p^q).x = p.x by Def3;
 hence thesis by A1,GRFUNC_1:2;
end;

theorem Th72:
  len(p^<%x%>) = len p + 1
 proof
  thus len(p^<%x%>) = len p + len<%x%> by Def3
      .= len p + 1 by Th30;
 end;

theorem
 <%x,y%> = (0,1) --> (x,y)
proof
A1: dom<%x,y%> = len<%x,y%>
    .= {0,1} by Th35,CARD_1:50;
A2: <%x,y%>.0 = x;
  <%x,y%>.1 = y;
 hence <%x,y%> = (0,1) --> (x,y) by A1,A2,FUNCT_4:66;
end;

reserve M for Nat;

theorem Th74:
 p^q = p +* Shift(q, card p)
proof
A1: dom Shift(q, card p) = { M+card p:M in dom q } by VALUED_1:def 12;
   for x being object
holds x in dom(p^q) iff x in dom p or x in dom Shift(q, card p)
    proof let x be object;
     thus x in dom(p^q) implies x in dom p or x in dom Shift(q, card p)
      proof assume
A2:     x in dom(p^q);
        then reconsider k = x as Nat;
       per cases by A2,Th18;
       suppose k in dom p;
       hence x in dom p or x in dom Shift(q, card p);
       end;
       suppose ex n st n in dom q & k=len p + n;
       hence x in dom p or x in dom Shift(q, card p) by A1;
       end;
      end;
     assume
A3:    x in dom p or x in dom Shift(q, card p);
     per cases by A3;
     suppose
A4:    x in dom p;
      dom p c= dom(p^q) by Th19;
     hence x in dom(p^q) by A4;
     end;
     suppose x in dom Shift(q, card p);
      then ex M st x = M+card p & M in dom q by A1;
     hence x in dom(p^q) by Th21;
     end;
    end;
   then
A5: dom(p^q) = dom p \/ dom Shift(q, card p) by XBOOLE_0:def 3;
  for x being object st x in dom p \/ dom Shift(q, card p)
   holds (x in dom Shift(q, card p) implies (p^q).x = Shift(q, card p).x) &
    (not x in dom Shift(q, card p) implies (p^q).x = p.x)
  proof let x be object such that
A6:   x in dom p \/ dom Shift(q, card p);
   hereby assume
A7:  x in dom Shift(q, card p);
     then reconsider k = x as Nat;
     consider M such that
A8:   x = M+card p and
A9:   M in dom q by A7,A1;
     set m = k -' len p;
A10: len p + m = k by A8,NAT_D:34;
    hence (p^q).x = q.m by A8,A9,Def3
       .= Shift(q, card p).x by A8,A9,A10,VALUED_1:def 12;
   end;
   assume not x in dom Shift(q, card p);
    then x in dom p by A6,XBOOLE_0:def 3;
   hence (p^q).x = p.x by Def3;
  end;
 hence p^q = p +* Shift(q, card p) by A5,FUNCT_4:def 1;
end;

theorem
  p +* (p ^ q) = p ^ q & (p ^ q) +* p = p ^ q by Th71,FUNCT_4:97,98;

reserve m,n for Nat;

theorem Th76:
 for I being finite initial NAT-defined Function, J being Function
 holds dom Shift(I,n) misses dom Shift(J,n+card I)
proof let I be finite initial NAT-defined Function, J be Function;
  assume
A1: dom Shift(I,n) meets dom Shift(J,n+card I);
  dom Shift(J,n+card I) = { l+(n+card I): l in dom J } by VALUED_1:def 12;
  then consider x being object such that
A2: x in dom Shift(I,n) and
A3: x in { l+(n+card I): l in dom J } by A1,XBOOLE_0:3;
 dom Shift(I,n) = { m+n:m in dom I } by VALUED_1:def 12;
  then consider m such that
A4: x = m+n and
A5: m in dom I by A2;
  consider l such that
A6: x = l+(n+card I) and
  l in dom J by A3;
  m < card I by A5,Lm1;
  hence contradiction by NAT_1:11,A4,A6,XREAL_1:6;
end;

theorem Th77:
  Shift(p,n) c= Shift(p^q,n)
 proof
    p^q = p +* Shift(q, card p) by Th74;
    then
A1:   Shift(p^q,n) = Shift(p,n) +* Shift(Shift(q,card p),n) by VALUED_1:23;
    Shift(Shift(q,card p),n) = Shift(q,n+card p) by VALUED_1:21;
    then dom Shift(p,n) misses dom Shift(Shift(q,card p),n) by Th76;
   hence Shift(p,n) c=  Shift(p^q,n) by A1,FUNCT_4:32;
 end;

theorem Th78:
  Shift(q,n+card p) c= Shift(p^q,n)
 proof
A1: Shift(Shift(q,card p),n) = Shift(q,n+card p) by VALUED_1:21;
    p^q = p +* Shift(q, card p) by Th74;
    then Shift(p^q,n) = Shift(p,n) +* Shift(Shift(q,card p),n) by VALUED_1:23;
   hence thesis by A1,FUNCT_4:25;
 end;

theorem
 Shift(p^q,n) c= X implies Shift(p,n) c= X
 proof assume
A1: Shift(p^q,n) c= X;
   Shift(p,n) c= Shift(p^q,n) by Th77;
  hence Shift(p,n) c= X by A1;
 end;

theorem
 Shift(p^q,n) c= X implies Shift(q,n+card p) c= X
 proof assume
A1: Shift(p^q,n) c= X;
   Shift(q,n+card p) c= Shift(p^q,n) by Th78;
  hence thesis by A1;
 end;

registration let F be initial non empty NAT-defined finite Function;
 cluster CutLastLoc F -> initial;
 coherence;
end;

definition let x1,x2,x3,x4 be object;
 func <%x1,x2,x3,x4%> -> set equals
  <%x1%>^<%x2%>^<%x3%>^<%x4%>;
 coherence;
end;

registration let x1,x2,x3,x4 be object;
 cluster <%x1,x2,x3,x4%> -> Function-like Relation-like;
 coherence;
end;

registration let x1,x2,x3,x4 be object;
 cluster <%x1,x2,x3,x4%> -> finite Sequence-like;
 coherence;
end;

reserve x1,x2,x3,x4 for object;

theorem
 len<%x1,x2,x3,x4%> = 4
  proof
   thus len<%x1,x2,x3,x4%>
       = len<%x1,x2,x3%> + 1 by Th72
      .= 3 + 1 by Th36
      .= 4;
  end;

Lm3:
 <%x1,x2,x3,x4%>.1 = x2 &
 <%x1,x2,x3,x4%>.2 = x3 &
 <%x1,x2,x3,x4%>.3 = x4
 proof
A1: len<%x1,x2,x3%> = 3 by Th36;
   then
A2: 1 in dom<%x1,x2,x3%> by Lm1;
  thus <%x1,x2,x3,x4%>.1
       =<%x1,x2,x3%>.1 by A2,Def3
      .= x2;
A3: 2 in dom<%x1,x2,x3%> by A1,Lm1;
  thus <%x1,x2,x3,x4%>.2
       =<%x1,x2,x3%>.2 by A3,Def3
      .= x3;
  thus <%x1,x2,x3,x4%>.3 = x4 by A1,Th33;
 end;

registration
  let x1,x2,x3,x4 be object;
  reduce <%x1,x2,x3,x4%>.0 to x1;
  reducibility
   proof
    thus <%x1,x2,x3,x4%>.0
       =(<%x1%>^<%x2,x3%>^<%x4%>).0 by Th25
      .=(<%x1%>^<%x2,x3,x4%>).0 by Th25
      .= x1 by Th32;
   end;
  reduce <%x1,x2,x3,x4%>.1 to x2;
  reducibility by Lm3;
  reduce <%x1,x2,x3,x4%>.2 to x3;
  reducibility by Lm3;
  reduce <%x1,x2,x3,x4%>.3 to x4;
  reducibility by Lm3;
end;

::$CT

theorem
 k < len p iff k in dom p by Lm1;

reserve e,u for object;

theorem
 Segm(n+1) --> e = (Segm n --> e)^<%e%>
 proof
  set p = Segm n --> e, q = Segm(n+1) --> e;
A2:  dom q = n+1
      .= len p + len <%e%> by Th31;
A3: for k st k in dom p holds q.k=p.k
    proof let k;
     assume
A4:  k in dom p;
     p c= q by FUNCT_4:4,NAT_1:63;
     hence q.k=p.k by A4,GRFUNC_1:2;
    end;
   for k st k in dom<%e%> holds q.(len p + k) = <%e%>.k
    proof let k such that
A5:    k in dom<%e%>;
A6:     k = 0 by A5,TARSKI:def 1;
      len p < n+1 by NAT_1:13;
      then len p + 0 in Segm(n+1) by NAT_1:44;
     hence q.(len p + k) = <%e%>.k by A6,FUNCOP_1:7;
    end;
  hence thesis by A2,A3,Def3;
 end;

theorem Th84:
 dom Shift(<%e%>,card p) = {card p}
proof
  for u holds u in dom Shift(<%e%>,card p) iff u = card p
   proof let u;
    thus u in dom Shift(<%e%>,card p) implies u = card p
     proof
      assume u in dom Shift(<%e%>,card p);
       then u in { m+card p where m is Nat:m in dom <%e%> } by VALUED_1:def 12;
       then consider m being Nat such that
A1:    u = m+card p and
A2:    m in dom <%e%>;
       m = 0 by A2,TARSKI:def 1;
      hence u = card p by A1;
     end;
     0 in 1 by CARD_1:49,TARSKI:def 1;
     then 0 in dom <%e%> by Def4;
     then 0+card p in dom Shift(<%e%>,card p) by VALUED_1:24;
     hence thesis;
   end;
  hence thesis by TARSKI:def 1;
end;

theorem
 dom(p^<%e%>) = dom p \/ {card p}
proof
 thus dom(p^<%e%>) = dom(p +* Shift(<%e%>, card p)) by Th74
      .= dom p \/ dom Shift(<%e%>,card p) by FUNCT_4:def 1
      .= dom p \/ {card p} by Th84;
 end;

theorem
 <%x%> +~ (x,y) = <%y%>
proof
A1: dom(<%x%> +~ (x,y)) = dom<%x%> by FUNCT_4:99
      .= Segm 1 by Th30;
  then <%x%> +~ (x,y) is finite by FINSET_1:10;
  then reconsider p = <%x%> +~ (x,y) as XFinSequence by A1,ORDINAL1:def 7;
A2: rng<%x%> = {x} by Th30;
   then rng p c= {x} \ {x} \/ {y} by FUNCT_4:104;
   then rng p c= {} \/ {y} by XBOOLE_1:37;
   then
A3:  rng p c= {y};
      x in rng <%x%> by A2,TARSKI:def 1;
  then y in rng p by FUNCT_4:101;
  hence <%x%> +~ (x,y) = <%y%> by A1,Th30,A3,ZFMISC_1:33;
end;

theorem
 for I being non empty XFinSequence
 holds LastLoc I = card I - 1
proof let I be non empty XFinSequence;
A1:  card I >= 0+1 by NAT_1:13;
 thus LastLoc I = card I -' 1 by Th67
   .= card I - 1 by A1,XREAL_1:233;
end;

begin ::: Addenda by Sebastian Koch

:: this holds more basically for any Sequence A, but since
:: the properties of Sequences of the form A ^ <%x%> are not in Mizar yet
:: I have no desire to formally introduce everything of that here, too
theorem
  for p being XFinSequence, x being object holds last(p^<%x%>) = x
proof
  let p be XFinSequence, x be object;
  dom(p^<%x%>) = len(p^<%x%>)
    .= len p + 1 by Th72
    .= len p +^ 1 by CARD_2:36
    .= succ len p by ORDINAL2:31;
  hence last(p^<%x%>) = (p^<%x%>).len p by ORDINAL2:6
    .= x by Th33;
end;

:: the mirror theorem of BALLOT_1:5, but also for empty D
theorem Th12:
  for D being set, p being XFinSequence of D holds FS2XFS (XFS2FS p) = p
proof
  let D be set, p be XFinSequence of D;
  A1: len p = len XFS2FS p by Def9A;
  A2: len XFS2FS p = len FS2XFS (XFS2FS p) by Def8;
  for k being Nat st k < len p holds p.k = (FS2XFS (XFS2FS p)).k
  proof
    let k be Nat;
    assume A3: k < len p;
    then 0+1 <= k+1 & k+1 < len p +1 by XREAL_1:6;
    then A4: 1 <= k+1 & k+1 <= len p by NAT_1:13;
    thus p.k = p.(k+1-'1) by NAT_D:34
      .= (XFS2FS p).(k+1) by A4, Def9A
      .= (FS2XFS (XFS2FS p)).k by A1, A3, Def8;
  end;
  hence thesis by A1, A2, Th8;
end;

registration
  let D be set, f be XFinSequence of D;
  reduce FS2XFS XFS2FS f to f;
  reducibility by Th12;
end;

theorem Th13:
  for D being set, p being FinSequence of D, n being Nat
  holds n+1 in dom p iff n in dom FS2XFS p
proof
  let D be set, p be FinSequence of D, n be Nat;
  hereby
    assume n+1 in dom p;
    then n+1 <= len p by FINSEQ_3:25;
    then n+1-1 < len p-0 by XREAL_1:15;
    then n < len FS2XFS p by Def8;
    then n in Segm dom FS2XFS p by NAT_1:44;
    hence n in dom FS2XFS p;
  end;
  assume n in dom FS2XFS p;
  then n in Segm dom FS2XFS p;
  then 0 <= n & n < len FS2XFS p by NAT_1:44;
  then 0+1 <= n+1 & n < len p by Def8, XREAL_1:6;
  then 1 <= n+1 & n+1 <= len p by NAT_1:13;
  hence n+1 in dom p by FINSEQ_3:25;
end;

theorem Th14:
  for D being set, p being XFinSequence of D, n being Nat
  holds n in dom p iff n+1 in dom XFS2FS p
proof
  let D be set, p be XFinSequence of D, n be Nat;
  hereby
    assume n in dom p;
    then n in dom FS2XFS (XFS2FS p);
    hence n+1 in dom XFS2FS p by Th13;
  end;
  assume n+1 in dom XFS2FS p;
  then n in dom FS2XFS (XFS2FS p) by Th13;
  hence thesis;
end;

registration
  let D be set, p be one-to-one FinSequence of D;
  cluster FS2XFS p -> one-to-one;
  coherence
  proof
    now
      let x1, x2 be object;
      assume that
      A1: x1 in dom FS2XFS p & x2 in dom FS2XFS p and
      A2: (FS2XFS p).x1 = (FS2XFS p).x2;
      reconsider n1 = x1, n2 = x2 as Nat by A1;
      A3: n1 + 1 in dom p & n2 + 1 in dom p by A1, Th13;
      then n1 + 1 <= len p & n2 + 1 <= len p by FINSEQ_3:25;
      then A4: n1 < len p & n2 < len p by NAT_1:13;
      p.(n1+1) = (FS2XFS p).n1 by A4, Def8
        .= p.(n2+1) by A2, A4, Def8;
      then n1 + 1 = n2 + 1 by A3, FUNCT_1:def 4;
      hence x1 = x2;
    end;
    hence thesis;
  end;
end;

registration
  let D be set, p be one-to-one XFinSequence of D;
  cluster XFS2FS p -> one-to-one;
  coherence
  proof
    now
      let x1, x2 be object;
      assume that
        A1: x1 in dom XFS2FS p & x2 in dom XFS2FS p and
        A2: (XFS2FS p).x1 = (XFS2FS p).x2;
      reconsider n1 = x1, n2 = x2 as Nat by A1;
      1 <= n1 & n1 <= len XFS2FS p & 1 <= n2 & n2 <= len XFS2FS p
        by A1, FINSEQ_3:25;
      then A3: 1 <= n1 & n1 <= len p & 1 <= n2 & n2 <= len p by Def9A;
      then A4: p.(n1-'1)= (XFS2FS p).n1 & p.(n2-'1)= (XFS2FS p).n2
        by Def9A;
      A5: n1-'1+1 = n1 & n2-'1+1 = n2 by A3, XREAL_1:235;
      then n1-'1 in dom p & n2-'1 in dom p by A1, Th14;
      hence x1 = x2 by A2, A4, A5, FUNCT_1:def 4;
    end;
    hence thesis;
  end;
end;

theorem Th15:
  for D being set, p being FinSequence of D holds rng p = rng FS2XFS p
proof
  let D be set, p be FinSequence of D;
  for y being object
  holds y in rng FS2XFS p iff ex x being object st x in dom p & p.x = y
  proof
    let y be object;
    thus y in rng FS2XFS p implies ex x being object st x in dom p & p.x = y
    proof
      assume y in rng FS2XFS p;
      then consider n being object such that
        A1: n in dom FS2XFS p & (FS2XFS p).n = y by FUNCT_1:def 3;:::AFINSQ_2:3;
      reconsider n as Nat by A1;
      take n+1;
      thus n+1 in dom p by A1, Th13;
      n < len FS2XFS p by A1, Lm1;
      then n < len p by Def8;
      hence p.(n+1) = y by A1, Def8;
    end;
    given x being object such that
      A2: x in dom p & p.x = y;
    reconsider n1 = x as Nat by A2;
    A3: 1 <= n1 & n1 <= len p by A2, FINSEQ_3:25;
    then reconsider n = n1-1 as Nat by Th0;
    n < len p - 0 by A3, XREAL_1:15;
    then A4: p.(n+1) = (FS2XFS p).n by Def8;
    n+1 in dom p by A2;
    then n in dom FS2XFS p by Th13;
    hence thesis by A2, A4, FUNCT_1:3;
  end;
  hence thesis by FUNCT_1:def 3;
end;

:: generalizes BALLOT_1:2 to empty D
theorem
  for D being set, p being XFinSequence of D holds rng p = rng XFS2FS p
proof
  let D be set, p be XFinSequence of D;
  thus rng p = rng FS2XFS XFS2FS p
    .= rng XFS2FS p by Th15;
end;

registration
  let D be set, p be empty XFinSequence of D;
  cluster XFS2FS p -> empty;
  coherence
  proof
    len p = {};
    then len XFS2FS p = {} by Def9A;
    hence thesis;
  end;
end;

registration
  let D be set, p be empty FinSequence of D;
  cluster FS2XFS p -> empty;
  coherence
  proof
    len p = {};
    then len FS2XFS p = {} by Def8;
    hence thesis;
  end;
end;